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Advances in CT features and
radiomics of checkpoint
inhibitor-related pneumonitis:
A short review
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Medicine, Hangzhou, China
Checkpoint inhibitor-related pneumonitis (CIP) is a complication of

immunotherapy for malignant tumors that severely limits the treatment cycles as

well as endangers patients’ health. The chest CT imaging features or typing of CIP

and the application of radiomics will contribute to the precise prevention, early

diagnosis and instant treatment of CIP. This article reviews the advances in the CT

features and the application of radiomics in CIP.
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Introduction

Programmed death 1 (PD1)/programmed death-ligand 1 (PD-L1) targeted immune

checkpoint inhibitors (ICIs) have revolutionized cancer treatment. With the continuous

publication of results from large randomized controlled clinical studies, ICIs alone or in

combination with radiotherapy, chemotherapy, or anti-angiogenic therapy are becoming the

first-line treatment of choice for most major cancer types (1–4). However, the incidence of

immunotherapy-related adverse effects (irAEs) is inevitable and relatively high. For example,

a meta-analysis with a total of 1063 Chinese patients in 13 clinical studies enrolled, of whom

922 (86.7%) received ICIs monotherapy and 141 (13.3%) received ICIs plus chemotherapy or

anti-angiogenesis, reported that the incidence of irAEs of any grade was 43.3%, and 4.3% of

patients discontinued the treatment due to the severe irAEs (5). The incidence of checkpoint

inhibitor-related pneumonitis (CIP) was reported to range from 1%-4% with single-agent

immunotherapy (6) and up to 6.6% with combined strategies (7). Early clinical symptoms are

not easy to detect, and severe grade 3-5 CIP may lead to severe respiratory failure and is one

of the major fatal adverse reactions, so it is urgent to identify or predict the occurrence of

immunotherapy-related pneumonitis accurately.

CIP can be diagnosed by meeting the following three criteria: (i) history of ICI

medication; (ii) newly appeared lung shadow; (iii) excluding lung infection, lung tumor

progression, other causes of interstitial lung disease, pulmonary embolism, pulmonary
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vasculitis and pulmonary edema. However, during the treatment of

tumor patients, other factors such as infections, radiation therapy,

other drugs such as targeted drugs, chemotherapy, etc. are often

mixed, thus it is often difficult to accurately diagnose CIP and select

the appropriate treatment plan accordingly timely. Although some

biomarkers such as interleukin (IL) including IL2 and IL17a, as well as

circulating CD8+ T-cells and neutrophil/lymphocyte ratio have been

found to correlate with the incidence of CIP (8). It has also been

suggested that chronic lung disease such as chronic obstructive

pulmonary disease, emphysema, and interstitial lung disease and

history of prior chest radiation therapy may be independent risk

factors for the occurrence of CIP, but there are no clear, stable, and

mature identification or prediction models that can be applied in the

clinical setting.

Radiomics is an emerging technology in medical imaging with the

automated extraction of multidimensional imaging data frommedical

images aiming for comprehensive visualization and characterization

of the disease-involved tissue and its microenvironment. Radiomics-

based approaches that quantitatively identify associations between the

extracted imaging data and clinical characteristics or outcomes and

use these associations to construct predictive models thereby

providing a solution to clinical problems, such as those that have

been developed for identification of benign or malignant small

pulmonary nodules, interpretation of COVID-19 pneumonia, and

other various aspects of the medical field. While there are many

studies on the use of radiomics to predict the efficacy of

immunotherapy, there is no systematic review of the emerging field

of radiomics to identify or predict the occurrence of CIP, although

several studies were published in recent years. Therefore, we attempt

to review the relevant content and provide some insights.
CT imaging patterns of CIP

Computed tomography (CT) is an important imaging modality

for the diagnosis of lung disease, and the imaging features on CT of

the lung are crucial to diagnose CIP correctly. American Thoracic

Society/European Respiratory Society (ATS/ERS) revised and

supplemented the international consensus on the classification and

diagnostic criteria of interstitial pneumonia in 2013 (9), and

subsequent scholars have mostly based their phenotypic patterns of

CIP images on these criteria, which include organizing pneumonia

(OP), nonspecific interstitial pneumonia (NSIP), hypersensitivity

pneumonitis (HP), bronchiectasis, and acute interstitial pneumonia

- acute respiratory distress syndrome (AIP-ARDS).

