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Exosomes are progressively being detected as an indicator for the diagnosis and

prognosis of cancer in clinical settings. Many clinical trials have confirmed the

impact of exosomes on tumor growth, particularly in anti-tumor immunity and

immunosuppression of exosomes. Therefore, we developed a risk score based on

genes found in glioblastoma-derived exosomes. In this study, we used the TCGA

dataset as the training queue and GSE13041, GSE43378, GSE4412, and CGGA

datasets as the external validation queue. Based on machine algorithms and

bioinformatics methods, an exosome-generalized risk score was established. We

found that the risk score could independently predict the prognosis of patients

with glioma, and there were significant differences in the outcomes of patients in

the high- and low-risk groups. Univariate and multivariate analyses showed that

risk score is a valid predictive biomarker for gliomas. Two immunotherapy datasets,

IMvigor210 and GSE78220, were obtained from previous studies. A high-risk score

showed a significant association with multiple immunomodulators that could act

on cancer immune evasion. The exosome-related risk score could predict the

effectiveness of anti-PD-1 immunotherapy. Moreover, we compared the sensitivity

of patients with high- and low-risk scores to various anti-cancer drugs and found

that patients with high-risk scores had better responses to a variety of anti-cancer

drugs. The risk-scoring model established in this study provides a useful tool to

predict the total survival time of patients with glioma and guide immunotherapy.

KEYWORDS

exosome, risk score, glioblastoma, machine algorithm, tumor microenvironment,
immunotherapy
Introduction

Exosomes are disk-shaped vesicles with a diameter of 30-150 nm, containing complex

RNA and a variety of proteins, recognized as important regulators in the early stages of

cancer genesis and progression, according to mounting data (1). Research on the anti-tumor

immunity of exosomes can be traced back to the exploration of exosomes by Zitvogel et al
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(2).at the end of the 20th century. A large number of clinical trials

have verified the impact of exosomes on tumor growth, particularly in

anti-tumor immunity and immune function inhibition. Exosomes

carrying tumor antigens can use dendritic cells to improve anti-tumor

immunity because such exosomes can present MHC antigen peptide

complexes to dendritic cells. Tumor cell-derived exosomes express

FasL, which increases the rate of apoptosis and inhibits the

differentiation of dendritic cells (3).

Glioblastoma (GBM) is a tumor derived from the neuroepithelium.

Statistics show that gliomas account for more than 30% of primary

brain tumors and are more common among intracranial malignant

tumors (4). Gliomas can also be classified as glioblastoma multiforme,

astrocytoma, and medulloblastoma (5). Infiltrative growth is the main

feature of gliomas. Gliomas invade multiple brain lobes and destroy

brain tissues during their growth. In general, traditional tumor

treatment methods are ineffective in treating patients with GBM. The

median overall survival (OS) of patients with GBM after

chemoradiotherapy was 14.4 months. In the treatment of numerous

malignancies, immune checkpoint inhibitors like PD-1/L1 and CTLA-4

have displayed astounding clinical efficacy (6). A small percentage of

glioma patients, however, respond well to the current checkpoint

treatment. It is consequently critical to creating more effective

immunotherapies for gliomas.

The immune system is the most important line of defense of the

body against tumor attacks. Tumor cells perform tumor immune

escape by abnormally expressing related miRNAs (7). Exosomes play

a bridging role in the process of information transmission, induce

apoptosis of natural killer cells, inhibit the differentiation of dendritic

cells, and promote immune escape. miR-130b and miR-32 in exosomes

can stimulate the potential of the body’s autoimmune system, regulate

phosphatase (PTEN) deletion on human chromosome 10, improve the

transformation speed of M2 macrophages by PI3K/Akt signal

transduction, and create a shortcut for glioma growth and migration

(8).Several clinical trials have confirmed that hypoxic glioma-derived

exosomes can promote glioma proliferation and migration (9). It uses

miR-1246 to target the telomere repeat binding factor 2 binding protein

(terf2ip), successfully activating the signal transducer and activator of

transcription 3 (STAT3) signaling pathway and simultaneously

inhibiting the nuclear transcription factor kappa B (NF-kB) signaling
pathway (10). During the formation and growth of glioma, miR-21 in

glioma-derived exosomes can directly downregulate targets such as

BTG 2, PDCD 4 and NFAT5, thereby expanding the infiltration range

and increasing the proliferation rate of microglia, the innate immune

cells of the nervous system (11). Considering this, exosomes may

represent a feasible target to alter the glioma patient’s tumor-

associated immune milieu and make them more susceptible

to immunotherapy.

In this study, we used the NMF clustering method to divide 273

exosome key genes into two groups and built a risk score using the

genes screened by LASSO. We evaluated the relationship between the

risk score and cellular components or cellular immune responses and

compared the differences in immune responses under different

algorithms. This in-depth research emphasizes the crucial part that

tumor-derived exosomes play in determining the tumor-associated

milieu and highlights their potential as a target for glioma

immunotherapy optimization.
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Materials and methods

Data collection and preprocessing

The Cancer Genome Atlas (TCGA) datasets, UCSC Xena (https://

xenabrowser.net/), were used to retrieve the glioma gene-expression

datasets and clinical annotations. The exosome-related gene

expression of GSE106804 and three external validation datasets

GSE 4412, GSE13041, and GSE43378 were downloaded from the

Gene-Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/

gds/). The downloaded RNA sequencing (RNA-seq) data converted

the number of fragments per million fragments (FPKM) into

transcripts per million terabytes (TPM). Microarray data were

generated using Affymetrix and Agilent, and quantile normalization

and background correction were performed using the RMA

algorithm.All data in the analysis process were analyzed using R

software (version 3.6.1) and the R Bioconductor software package.
Identification and clustering of the exosome
pattern genes

The exosome pattern genes were identified by two cohorts

between 13 GBM and 6 normal samples in GSE106804. The R

package limma was performed by significance criteria (P.Value<

0.05 & logFC> 1) (12). Using the NMF clustering method, the

exosome pattern genes were classified into two clusters (13).
Establishment of the exosome-related
risk signature

Univariate Cox regression analysis and Random Survival Forest

were used to reduce the dimensionality of genes (14). Tuning

parameter selection was performed by 1000 rounds of cross-

validation to prevent overfitting and the partial likelihood deviance

met the minimum requirements. A set of prognostic genes and their

LASSO regression coefficients were obtained. The selected lasso gene

was used to construct a risk score whose expression value was the sum

of the LASSO regression coefficients (Supplementary Table 1).

0:2829*IGFBP6  +  0:1751*VGF  +  0:2063*TRBC1

The time-dependent receiver-operating characteristic (ROC) and

Kaplan-Meier(K-M) curves were used to assess the clinical prognostic

capacity of the exosome-related risk score using the R “survival”, and

“survminer” packages.
Estimation of immune characteristics and
immune infiltration

To evaluate the relationship between exosome-related risk score

and cellular component or cellular immune response, the

CIBERSORT (15), ESTIMATE (16),McCounter (17),ssGSEA (18),

and TIMER Algorithms (19)were compared. A Heatmap was used to

uncover differences in immune response under different algorithms.
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Functional and pathway enrichment analysis

All gene sets were downloaded from the MSigDB database. Gene

set enrichment analysis (GSEA) were performed using the

clusterProfiler R package. Pathways enriched in exosome pattern

genes were identified in Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) with a strict cutoff

of P<0.05.
Prediction of immunotherapy response

A cohort of urothelial carcinomas treated with atelizumab is used

to predict immunotherapy response in the IMvigor210 trial (http://

research-pub.gene.com/IMvigor210CoreBiologies/) (20). A dataset

(GSE78220) used to predict PD-1 immunotherapy response

(pembrolizumab or nivolumab) was also utilized (21). We also

explored the immune and genomic correlates of response to anti-

PD-1 immunotherapy in glioblastoma.With a license from Creative

Commons 3.0, complete expression data can now be downloaded

from research-pub.gene.com/imvigor210corebiologies, and complete

clinical data can be retrieved and downloaded. The raw data were

standardized using the deseq2r software package, which converts the

counts to TPM values and the FPKM-normalized values to TPM

values. This creates a separate risk score for both datasets.
Statistical analysis

The Shapiro–Wilk normality test was used to test the normality of

the variables. For normally distributed variables, unpaired Student’s t-

tests were used to compare differences between the two groups. The
Frontiers in Immunology 03
Wilcoxon test for variables was used to compare non-normal

distributions. Pearson’s correlation and range correlation were used

to calculate the correlation coefficients. Data were visualized using the

R package ggplot2. The random survival forest package was used to

create a random survival forest. The survival ROC curves were plotted

using the timeROC package, and the survival curves of the subgroups

were generated and visualized using the Kaplan–Meier method. All

survival curves were generated using the R packet survminer. All the

heat maps were based on a pheatmap. All statistical analyses were

performed using R software (https://www.r-project.org/, edition

3.6.1). All tests were two-sided, and P values<0.05 were considered

statistically significant. Waterfall diagrams were implemented using

the maftools package, and both GSEA and enrichment analyses were

implemented using the R package cluster profiler.
Results

Identification of exosome pattern genes
in GBM

A total of 273 exosome pattern genes were preliminarily screened

by limma(P.Value<0.05 & logFC> 1) (Supplementary Table 2).The

exosome pattern genes were divided into two groups using the NMF

clustering method: cluster1 and cluster2. The comprehensive

effectiveness increased with an increase in the number of clusters

(Figures 1E, F). Survival analysis of cluster1 and cluster2 showed that

there were significant differences between the two groups (Figure 1G).

Figure 1A shows a volcano map of the two differential genes. These

results indicate that there are significant differences between the

cluster1 and cluster2 groups. The GO, KEGG analysis of exosome

pattern genes were performed: BP participated in humoral immune
A B D

E F G

C

FIGURE 1

(A) Volcano map of cluster1 and cluster2 differential genes. Green coloration denotes genes with FC cutoff but no P cutoff. Green represents genes that
meet FC cutoff standards but fail to meet P cutoff standards. Blue represents genes that meet FC cutoff standards but fail to meet P cutoff standards.Red
represents genes that both meet FC cutoff and P cutoff standards.Gray represents genes that both meet FC cutoff and P cutoff standards (B) GO and
KEGG analyses for Exosome pattern genes. (C) GO and KEGG analyses for cluster1. (D) GO and KEGG analyses for cluster2. (E, F) using NMF clustering
method, the best clustering of exosome pattern genes is cluster1 and cluster2. The phenotypic coefficient decreases with the number of clusters.
(G) Kaplan-Meier curves for the cluster1 and cluster2 differential genes. P<0.05.
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response, humoral immune response mediated by circulating

immunoglobulin, regulation of protein activation cascade, and acute

inflammatory response; MF mainly regulated antigen binding, MHC

class II receptor activity, and chemokine receptor binding, among

others were mainly upregulated in blood microparticles, MHC class II

protein complex, and MHC protein complex synthesis pathways.

KEGG analysis revealed that the exosome pattern genes were mainly

involved in Staphylococcus aureus infection, rheumatoid arthritis,

viral protein interaction with cytokines and cytokine receptors,

tuberculosis, phagosomes, systemic lupus erythematosus, asthma,

hematopoietic cell lineage, intestinal immune network for IgA

production, and leishmaniasis (Figure 1B).The GO, KEGG analysis

of cluster 1 was performed: The immune response of BP was similar

to that of exosome pattern genes.MF mainly regulated antigen

binding. KEGG analysis revealed that Cluster 1 was mainly

involved in Staphylococcus aureus infection and rheumatoid

arthritis (Figure 1C).The GO, KEGG analysis of cluster 2 was

performed: BP participated in gliogenesis,synapse maturation,glial

cell differentitation and so on. MF mainly regulated hyaluronic acid

binding. KEGG analysis revealed that Cluster 2 was mainly involved

in gliogenesis, synapse maturation,glial cell differentitation and so

on (Figure 1D).
Generation of prognostic gene signature
and its functional annotation

Univariate analysis was used to screen 28 genes related to

prognosis, and the random survival forest algorithm was used to

rank the importance of prognosis-related genes. Lasso regression

analysis was used to further reduce and validation the number of
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genes, and finally, three prognostic genes were screened, and a risk-

scoring model was constructed (Figures 2A, B). To demonstrate the

signature’s capacity to be distinguished, the risk score splits the

high-risk and low-risk categories based on the cutoff value

(Figure 2C). Next, we decide to measure the capability of the

model we developed using the Kaplan-Meier (K-M) method. The

training cohort’s high-risk group has a lower chance of surviving

than the low-risk group, as shown in Figure 3A,which is statistically

significantly different (p<0.001). The ROC analysis indicated that

area under the curve (AUC) for three-gene signature risk score

reached 0.905 (Figure 2D). Figure 2E shows that the three signature

genes are correlated with the risk score. GSEA was used to analyze

the regulatory relationship between riskScore and pathways. GO

functional enrichment analysis found that the risk Score positive

regulation dephosphorylation, immune response regulating cell

surface receptor signaling pathway among others. KEGG

pathways enrichment analysis found that the risk Score positive

regulation calcium signaling pathway, chemokine signaling

pathway, and jak stat signaling pathway among others.

(Supplementary Figures 1, 2) (Supplementary Tables 3, 4).
Confirmation of the prognostic capacity of
the three exosome related genes signature

We applied our prognostic classifier to the external validation sets

GSE13041, GSE43378, GSE4412 and CGGA in order to validate

whether it had similar predictive abilities in various populations. As

shown in Figures 3B–E, the clinical prognostic value of the high-risk

and low-risk groups in the four independent glioma datasets was

different, and Survival analysis showed that patients with high-risk
A B

D E

C

FIGURE 2

(A) Confidence interval under each lambda. (B) Trajectory of each independent variable, wherein the horizontal axis represents the log value of the
independent variable lambda and the vertical axis represents the coefficient of the independent variable. Three lines of different part colors represent the
three prognostic genes. (C) Risk Score, survival status and the expression of three genes in the whole TCGA dataset. (D) ROC curve and AUC of the
three-gene signature.ROC curve measuring the sensitivity of risk score in predicting the 1-year, 3-year, and 5-year survival of the patients. The area
under the ROC curve was 0.741, 0.8, and 0.905, respectively. (E) Heatmap of the three prognostic genes. **** Represents P <0.0001.
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scores had worse prognoses than those with low-risk scores. The

univariate and multivariate Cox regression analyses showed that

exosome related risk score is the independent prognostic factors

(p<0.01) (Figures 3F, G).
Correlation between the tumor immune
microenvironment and the risk score

A comparison was first made between the risk score and

immune modulators (22), which were divided into seven

categories: antigen-presenting molecules, co-stimulator molecules,

co-inhibitors, cell adhesion proteins and receptors, ligands, and

others. Most immune checkpoint molecules were positively

correlated with an increased risk score (Figure 4A). Thereafter, we

analyzed the correlation between prognosis and immune

infiltration. Figure 4B shows the relationship between the risk

score and cell composition or cellular immune response using the

ESTIMATE, McCounter, ssGSEA, and TIMER algorithms.

Heatmaps revealed differences in the immune response under

different algorithms. The McCounter algorithm indicated that

higher risk score is associated with more immune cell infiltration.

Including T cells, CD8 T cells, Cytotoxic lymphocytes, B lineage, NK

cells, Monocytic lineage, Myeloid dendritic cells, Neutrophils, and

Fibroblasts. According to the ssGSEA methodology, more immune

cell infiltration is correlated with higher risk scores. The cells

involved are shown in Figure 4B. Simply put, a higher risk score
Frontiers in Immunology 05
meant that there had been greater immune cell infiltration. In

accordance with the current CNS tumor class ificat ion

recommendations, we conducted a survival analysis of

glioblastoma IDH wild-type.As shown in Supplementary Figure 4,

the statistically significant difference (p<0.001) between the survival

rates of the TCGA samples from the high-risk idh-wt group and

those from the low-risk group.
Genomic features of the exosome-related
gene pair score groups in glioma

Mutation landscapes in the high- and low-risk groups were

compared, and somatic mutation analysis revealed that more

mutation events occurred in samples with lower risk score

group.TP53(40%) and EGFR (31%) mutations were more

prevalent in the low-risk score group. In the high-risk group,

TP53(24%) and EGFR (25%) mutations were significantly

different from those in the low-risk group (Figures 5A, B). Except

for NF1 and RB1, which frequently had frame-shifting deletions,

missense mutations were the most common kind of gene

modification in all of these genes. The strongest co-occurrent

pairs of gene alteration in high-risk score group were CARD6-

TP53 and PIK3CG-F5, DNAH3-PIK3CG (Figure 5C).VWF-SPTA1

and ATP2B3-PIK3CA were the strongest co-occurring gene pair

changes in the low-risk score group. (Figure 5D). Figure 5E lists the

top 3 most frequently altered cancer-related genes.
A B D
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FIGURE 3

(A) Kaplan-Meier curves for the TCGA patient groups with high and low risk scores. Test of log-rank, P< 0.001. (B-D) Kaplan-Meier curves in GSE4412,
GSE13041, and GSE43378 for patient groups with high and low risk scores. Test of log-rank, P<0.001. (E) Kaplan-Meier curves for the CGGA patient
groups with high and low risk scores. