
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Suresh Kumar Tikoo,
University of Saskatchewan, Canada

REVIEWED BY

Xiuzhen Sheng,
Ocean University of China, China
Khawaja Ashfaque Ahmed,
University of Saskatchewan, Canada

*CORRESPONDENCE
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Advances in antigen targeting in veterinary medicine have gained traction over

the years as an alternative approach for diseases that remain a challenge for

traditional vaccines. In addition to the nature of the immunogen, antigen-

targeting success relies heavily on the chosen receptor for its direct influence

on the elicited response that will ensue after antigen uptake. Different

approaches using antibodies, natural or synthetic ligands, fused proteins, and

DNA vaccines have been explored in various veterinary species, with pigs, cattle,

sheep, and poultry as the most frequent models. Antigen-presenting cells can be

targeted using a generic approach, such as broadly expressed receptors such as

MHC-II, CD80/86, CD40, CD83, etc., or focused on specific cell populations

such as dendritic cells or macrophages (Langerin, DC-SIGN, XCR1, DC peptides,

sialoadhesin, mannose receptors, etc.) with contrasting results. Interestingly, DC

peptides show high specificity to DCs, boosting activation, stimulating cellular

and humoral responses, and a higher rate of clinical protection. Likewise, MHC-II

targeting shows consistent results in enhancing both immune responses; an

example of this strategy of targeting is the approved vaccine against the bovine

viral diarrhea virus in South America. This significant milestone opens the door to

continuing efforts toward antigen-targeting vaccines to benefit animal health.

This review discusses the recent advances in antigen targeting to antigen-

presenting cells in veterinary medicine, with a special interest in pigs, sheep,

cattle, poultry, and dogs.
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1 Introduction

Antigen-presenting cells (APCs), such as macrophages, dendritic cells (DCs), and B

lymphocytes, are a fundamental part of the innate immune system and play essential roles

in initiating and regulating the adaptive response (1, 2). Its main function is recognizing,

capturing, and processing antigens and presenting immunogenic peptides to naïve T

lymphocytes to initiate the adaptive cellular immune response (3–6). Antigen recognition
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Melgoza-González et al. 10.3389/fimmu.2023.1080238
and internalization are mediated by receptors on the surface of

APCs. Through this mechanism of antigen capture, antigen-

targeting strategies have been developed to enhance vaccine

efficiency and have been widely explored for the last two decades

as prophylactic and therapeutic tools for infectious diseases,

autoimmunity and cancer (7–15).

The success of antigen-targeting strategies heavily relies on

selecting the target receptor, the antigen being delivered, and the

antigen carrier. Along with choosing a specific target receptor, the

combination of the APC target and adjuvant utilized contributes to

the polarization of the CD4+ T lymphocyte response toward the

Th1, Th2, Th17, or Treg profile (16–22). These characteristics play a

key role in the immune response for future pathogen clearance.

Several types of surface receptors are the focus of antigen-targeting

research. Pattern-recognizing receptors, chemokine receptors,

costimulatory molecules, and cell adhesion receptors are the most

common. Interestingly, only a few receptors are known to be highly

expressed or almost exclusive to a cell type, such as XCR1, Langerin,

DEC205, and DC-SIGN for DCs or CD169, MMR, and CD163 for

macrophages. Other molecules, such as MHC-II, CD80/86, CD40,

CD83, and CD11c, are widely expressed by a variety of APCs.

Among the most popular strategies to shape immune responses is

using natural ligands such as glycans to target C-type lectin

receptors or proteins (recombinant ligands or antibodies) that

recognize surface receptors on APCs (Figure 1). DNA vaccines

codifying recombinant proteins fused to the antigen of interest have

also been evaluated (23–29). Likewise, the route of administration

greatly impacts the development of systemic or mucosal responses,

where intradermal, subcutaneous, intramuscular, and oral are the

most common immunization routes (30–33).

The diversity of target receptors, antigens, carriers, adjuvants,

and administration routes allows for the customization of targeting

vaccine strategies to stimulate different aspects of the immune

response and will directly impact the level of protection in the
Frontiers in Immunology 02
different animal species (Supplementary Table 1). However, to date,

most evidence supporting antigen targeting has been produced

using mice and guinea pigs as transitory models for humans. For

this reason, the present review aimed to explore the different

approaches and strategies reported encompassing the evaluation

of antigen targeting as an immunoprophylactic tool in species of

veterinary importance (Table 1) and not just animal models used as

surrogates in human medical research.
2 Targeting using the C-type lectin
receptor family

2.1 CLRs type I

2.1.1 DEC205
This endocytic receptor is predominantly expressed in dendritic

cells, although it has also been reported in various cell types, such as

macrophages, T lymphocytes, and B lymphocytes, with differential

expression between species (101–104). In addition, it has been

characterized in species such as mice, humans, sheep, cattle, and

pigs (105–108). DEC205 can promote cross-presentation (the

ability to capture, process, and present extracellular antigens with

MHC-I to CD8+ T cells) and is capable of being recycled, although

the coupling of a ligand or antibody does not guarantee the

activation or maturation of DCs (105, 109, 110).

Due to its impact on the poultry industry, avian influenza virus

(AIV) antigens were targeted to DEC205 to promote an effective

immune response in chickens. The targeting strategy consisted of

subcutaneous immunization using an anti-DEC205 antibody to

target AIV hemagglutinin protein (HA) to DEC205+ cells. The

results showed a significant improvement in the humoral response,

evidenced by early production and higher levels of total and

neutralizing antibodies (NAbs) in sera (49, 78). No effect on
FIGURE 1

Strategies explored for antigen targeting to different APC populations. Target surface receptors on APCs and M cells evaluated in antigen targeting.
Different colors represent the clusters of carriers such as nanoparticles, mannan, ligands, antibodies, DNA vaccines, proteins, virus-like particles, and
viral and bacterial vectors used to target specific surface receptors.
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proinflammatory cytokines such as IFN-g, IL-6, and IL-1b was

observed. Following a similar strategy, the HN antigen of the

Newcastle disease virus (NDV) was targeted to DEC205+ cells,

resulting in enhanced production of total and NAbs compared with

the nontargeted group (79). On the other hand, in a tumoral model

induced by Rous sarcoma virus (RSV), subcutaneous targeting to

DEC205 skewed the cytokine profile toward the Th1 response, as

evidenced by an increase in IL-12, IL-2, and IFN-g triggering the

cellular immune response against the tumor (80).

In sheep, the intradermal injection of a DNA vaccine encoding an

anti-DEC205 scFv fused with the Gn and Gc antigens of Rift Valley

fever (RVFV) along with granulocyte-macrophage colony-stimulating

factor (GM-CSF) promoted a higher frequency of IFN-g+ T

lymphocytes and lower antibody titers compared to the nontargeted

antigens (46). Contrary to the results in sheep, the murine counterpart

for this study showed no improvement in the humoral response against

RVFV, nor had any effect on the cellular response (75). Therefore, even

though the strategy was the same, antigen targeting can differ between

species, resulting in unpredictable immune responses. In cattle, the

intradermal application of a DNA vaccine encoding an anti-DEC205,

coupled with the CD40L activation domain and B and T-cell epitopes

of Anaplasma marginaleMerozoite Surface Protein-1 (MSP1), showed

promising results. The proliferative response of CD4+ T cells, IFN-g
production, and total IgG titers were significantly increased after a

single application and increased after a second exposure (25).

In swine, there are limited and contrasting reports about the

efficacy of DEC205+ DC targeting. Evaluating the targeting of GP3,
Frontiers in Immunology 03
GP4, GP5, and M from PRRSV toward DCs through the

intramuscular route promotes the response of CD4+CD8+ T

lymphocytes positive for IFN-g and IL-4, although it failed to

stimulate the humoral response. These results were not

significantly different from the nontargeting antigen group. As the

authors mentioned, the immunization route could not be

appropriate to target DCs because their presence in this tissue

might be scarce (73). Afterward, Bustamante-Córdova et al. (76)

evaluated the effect of targeting immunogenic peptides from

PRRSV to intradermal DEC205+ DCs. They found a higher

antigen-specific IgG response compared to the control group but

with no differences in T lymphocytes IFN-g+ (76). These results

suggest that the route of administration can affect the induction of

humoral or cellular immune responses. As a follow-up study,

Melgoza-González et al. (77) evaluated antigen targeting using

porcine circovirus 2 (PCV2) capsid protein (Cap). The cellular

response of IFN-g+ CD4+CD8+ lymphocytes was enhanced

compared to the control group, with a discrete effect on the

humoral response (77). These results also suggest that antigen

targeting using DEC-205 can stimulate a differential response

according to the antigen used, highlighting the importance of the

antigen in this kind of immunization system.

2.1.2 Macrophage mannose receptor
MMR is a surface endocytic and phagocytic receptor expressed

on macrophages and some myeloid DC subsets (111). This receptor

possesses multiple carbohydrate recognition domains that can bind
TABLE 1 Reports of antigen targeting evaluations in common veterinary species.

Target
Target species

Sheep Swine Cattle Poultry Dogs Ferret Rodents*

B7 (34–37) (38–40) (41) – – – (40, 42, 43)

CCR1/3/5 – (44) – (45) – – –

CD11c (46) (47, 48) – (49) – – –

CD163 – (50) – – – – –

CD40 (51, 52) – (53) (54–56) (57) – –

CD83 – – – (58, 59) – – –

DCs – (60–65) (66) (67–71) – – (60, 65, 66, 68, 72)

DC-SIGN – (73, 74) – – – – –

DEC205 (46, 75) (73, 76, 77) (25) (49, 78–80) – – (75)

FcgR – (81) – – – – –

Langerin – (73, 82, 83) – – – – –

M cells – – – – – – (84)

MMR – (85–87) – – – – –

MHC-II – (24, 88, 89) (90–94) – (95) (24) (24, 91–95)

Sialoadhesin – (50, 96, 97) – – – – –

XCR1 – (48, 98, 99) (100) – – – –
*Included mice, rabbits, and guinea pigs. We included rodents and ferrets since they were used to evaluate antigen-targeting vaccines for veterinary medicine purposes. The extended information
is listed in detail in Supplementary Table 1.
Symbol "-" represents the absence of antigen-targeting reports in those animal species.
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to mannan and fucose from exogenous antigens, playing a crucial

role in the innate immune response (112).

To enhance antigen uptake by APCs, antigens targeting the

mannose receptor have been explored in various studies. Mice

immunized intradermally with mannosylated PCV2 nanoparticles

presented higher levels of IgG, IL-4, and IL-2 than the nontargeted

group, even in the absence of other adjuvants. Additionally, the

study showed that the mannosylated protein presented a slow

release when exposed to low pH in vitro, simulating lysosome

conditions and furthering the potential of using mannosylation as a

controlled-release tool for drugs (85).

In addition, the mannosylation of gelatin nanoparticles

(MnGNPs) encapsulating inactivated PRRSV significantly

improved antigen uptake compared with nonmannosylated

gelatin particles by up to 15 times. Additionally, MnGNPs were

capable of boosting the expression of SWC-3a, CD80, CD1, SLA-I,

and SLA-II markers in monocyte-derived DCs (moDCs). The

production levels of IL-1b, IL-6, IL-10, and IL-12 were

significantly enhanced by MnGNPs, as was the specific cytotoxic

T-cell activity. Further exploration of this strategy in vivo studies

could position mannose receptor targeting as a prime candidate to

aid vaccination efforts against otherwise difficult pathogens (86).

In addition to uptake enhancement, mannose receptor targeting

through mannosylation of antigens has been proposed to be able to

circumvent the detrimental effect of maternal-derived antibodies

(MDA) in the vaccination of young animals (87). For this,

mannosylated chitosan-based nanoparticles encapsulating swine

influenza virus (SIV) antigens were administered intranasally in

piglets following a prime-boost regimen. The strategy successfully

enhanced heterologous and homologous IgA responses in the nasal

mucosa and the respiratory system. Moreover, the mannosylated

vaccine induced higher antigen-specific cell proliferation and IFN-g
expression than the commercial vaccine. In addition, significantly

lower viral shedding, lower viral load in bronchoalveolar fluid and

lung lysate along with fewer lung lesions were observed (87). In

conclusion, the mannosylation of SIV antigens effectively elicited a

robust and protective immune response in piglets despite the

presence of MDA, highlighting its potential as a valuable

vaccination strategy.
2.2 Type II CLRs

2.2.1 DC-SIGN (CD209)
This receptor can bind to mannose and fucose residues and is

capable of not only recognizing but also internalizing several

pathogens, such as Mycobacterium tuberculosis, Candida albicans

and Leishmania spp., among others (113–115). Although DC-SIGN

expression is believed to be restricted to DCs, it is also expressed by

macrophages (116, 117). Interestingly, as with other receptors from

the CLR family, DC-SIGN enables cross-presentation (118, 119).

The efficacy of antigen targeting to the porcine DC-SIGN

receptor was first evaluated using a chimeric mouse x pig

mAb anti-DC-SIGN fused to antigenic peptides from PRRSV

using monophosphoryl-lipid A (MPLA) as an adjuvant and

administered intradermally in a prime-boost approach. In this
Frontiers in Immunology 04
instance, a significant increase in IFN-g-secreting CD4+ and

CD4+CD8+ T cells was observed in the targeted group in

comparison with the nontargeted group. Unfortunately, there was

no detectable effect on the humoral immune response in

immunized pigs (74).

In a follow-up study, the PRRSV-antigenized chimeric mAb

was injected intramuscularly and in the presence of Poly I:C as an

adjuvant, an agonist of TLR3. This resulted in a modest stimulation

of IFN-g-secreting CD4+CD8+, IL-4+ CD4+CD8+ T, and IL-4+CD8+

T cells at 42 days postvaccination compared to the negative control

injected with PBS, but no difference was found when compared to

the nontargeted group injected with antigens only. Again, no effect

was found in the humoral immune response (73). Under the

conditions evaluated, intramuscular targeting failed to induce an

enhanced IL-4+ and IFN-g+ T-cell response over the non-targeting
group. The use of other routes of administration could improve the

effects of targeting using DC-SIGN, such as the intradermal route

due to the abundance of DCs present in the dermis (120), where

several subpopulations of DC-SIGN+ cells have been previously

described in swine (121, 122). In this way, targeting DCs could be

enhanced with the possibility of a higher effect of delivering

antigens to skin DCs.
2.2.2 Langerin
CD207, also known as Langerin, is a receptor expressed in skin-

resident APCs, such as epidermal Langerhans cells, and at lower

levels in dermal Langerin+ DCs and CD8a+ DCs in lymph nodes

(123–125). This endocytic receptor recognizes mannose, fucose, N-

acetyl mannosamine, etc., via its carbohydrate recognition

domain, mediating internalization, antigen processing, and cross-

presentation (126–129). In mice, targeting Langerin+ DCs

triggers a Th1 immune response (101). Intradermal targeting of

porcine epidemic diarrhea virus (PEDV) antigens to langerin

receptors using cholera toxin as an adjuvant resulted in a

significant increase in IFN-g-secreting CD4+CD8+ T cells 7 days

after vaccination. On the other hand, when administered

intramuscularly, the humoral immune response was better

stimulated, with higher production of IgG and IgA at 35 and 42

days postvaccination, respectively (82). In line with this, a similar

strategy was applied to evaluate whether sow vaccination with

targeted PEDV antigens could offer protection to piglets through

maternal antibody transfer. In this case, a commercial nondisclosed

adjuvant was utilized. While the humoral immune response was not

greatly stimulated by antigen targeting, there was an increase in

IFN-g secreting T cells (CD4+, CD8+, and CD4+CD8+), IL-4+CD4+

and IL-4+CD4+CD8+ cells at 7 days postvaccination compared to

the commercial vaccine. Unfortunately, these results did not

translate into protection for the piglets where clinical signs were

similar in all challenged groups regardless of vaccine type (83).

Targeting PRRSV antigens to langerin receptors intramuscularly

and in the presence of Poly I:C resulted in poor stimulation of the

cellular and humoral immune responses with a slight increase in IL-4+

CD8+ T cells. Targeting the same antigenic peptides to other C-type

receptors, such as DEC-205 and DC-SIGN, was able to better stimulate

IFN-g and IL-4 responses. Moreover, the langerin-targeted group
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presented higher levels of viremia than the challenged control group in

this study (73). Overall, langerin targeting failed to induce robust

cellular and humoral responses, providing poor results regarding

clinical signs and protection.
3 Targeting major histocompatibility
class II

MHC-II is expressed on the surface of APCs, displaying

exogenous antigens for antigen presentation to CD4+ T

lymphocytes (130, 131). MHC-II can be recycled from the cell

surface and tagged for degradation into early endosomes with the

possibility of promoting cross-presentation by CD8a+ DCs

(132–134).

Intradermal targeting of bovine MHC-II using an invariant

chain motif coupled to MSP1 antigen along with the molecular

adjuvants FLT3L and GM-CSF was evaluated in calves. The strategy

resulted in enhanced proliferation of CD4+ lymphocytes, a higher

frequency of IFN-g-secreting cells, and higher antibody IgG levels

with a fast and robust recall response (90). This approach aimed to

target intracellular MHC-II molecules in the endosome-lysosome

stage during the antigen processing pathway.

Similarly, the APCH1 single chain fragment variable (scFv)

antibody has been considered a molecular adjuvant that recognizes

an invariant epitope of MHC class II-DR in several species. In

swine, APCH1 joined to immunodominant antigens of the African

swine fever virus (ASFV) were codified into a DNA vaccine and

applied using an intramuscular-subcutaneous prime-boost strategy.

Although targeting SLA-II elicited the proliferation of CD4+ T cells,

IFN-g-secreting cells, and humoral responses, the latter lacked

neutralizing activity and protective immunity against a lethal viral

challenge with heterologous strains (88).

Intramuscular targeting of B and T-cell epitopes (BTTs) from

foot and mouth disease virus (FMDV) to MHC-II-DR, without

additional adjuvants, increased the frequency of IFN-g secreting

cells but did not stimulate the humoral immune response.

Nonetheless, after a viral challenge, half of the pigs were partially

protected, while the other half had complete protection against

clinical signs of disease (89). Additionally, in swine, MHC-II

targeting with HA of SIV was enough to stimulate significantly

higher IgG and NAbs, while the nontargeting vaccine failed to elicit

a humoral response (24).

MHC-II-targeting of enveloping E2 antigen from bovine viral

diarrhea virus (BVDV) intramuscularly in guinea pigs and cattle

promoted higher NAb titers. This humoral immune response was

sufficient to promote total protection against a viral challenge,

preventing the development of clinical signs (91). Moreover, the

enhanced levels of NAbs in response to the targeted group were

similar in titer and protection efficacy to the inactivated vaccine,

even under field conditions. This strategy was approved as the first

antigen-targeting vaccine commercially available in Peru and

Argentina (92, 93). Later, VP2 of the Bluetongue virus (BTV) was

coupled to APCH1 and used for intramuscular vaccination in

guinea pigs, cattle, and mice. Four times lower amounts of
Frontiers in Immunology 05
antigens targeted through APCH1 elicited similar NAbs titers

than the free VP2 antigen group in guinea pigs and cattle (94). In

rabbits and mice, intramuscular targeting of VP60 from rabbit

hemorrhagic disease virus (RHDV) mediated by APCH1 fusion

protein provided protection after a viral challenge, allowing

postchallenge survival (95). Clearly, targeting MHC-II in APCs,

independent of the cell type and antigen delivered, seems to be an

efficient strategy for the induction of humoral and cellular immune

responses, promoting partial to complete protection after a

challenge. It is worth mentioning that antigen targeting to MHC-

II allows not only DCs to gain access to the antigen but also

stimulates B lymphocytes, thus effectively activating cellular and

humoral immune responses. These promising results and an

approved vaccine in the market put this strategy at the forefront

of antigen-targeting-based immunoprophylactic tools.
4 Targeting activation markers

4.1 CD40

CD40 is a surface costimulatory receptor from the tumor

necrosis factor receptor family. It is expressed in monocytes,

macrophages, B-lymphocytes, dendritic cells, and endothelial and

epithelial cells (135). The interaction of CD40 and CD40L

(expressed on CD4+ helper T lymphocytes) regulates the

expression of costimulatory molecules and the maturation of

APCs (136) and triggers the process of DC-licensing. The latter

empowers APCs for the activation and maintenance of cytotoxic T

lymphocyte responses, increasing the levels of CD80/86 and

interleukin-12 (137–139). The process also promotes B

lymphocyte survival, class-switching, and antibody secretion,

highlighting the role of DC-licensing in the regulation of B-cell

responses in a T-cell independent way (140–142). Therefore, DC-

licensing using CD40L or an anti-CD40 antibody for antigen

delivery potentiates the APC to activate cytotoxic and humoral

responses, independent of CD4+ T lymphocyte cooperation.

Additionally, using mAbs as agonists to CD40 enables efficient

antigen cross-presentation (143, 144).

To evaluate CD40 targeting potential, a DNA vaccine based on

bovine CD154 (CD40L) fused with bovine herpesvirus 1 (BHV-1)

glycoprotein D (gD) was developed. CD154-gD was capable of

binding bovine and ovine lymphocytes, and thus, sheep was used as

the model for in vivo assays. Here, the targeted group showed

antigen-specific IL-4-dependent lymphocyte proliferation,

increased antibody levels, and high NAb titers after boosting (51).

When tested in calves, similar antibody production was observed

between calves and sheep. In calves, no effect was observed when

targeting the gD antigen to the CD40 receptor regarding IFN-g
secreting cells, while the nontargeted group showed increased IFN-g
secreting cells at day 8 postchallenge. Moreover, no significant

differences were found in clinical signs between targeted and

nontargeted calves. These studies clearly show the different

responses between species when a one-size-fits-all approach is

applied (53).
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Melgoza-González et al. 10.3389/fimmu.2023.1080238
A DNA vaccine encoding bovine CD154 protein fused to

antigens of Toxoplasma gondii, specifically rhoptry protein 1

(ROP1), which participates in the initial stages of invasion. The

vaccine was evaluated in sheep, where a strong IgG1 response was

observed after 1 week of immunization, while IgG2 values were

modest. Similarly, IFN-g levels increased significantly after the first

week postimmunization compared to the nontargeted group

(52). Exploiting the benefits of viral vectors and antigen

targeting, Thacker et al. (57) developed adenovirus 5 (Ad5)

encoding CD40L fused to tumor-associated antigens using

carcinoembryonic antigen as a model to elicit an antitumoral

response in dogs. The strategy resulted in the activation of T

lymphocytes in 3 out of the 5 immunized dogs, although a lower

anti-CEA antibody response was observed in the targeted group

than in the nontargeted group (57).

In a proof-of-concept report, Chen et al. (54) evaluated the

ability of a previously developed mAb, anti-chicken CD40, to

induce antigen-specific antibody responses using a peptide from

the ectodomain of influenza virus matrix protein 2 (M2e) as a

model antigen. Four days after a single immunization, a significant

increase in antigen-specific IgG antibody levels was observed in the

targeted group regardless of the dose (10, 30, and 90 µg). By day 14,

doses of 30 and 90 µg still presented high levels of antigen-specific

antibody response in the targeted group (54). Following this, the

aforementioned Me2-antigenized antibody was used to stimulate

mucosal antibody responses by exploring different administration

routes: cloacal drinking, oculonasal administration, and oral

immunization using an alginate sphere suspension. Similar to

previous findings, antigen targeting to CD40 resulted in an early

antigen-specific antibody response after a single dose at 7 days

postimmunization. Interestingly, all routes, including subcutaneous

routes, proved capable of inducing mucosal responses, as evidenced

by high IgA levels in the trachea (55). Once its capacity to induce

rapid antibody production was established, this antibody served as

the basis for the development of a bispecific antibody that binds

CD40 and the M2e peptide of the AIV (56). The bispecific antibody

would then capture the M2e+ viral particles in circulation and

deliver them to CD40+ APCs, potentiating antigen uptake

and response, doubling as antigen carrier and adjuvant.

High hemagglutination titers were observed when applied

subcutaneously, in comparison with oral and ocular-nasal routes.

A prime-boost strategy using a subcutaneous route of

administration was capable of inducing complete protection

against lethal H5N1 highly pathogenic AIV challenge. The

proposed strategy is very promising for enhancing vaccine efficacy

in chickens and could be adjusted into a more cost-effective tool in

the future.
4.2 B7 (CD80/86)

CD80 and CD86, also known as B7, are both coreceptors

expressed on all APCs, such as DCs, B lymphocytes, and

macrophages, and play an essential role in T-cell activation (145,

146). Their ligands are CD28, which activates T lymphocytes, and

CTLA-4 (CD152), which represses cell activation (147). Thus,
Frontiers in Immunology 06
antigen targeting to B7 through CTLA-4 has been explored as a

strategy for reaching all subpopulations of APCs.

In sheep, phospholipase D (PLD) antigen from Coryne

bacterium pseudotuberculosis was bound to bovine CTLA-4 and

used to evaluate APC targeting by intramuscular DNA vaccination.

When evaluating the humoral response, the total titers of PLD-

specific antibodies were higher in the targeting group, allowing for

enhanced clinical protection after C. pseudotuberculosis challenge

(34). When the 45TR antigen from Taenia ovis was targeted using

CTLA-4 in mice and sheep, an increased humoral response was

observed in mice, specifically IgG1, but no positive effect on the

humoral response was observed in sheep. Targeting the B7

coreceptor did not promote a protective effect against a T. ovis

challenge in either species (35).

Fasciola hepatica has been described as a protozoan of

importance in the livestock industry. In sheep, CatB from F.

hepatica was targeted to APCs through CTLA-4 using a DNA

prime/protein boost strategy. Immunized animals produced higher

total IgG titers and lymphocyte proliferative responses than the

nontargeted group (36, 42). However, when targeting the FhPGK

antigen from F. hepatica, following a DNA prime/protein boost

scheme, sheep were not protected against F. hepatica challenge,

echoed by a failure to stimulate humoral and cellular immune

responses (37).

In swine, a DNA vaccine encoding CTLA-4 and OVA as

antigens augmented IgG1, IgG2, and IgA antibodies followed by

100% seroconversion after a complete immunization schedule (38).

Likewise, an intradermal DNA vaccine consisting of the HANG34

peptide from SIV fused to CTLA-4 increased the total and NAbs

reflected in a reduction in viral load and virus spread. However,

there were no differences in pathological lesions compared with the

nontargeted group (39).

Targeting GP5 protein from PRRSV via a DNA vaccine in mice

favored an increase in total and NAbs along with higher IFN-g
expression in the targeted group (40). Additionally, using a tumor-

induced swine model, targeting APCs using porcine CTLA-4

combined with a truncated diphtheria toxin fusion protein

triggered the depletion of tumoral cells in vivo (43). On the other

hand, targeting b-galactosidase (b-gal) from Escherichia coli (E. coli)

to CTLA-4 on cattle through a DNA vaccine failed to stimulate the

humoral and cellular immune response, even when trying different

routes of immunization (41).
4.3 CD83

An early activation marker predominantly expressed in DCs

and other APCs. Recent publications have just begun exploring

CD83’s potential for antigen targeting. Using scFv as a delivery

system, an antigenic region of the hemagglutinin protein of H9N2

(HAH9) AIV was targeted toward the avian CD83 receptor. This

approach significantly increased the expression of IFN-g, IL-6, IL-
1b, IL-4, and CXCL12 in stimulated splenocytes from immunized

birds. Likewise, early antibody production, virus neutralization, and

hemagglutination inhibition titers were significantly enhanced by

CD83 targeting. In line with this, the targeted group showed lower
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levels of viral shedding and high survival in challenged animals.

Overall, this strategy seems to strongly induce a robust immune

response capable of providing sufficient levels of protection in this

model, comparable to traditional inactivated vaccines (58).

Shrestha et al. (2022) also evaluated the efficacy of the CD83

antigen-targeting strategy to circumvent the negative effects of

MDA in traditional vaccines by immunizing progeny chickens

after hatching (day 1 or 14). The antibody response to the

targeted antigen was able to thrive with a steady and significant

increase until the end of the evaluation at 84 days postvaccination;

meanwhile, MDA levels started to decrease to marginal levels by

days 28-35. The antibody levels and hemagglutination titers of the

targeted group far surpassed those in the nontargeted group and

traditional vaccine group, positioning the CD83 targeting

strategy as an excellent candidate for next-generation vaccine

development (59).
5 Targeting Dendritic cells
(DC-peptides)

DC-peptides (DC-pep) are peptides obtained through phage

display technologies with the ability to recognize DCs from other

leucocyte populations, although their mechanism of action is

unclear (148, 149). This approach has been widely studied to

develop oral vaccines carried by lactic acid bacilli, thus eliciting

mucosal immunity even without additional adjuvants (150). The

most common bacteria used in DC-peptide targeting is

Lactobacillus plantarum. In poultry, L. plantarum coated with 12-

mer DC-pep and HN antigen from NDV enhanced the expression

of mucosal secretory IgA (SIgA) as well as a higher frequency of

splenic CD4+ T cells. However, the hemagglutination inhibition

titers and survival postchallenge were not improved (67). Targeting

L. plantarum with HA from AIV H9N2 enhanced the expression of

activation markers such as MHC-II and CD80/86. Additionally,

obtaining a robust increase in mucosal SIgA, IgG, and the

expression of IFN-g, TNF-a, IL-6, IL-10, IL-12p70, and IL-4

reduced the tissue viral load, thus allowing for better clinical

protection (68, 69). When Enterococcus faecalis expressing DC-

pep carrying the 3-1E antigen from Eimeria tenella, causative of

avian coccidiosis, was evaluated through oral vaccination,

immunized chickens presented higher IgA and IgG titers as well

as a higher frequency of CD4+ T cells and expression of IFN-g.
However, the response was insufficient to provide protection after

an experimental challenge (70).

Lactobacilli expressing DC-pep carrying different PEDV

antigens, such as core neutralizing epitope (COE) or S, have been

evaluated on swine DCs. The main results show enhanced

activation markers such as CD80, CD86, and MHC-II on CD11c

DCs and higher serum antibodies compared with the nontargeted

group. In the same manner, the response of mucosal IgA was

improved along with IL-4, IFN-g, and the proliferative response

(60). When evaluating the same strategy on swine, a biased

reinforcement of the Th1 over Th2 profile was observed, as
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evidenced by a higher presence of CD4+IFN-g+ cells than the

presence of CD4+IL-4+ cells. Moreover, the probiotic/vaccine-

targeted group presented a higher survival rate after a viral

challenge with reduced viral load and symptom severity (61).

Finally, targeting COE antigens in swine resulted in increased

maturation of swine moDCs and DCs in situ by CD40, CD80,

and CD86 expression, enhanced phagocytic activity, and TLR-2,

TLR-6, and TLR-9 expression. The cellular immune response was

also boosted by stimulating the expression of the Th1 cytokines

IFN-g, IL-12, and IL-17 (62). In mice, targeting L. plantarum DC-

pep with the S antigen from PEDV enhanced the expression of

CD80 in CD11c DCs and increased the titers of mucosal IgA and

serum IgG along with IL-17 and IFN-g expression. In addition, the

targeting group presented higher virus neutralization up to 42

dpv (63).

Targeting E2 from BVDV in a murine model resulted in higher

expression of CD40 on DCs without changes in CD86 expression.

The humoral and cellular responses were significantly improved, as

evidenced by a higher titer of IgG NAbs and mucosal IgA compared

with the nontargeted group and lymphoproliferation in response to

E2 stimuli (66). Similar results have been observed when targeting

the S antigen from transmissible gastroenteritis virus (TGEV) in

swine, with overexpression of the activation markers CD80/86,

CD40 and MHC-II, TLR-2, and TLR-9 as well as IgG and

mucosal antibodies. Additionally, the frequency of CD4 T

lymphocytes IFN-g+, IL-4, IL-17, IFN-g, and TGF-b levels were

increased in mucosal-associated lymph tissue (64).

On the other hand, virus-like particles (VLPs) are commonly

chosen platforms for vaccine design and development. Hence, VLPs

were used and coated with DC-pep, carrying HN and M antigens

from NDV but also HA from AIV as a bivalent vaccine candidate.

The VLP-DC-pep targeting system enhanced the expression of the

activation marker MHC-II on DCs, titers of mucosal IgA, and a

higher frequency of splenic CD4+ T cells, leading to a reduction in

viral load (71).

VLPs from the PCV2 capsid carry DC-binding peptides to

mouse DCs to improve both humoral and cellular immune

responses. These resulted in higher activation marker expression

of MHC-II, CD80, CD86, expression of IL-6, IL-10, IFN-g
lymphoproliferation, and anti-Cap IgG1 and IgG2a NAbs levels

(65). In mice, targeting G antigen from rabies virus (RABV) showed

a similar effect, increasing activation markers, total IgG antibodies,

and both Th1 and Th2 mediated by CD4+ IFN-g+ T and CD4+IL-4+

T cells with a skew to Th1 profile polarization. This humoral and

cellular immune response provided approximately 60% of clinical

protection after a viral challenge (72). It is interesting to highlight

that although the targeting mechanism is not clearly defined, the

approach using DC-pep targeting is undoubtedly highly efficient in

promoting DC maturation, triggering the cellular response,

especially Th1 cytokines, and enhancing the production of IgG

and IgA antibodies. Therefore, the use of DC-pep is a promising

strategy for developing new oral vaccines to control diseases

affecting domestic animals by activating systemic and

mucosal responses.
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6 Targeting CD11c

The CD11c receptor belongs to the integrin family and is mostly

expressed, but not restricted, by macrophages, DCs, and other

myeloid cells (151, 152). CD11c is considered a DC marker in

mice (153). The receptor participates in cell-to-cell adhesion but

also mediates phagocytosis of extracellular material such as

lipopolysaccharide, fibrinogen, collagen, etc. (154–156). In mice,

CD11c is expressed at high levels on conventional DCs with the

potential for cross-presentation when used in antigen targeting

(157, 158). In chickens, an anti-CD11c scFv fused with the

ectodomain of H9N2 influenza hemagglutinin induced prompt

and effective antibody responses, with higher neutralization and

hemagglutination inhibition titers than nontargeted vaccination.

Additionally, CD11c targeting resulted in increased cellular

responses with significantly higher cytokine production of IFN-g,
IL-6, IL-1b, and IL-4 compared to the DEC205 targeted group,

which may be related to a greater expression of CD11c than

DEC205 in chickens (49).

In sheep, the targeting of the Gn antigen peptide from RVFV to

CD11c using a DNA vaccine resulted in poor production of

antigen-specific antibodies in comparison with the nontargeted

DNA vaccine group, which had higher mRNA expression levels

than the targeted group. In any case, IFN-g levels were not

successfully stimulated by either DNA vaccine. Clinical scores

were also lower in the nontargeted group, with CD11c targeting

having almost double the score in immunized sheep (46).

SIV antigens have also been targeted to CD11c receptors using a

mAb fused to target conserved antigens HA2, M2e, and NP. In this

case, two routes were evaluated: intramuscular and intradermal.

When applied intramuscularly, antigen targeting to porcine CD11c

has been shown to significantly stimulate the IFN-g T-cell response.
Interestingly, the site of immunization appeared to have a greater

effect on the elicited immune responses than the targeting itself.

Intramuscular application was more effective overall, and

intradermal immunization resulted in exacerbated clinical signs

and viral shedding in challenged pigs, implying the significance of

the delivery route along with the delivery vehicle (47). Finally, a

combination of a DNA vaccine encoding a scFv anti-CD11c fused

with various T-cell epitopes of PRRSV and a modified live virus

(MLV) vaccine in a prime-boost strategy resulted in an increase in

antigen-specific IFN-g secreting cells (98).

7 Targeting sialoadhesins
(Siglec and CD169)

Sialodhesin (Sn), CD169, or Siglec-1 is recognized as the sialic

acid binding receptor and is well known as a highly expressed

macrophage marker on tissue and secondary lymphoid organs (6,

159, 160). CD169 plays an important role in cell-to-cell adhesion

and CD169+ macrophage-mediated antigen delivery to lymphatic

resident DCs, enabling cross-presentation (161–163). CD169

macrophages by themselves cannot cross-present antigens, but

they are able to transfer antigens to DCs, enabling cross-

presentation (162, 164).
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As an endocytic receptor in APCs, the Sn receptor has been

proposed as a tool to improve antigen uptake and enhance T-cell

responses. Using a mouse mAb to target porcine Sn, Revilla et al.

(96) were able to induce potent T proliferative responses in IFN-a-
treated monocytes and moDCs, up to 100 times more than when an

irrelevant isotype control mAb was administered (96). A follow-up

study by this group evaluated the proficiency of this and other

mouse mAb anti-Sn to induce antigen-specific proliferation in

peripheral blood mononuclear cells (PBMCs) and antibody

production following a prime and boost strategy. All three of the

targeting mAbs tested were capable of significantly increasing

antigen-specific IgG levels in sera, with IgG1 and IgG2 profiles

very similar in proportion, and once more improving proliferative

responses as previously observed (50).

Likewise, antigen-specific IgG and IgM production were also

observed as a response to targeting human serum album chemically

linked to mAb anti-Sn receptors in the absence of adjuvants when

administered in pigs. Following this study, a recombinant mAb,

anti-Sn, was used to deliver PRRSV GP4 to porcine macrophages by

immunizing pigs intramuscularly and challenging them seven

weeks postimmunization. The strategy resulted in an increase in

antigen-specific IgG and NAbs titers in sera in a dose-dependent

manner, as well as rapid virus clearance (97).
8 Targeting chemokine receptors

8.1 XCR1

XCR1 is a chemokine receptor whose unique ligand is the

chemokine XCL1 and specifically chemoattracts the equivalent

cDC1 population in mice and humans (165, 166). In many

species, this chemokine receptor is considered a conserved

marker on the subset of highly efficient cross-presenting cDC1

(167–169). Therefore, targeting XCR1 seems to be a highly specific

strategy to deliver antigens to the cDC1 subset.

In swine, targeting intradermal XCR1+ cDC1 with dimeric

ligand XCL1 joined to M2e antigens from SIV resulted in higher

total IgG anti-M2e antibodies. Additionally, targeting XCL1

enhances the IgG2 response in influenza-seronegative pigs and

IgG1 in seropositive pigs, without a skewed effect by either CpG

or MPLA adjuvants (99). Additionally, a DNA vaccine encoding the

XCR1 ligand fused to B and T epitopes of the N antigen from

PRRSV was used in a DNA-MLV prime-boost strategy in pigs. The

DNA vaccine was combined with cationic polylactoglycolide acid

(PLGA) nanoparticles. DNA vaccine alone failed to elicit humoral

and cellular immune responses but, under a DNA-MLV prime-

boost schedule, achieved enhancement of the anti-N IgG response

(98). The authors discuss the possibility that nanoparticles affected

the efficacy of the DNA vaccine and therefore, they restructured the

strategy, employing naked DNA to deliver N, NSP1b, and

pGP4GP5 M from PRSSV toward XCR1+ DC, followed by a

boost with an MLV. The XCR1 targeting-MVL boost allowed for

a higher S/P ratio against the N antigen at 58 dpv; nonetheless, it

was not possible to find significant levels of IFN-g secreting cells

after in vitro restimulation or clinical protection after heterologous
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PRRSV challenge (48). It is important to highlight that in these last

two PRRSV antigen-targeting studies, the authors used DNA

vaccines without additional adjuvants or immunostimulants,

which may be necessary for proper stimulation of the cellular

response. In cattle, targeting XCR1 cDC1 with the XCL1 fusion

protein carrying the multiepitope OB7 antigen of FMDV was

applied intramuscularly alone or with oil adjuvant or poly I:C.

XCR1 targeting allowed for higher total and NAbs compared to the

nontargeted group, eliciting better clinical protection against viral

challenges with FMDV. Interestingly, poly I:C weakened the

humoral response (100).

Notably, since the cDC1 population is well known to skew

toward the Th1 cytokine profile and XCR1 is highly conserved in

this population, an increased cellular response would be expected as

a result of XCR1 targeting (13, 170); nevertheless, this has not been

evidenced by the reports mentioned above. In summary, these

findings highlight the different outcomes for XCR1 targeting

regarding the species, type of targeted vaccine, and type of

adjuvant involved.
8.2 CCR1, CCR3, CCR5

Chemokine receptors, which are expressed in many cells, can

effectively facilitate antigen uptake, processing, and presentation in

APCs (171). In mice, targeting low immunogenic tumoral antigens

to chemokine receptors successfully activated the adaptive immune

response and protected against a lethal challenge without the need

for adjuvants (172).

DNA vaccines containing either the gene for MIP1a
chemokine, targeting CCR1/3/5 chemokine receptors or a scFv

anti-MHC-II along with fused HA antigen of H7N1 AIV were

developed to stimulate APC-specific responses. When tested in

mice, CCR1/3/5 and MHC-II targeting resulted in slightly higher

IFN-g T-cell responses than CCR1/3/5 targeting (45).

A similar approach was evaluated in pigs using a DNA vaccine

encoding the MIP1a chemokine fused to HA antigen from the

H1N1 influenza virus. The antibody response favored the IgG2

isotype over IgG1, while virus neutralization titers appeared higher

in the CCR1/3/5 targeted group than in the antigen-only group. In

addition, T-cell responses were significantly enhanced in the

targeted group in a cross-reactive manner, responding to H1, H5,

and H13 influenza subtypes, 28 days postimmunization (44). These

findings suggest a notably efficient cellular immune response

elicited in pigs by this targeting strategy.
9 Others

9.1 CD163 (scavenger receptor)

The scavenger receptor, also known as the CD163 receptor,

contains nine scavenger cysteine-rich domains and is restricted to

cells of the monocytic lineage (173). It is expressed at high levels in
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mature macrophages and low levels in moDCs (174, 175). This

endocytic receptor has been characterized in several species,

although there is no evidence that targeting CD163 can allow for

cross-presentation (176). Although CD163 has been widely studied

concerning its participation in infectious diseases in pigs, its

antigen-targeting potential has not been equally explored. A

report from Poderoso et al. (50) showed that targeting mouse

IgG as an immunogen to CD163 following a prime-boost

strategy resulted in the stimulation of the proliferative response

in PBMCs. Additionally, the humoral response was greatly

enhanced compared to the isotype control as early as 2 weeks

postimmunization and increased with a booster dose at 6 weeks

post-priming. This humoral response was particularly skewed to the

IgG2 subclass and remained significantly higher than the negative

control until 17 weeks after immunization (50).
9.2 Fcg-receptor

Fc-g receptors (Fc-gR) are distributed ubiquitously in

endothelial, myeloid, and lymphoid cells and perform an essential

function in the immune system by recognizing antigen-antibody

complexes, thus improving antigen capture and processing (177–

179). It is well known that antigens fused to IgG-Fc domains

significantly enhance the immunogenicity of the antigen due to

increased uptake through Fc-g receptors (180–182).

In vitro studies have evaluated the potential of using Fc

receptors for antigen targeting by using porcine moDCs.

Immuno-complexes (ICs) composed of F4 fimbriae from

enterotoxigenic E. coli and anti-F4 polyclonal antibodies were

incubated with porcine monocytes and respective cytokines to

stimulate the generation of moDCs. F4-IC was internalized and

enhanced the upregulation of the DC activation markers MHC-II,

CD40, and CD80/86. Subsequently, activated moDCs could induce

robust lymphocyte proliferation compared with F4 antigen- or IgG-

only treated moDCs. Moreover, stimulated moDCs enhanced their

production of IL-1b, IL-6, IL-8, and TNF-a, similar to a flagellin

control but higher than F4 antigen or IgG-only treated moDCs.

These findings demonstrate the maturation of moDCs induced by

targeting Fc receptors and their potential use in antigen-targeting-

based vaccines (81).
9.3 M-cells

In hopes of enhancing mucosal immune responses against

pathogens, M-cell targeting was evaluated using a targeted unit

named ligand Co-1 coupled with TB1 protein of FMDV and

displayed in Lactococcus lactis (L. lactis-TB1-Co1) for increased

stimulation. Mice and guinea pigs were orally immunized with L.

lactis-TB1-Co1 and subsequently challenged 30 days postvaccination.

In mice, the results showed increased antigen-specific IgA levels in sera,

intestinal, and lung lavage fluids in the targeted group in comparison to

the nontargeted and inactivated vaccine groups. Regarding cellular
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immune stimulation, mice in the targeted group presented higher T-

cell proliferation and appeared to have enhanced IFN-g and IL-2

production than the nontargeted group. The effect on humoral and

cellular immune responses in guinea pigs was not as evident as in mice,

although 60% protection was observed when animals were challenged.

Once more, these findings highlight the different responses between

species to a single targeting strategy (84).
10 Conclusions and future directions

The use of antigen-targeting strategies in the field of veterinary

medicine has been evaluated in several species; swine is the most

scrutinized specie, followed by chickens, cattle, and sheep. The

available information shows highly heterogeneous responses

according to the type of APC receptors targeted pertaining to

humoral, cellular, and clinical protection. Most studies that

determined clinical protection were evaluated under controlled

experimental conditions; however, their efficacy under field

conditions remains unknown. Remarkably, among all the

vaccination routes evaluated in antigen targeting, oral vaccination

with DC-pep-expressing lactobacillus seems to be a very promising

strategy, showing high consistency in the induction of both mucosal

and systemic responses. On the other hand, parenteral targeting

with MHC-II-DR has also been widely successful, culminating in

the approval of a commercial vaccine in South America.

It is important to continue with the development and evaluation of

APC-targeting vaccines and generate knowledge that undoubtedly

could help to modify conditions to redefine current vaccine trends

and improve animal health. It is important to explore several routes of

administration, antigens, and adjuvants since a one-size-fits-all strategy

is very unlikely to work for all species and diseases. When the target

receptor is mainly expressed on DCs, the intradermal or dermal route

must be elected over the intramuscular route. Additionally, it is

important to explore the nasal or intrauterine route due to the

abundance of DCs in these sites. In this line, when the target

receptor is mainly expressed on macrophages, the intramuscular

route or oral route could be priorities. It is also important to keep in

mind the use of new technologies, such as mRNA. This technology

could be an interesting option to improve the benefits of antigen

targeting for the control of diseases affecting veterinary medicine.
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CD11c/CD18 dominates adhesion of human monocytes, macrophages and dendritic
cells over CD11b/CD18. PloS One (2016) 11(9):e0163120. doi: 10.1371/
journal.pone.0163120

155. Ihanus E, Uotila LM, Toivanen A, Varis M, Gahmberg CG. Red-cell ICAM-4 is a
ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding
sites on ICAM-4. Blood (2007) 109(2):802–10. doi: 10.1182/blood-2006-04-014878

156. Ingalls RR, Golenbock DT. CD11c/CD18, a transmembrane signaling receptor
for lipopolysaccharide. J Exp Med (1995) 181(4):1473–9. doi: 10.1084/jem.181.4.1473

157. Castro FV, Tutt AL, White AL, Teeling JL, James S, French RR, et al. CD11c
provides an effective immunotarget for the generation of both CD4 and CD8 T cell
responses. Eur J Immunol (2008) 38(8):2263–73. doi: 10.1002/eji.200838302

158. Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CW, Ossendorp F.
Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for
efficient CD8+ T cell response: A comparative study. J Controlled Release. (2014)
192:209–18. doi: 10.1016/j.jconrel.2014.07.040
Frontiers in Immunology 14
159. Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR.
Characterization of human sialoadhesin, a sialic acid binding receptor expressed by
resident and inflammatory macrophage populations. Blood J Am Soc Hematology.
(2001) 97(1):288–96. doi: 10.1182/blood.V97.1.288

160. O'Neill AS, van den Berg TK, Mullen GE. Sialoadhesin–a macrophage-
restricted marker of immunoregulation and inflammation. Immunology (2013) 138
(3):198–207. doi: 10.1111/imm.12042

161. van Dinther D, Veninga H, Iborra S, Borg EG, Hoogterp L, Olesek K, et al.
Functional CD169 on macrophages mediates interaction with dendritic cells for CD8+
T cell cross-priming. Cell Rep (2018) 22(6):1484–95. doi: 10.1016/j.celrep.2018.01.021

162. Van den Berg T, Breve J, Damoiseaux J, Döpp E, Kelm S, Crocker P, et al.
Sialoadhesin on macrophages: its identification as a lymphocyte adhesion molecule. J
Exp Med (1992) 176(3):647–55. doi: 10.1084/jem.176.3.647

163. Crocker PR, Freeman S, Gordon S, Kelm S. Sialoadhesin binds preferentially to
cells of the granulocytic lineage. J Clin Invest (1995) 95(2):635–43. doi: 10.1172/
JCI117708

164. Grabowska J, Lopez-Venegas MA, Affandi AJ, Den Haan JM. CD169+
macrophages capture and dendritic cells instruct: The interplay of the gatekeeper
and the general of the immune system. Front Immunol (2018) 9:2472. doi: 10.3389/
fimmu.2018.02472

165. Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Güttler S, et al. Selective
expression of the chemokine receptor XCR1 on cross-presenting dendritic cells
determines cooperation with CD8+ T cells. Immunity (2009) 31(5):823–33. doi:
10.1016/j.immuni.2009.08.027

166. Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al.
Superior antigen cross-presentation and XCR1 expression define human CD11c+
CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med (2010) 207
(6):1273–81. doi: 10.1084/jem.20100348

167. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre C-A, Ventre E, et al. The XC
chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to
mouse CD8a+ dendritic cells. J Exp Med (2010) 207(6):1283–92. doi: 10.1084/jem.20100223

168. Li K, Wei G, Cao Y, Li D, Li P, Zhang J, et al. The identification and distribution
of cattle XCR1 and XCL1 among peripheral blood cells: new insights into the design of
dendritic cells targeted veterinary vaccine. PloS One (2017) 12(1):e0170575. doi:
10.1371/journal.pone.0170575

169. Deloizy C, Bouguyon E, Fossum E, Sebo P, Osicka R, Bole A, et al. Expanding
the tools for identifying mononuclear phagocyte subsets in swine: Reagents to porcine
CD11c and XCR1. Dev Comp Immunol (2016) 65:31–40. doi: 10.1016/j.dci.2016.06.015

170. Gudjonsson A, Lysén A, Balan S, Sundvold-Gjerstad V, Arnold-Schrauf C,
Richter L, et al. Targeting influenza virus hemagglutinin to Xcr1+ dendritic cells in the
absence of receptor-mediated endocytosis enhances protective antibody responses. J
Immunol (2017) 198(7):2785–95. doi: 10.4049/jimmunol.1601881

171. Biragyn A, Ruffini PA, Coscia M, Harvey LK, Neelapu SS, Baskar S, et al.
Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the
class II processing pathway in vitro and induces protective immunity in vivo. Blood
(2004) 104(7):1961–9. doi: 10.1182/blood-2004-02-0637

172. Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of
chemokines to a self tumor antigen induces protective, T-cell dependent antitumor
immunity. Nat Biotechnol (1999) 17(3):253–8. doi: 10.1038/6995

173. Sarrias MR, Gronlund J, Padilla O, Madsen J, Holmskov U, Lozano F. The
scavenger receptor cysteine-rich (SRCR) domain: An ancient and highly conserved
protein module of the innate immune system. Crit Reviews™ Immunol (2004) 24(1):1–
37. doi: 10.1615/CritRevImmunol.v24.i1.10

174. Sulahian TH, Högger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C, et al.
Human monocytes express CD163, which is upregulated by IL-10 and identical to
p155. Cytokine (2000) 12(9):1312–21. doi: 10.1006/cyto.2000.0720

175. Chamorro S, Revilla C, Alvarez B, Alonso F, Ezquerra A, Domıńguez J. Phenotypic
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