In 2016, Naidoo et al. first classified the following imaging

subtypes based on CT in 27 patients with CIP: cryptogenic

organizing pneumonia (COP) (2/27, 19%), ground glass opacity

(GGO) (10/27, 37%), NSIP (2/27, 7%) and HP (6/27, 22%), and not

otherwise specified (NOS) pneumonia (4/27, 15%), and found that

CT imaging patterns were essentially consistent throughout the

patients’ clinical course, except for two patients (10). Lin et al.

found that predominant patterns were GGO (43.6%), NSIP

(25.5%), COP (18.2%), and follower by NOS (12.7%) based on a

similar classification pattern, and AIP-ARDS indicated severe

pneumonia (correlation coefficient = 0.707, p < 0.001) (11).

However, the above study analyzed the radiographic element GGO
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together with the imaging patterns, which was not appropriate.

According to the diagnostic criteria for interstitial pneumonia

published by ATS/ERS, Delaunay et al. instead analyzed in a larger

sample size (64 cases) and found COP to be the most common pattern

(15/64, 23.4%), followed by HP (10/64, 15.6%), NSIP and

bronchiectasis in 7.8% (5/64) and 6.3% (4/64), respectively and

another 23 with unspecified pneumonia (35.9%) (12). Subsequent

published studies consistently found the COP pattern as the most

common type in both lung and non-lung tumors (13–15). There was

no significant difference in imaging patterns between early-onset and

late-onset CIP (15). The AIP/ARDS type turned out to have the

highest adverse effect grade, while NSIP and HP seemed to be mild

(median grade: 3, 2, 1, 1; p = 0.006) (13).

Specifically looking at the CT radiographic elements, GGO was

the most common feature (52/64, 81.3%), followed by consolidation

(34/64, 53.1%), bronchiectasis (11/64, 17.2%), interlobular septal

thickening (10/64, 15.6%) and intralobular lines (14/64, 21.9%), etc.

and mainly showed diffuse lung involvement (12). Consolidation was

common in patients with lung cancer and less frequent in non-lung

cancer patients (29%), while nodular lesions were found in only a

minority of patients in the non-lung cancer group (29%) (14).

Interestingly, Balaji et al. specifically looked at the steroid-refractory

CIPs, and reported a similar pattern, with GGOs (50%, 6/12) as the

predominant ones and mostly involving bilateral lung fields (75%, 9/

12) (16). Similarly, Imran et al. reported a few cases of rapid

deterioration even after adequate treatment with CT features of

diffuse GGOs (17), however, the imaging features are similar in

common CIPs without novel findings, which should be further

explored and well organized.
Identification of CIP by CT radiomics

Radiation therapy is often involved and plays an important role in

the immunotherapy process, improving local control of the tumor as

well as acting as an immune adjuvant to sensitize the efficacy of

immunotherapy. However, in the case of non-infectious pneumonia,

the attribution of pneumonia by radiation or immunotherapy is often

difficult for clinicians to distinguish, thereby making it difficult to

treat. Hence, using radiomics to analyze the differences in imaging

features between radiation induced pneumonitis (RIP) and CIP and

to classify and identify them will help clinical decision making and

benefit patients.

The first systematic comparison of CT features of RIP and CIP

was performed by Chen et al. at Johns Hopkins University, which

included 82 patients: 30 after RT+ICI, 29 after thoracic RT, and 23

after ICI. Compared with RIP, CIP was more likely to be bilateral

(65% vs. 28%; p = 0.01), involve more lobes (66% vs. 45%), and was

less likely to have sharp borders (17% vs. 59%; p = 0.004). The area

under curve (AUC) of the machine learning model to differentiate

CIP and RIP reached 0.76 based on the following 7 imaging features:

bilateral, number of lobes, volume of lung involved, multifocal,

radiographic elements, radiographic patterns, and sharp border

(18). A similar radiomics study done by Cheng et al. in China,

developed the linear SVM classification model based on three

radiomics features (intensity histogram, bag-of-words [BoW]

features, and gray-level co-occurrence matrix [GLCM]), and a 10-
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fold cross-validation in patients receiving only ICI or RT showed

robust results with AUCs of 0.937. The model was then tested in

patients receiving ICI+RT and could achieve an AUC of 0.896 (19).

The retrospective study by Qiu et al. included a larger sample (126

cases) and finally identified the Rad-score (11 imaging histological

features) with the potential to distinguish between CIP and RIP, and

also found that bilateral involvement and sharp border were

associated with the distinguishment of CIP and RIP. Combining the

Rad-score and the above two features, authors created a robust model

showing good performance in both the training dataset (empirical-

based AUCs of 0.953) and the validation dataset (AUC = 0.947) (20),

which is also the model with the best recognition performance

reported in the literature so far.

These results suggest that CT-based radiomics has good potential

in differentiating CIP from RIP in lung cancer and may become a

practical tool in the future to provide a valuable differential diagnosis

for the attribution of pneumonia in patients treated with concomitant

ICI and RT.
Prediction of CIP by CT radiomics

Treatment after the onset of CIP is often difficult to ensure

patients’ quality of life and long progression-free survival because of

the severity of the disease, making it a hot issue to predict the possible

onset of CIP well before ICI treatment and to perform primary

prevention or to screen out the optimal population. The earliest

exploration was conducted by Colen et al. at MD Anderson, who

analyzed a total of 1860 imaging features on baseline chest CT from 2

patients who developed CIP and 30 patients who did not develop CIP.

Using feature selection methods of maximum correlation and

minimum redundancy, abnormality detection algorithms, and

leave-out cross-validation, 2 radiological features with significant

differences were finally identified: skewness (a measure of histogram

symmetry) and angular variance of the sum of squares (a measure of

dispersion) (21). Spiele et al. from the University of Miami, on the

other hand, performed a proof of concept for the prediction of

pneumonia after radiation therapy combined with immunotherapy

in a mouse Lewis lung cancer model. Mice were bilaterally imaged

with CT and MRI after subcutaneous tumor formation and blood

collection, and then treated with RT of the right abdominal tumor

only (3*8Gy) followed by intraperitoneal injection of PD-1 inhibitors.

They found that 3 CT radiomic features (mean grayscale, histogram

kurtosis and co-occurrence matrix entropy) and 1 MRI feature

(histogram kurtosis) together with baseline neutrophil-to-

lymphocyte ratio (NLR) and granulocyte-macrophage colony-

stimulating factor (GMSF) levels were positively correlated with

CD45 infiltration (22). However, it is important to note that this

model only assessed the CD45 infiltration levels to indicate the

occurrence of pneumonia is not sufficiently reasonable and could

not distinguish between RIP and CIP. Recently, Tan et al.

retrospectively collected baseline CT images and clinical data from

24 patients who experienced CIP after immunotherapy and 24

controls who did not experience CIP. The model was pre-trained

using a two-stage migration learning on a large natural image dataset

and a large CT image dataset of pneumonia, then finally trained on
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locally collected CT image data. Finally, contrast learning was used to

mine high-performance imaging feature models. Using five-fold

cross-validation, the model was able to accurately predict CIP

patients and non-ICIP patients with an AUC of 0.918 and an

accuracy of 0.920 (23). This study strongly indicates that deep

learning has great potential for identifying patients at risk of

developing CIP.

From these studies, we could conclude that the prediction models

proposed by big data-based radiomics studies may lead to effective

risk stratification, close monitoring and timely management of CIP in

the future to improve treatment outcomes. However, given the

complexed clinical course of CIP, above radiomics studies did not

show the exact prediction ability of those >3 grade CIPs or those rapid

deteriorating CIPs that warrant emergent treatments.
Shortcomings and challenges of
radiomics to predict or identify CIP

The application of radiomics in CIP has attracted some

scientific interest, and in general, some excellent findings on the

prediction and identification of CIP by radiomics have been

reported. However, it has to be pointed out that there are still

many problems from the mature development of the model and its

real application in the clinic: (1) the image input, including the

technical factors of CT imaging and the segmentation of region of

interest (ROI). Although chest CT has been widely used in major

hospitals, differences in hardware, scanning protocols and

reconstruction algorithms of different manufacturers still have an

impact on the extraction of image histological features. Secondly,

the segmentation of ROI has been studied either artificially by

experts or using software segmentation, but the repeatability of

segmentation among different segmentation experts or even within

software still needs to be improved (24, 25). (2) In terms of model

maturation and validation, most of the current radiomics studies

have small sample sizes, and more prospective studies with larger

sample sizes are needed in the future to build models that can

uncover more valuable radiomics features, and indeed more

external data are needed to validate the accuracy of radiomics

models. In addition, it is worth looking forward to whether the

combination of radiomics with other available data such as

pathology, genomic alterations or a variety of blood test results

can bring more robustness and accuracy to the model. (3) As for the

molecular biological significance of the model, for example, most of

the radiomics features identified in the prediction study are pre-

defined artificial features, and the potential molecular biological

significance of these features needs to be further explored.

However, because the mechanisms of CIP occurrence are still

largely unclear, it is difficult to conduct relevant studies. In

addition, radiomics studies of paired pre- and post-occurrence of

CIP are rarely reported, and only correlational findings are shown,

thus it is worthwhile to analyze whether causal findings can further

improve the predictive performance. (4) For the prediction or

identification of severe CIPs that need emergent treatment, and

prediction of steroid-refractory or rapid progressing ones without
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relief modalities, still no radiomics data are available and relevant

studies are thereby recommended.
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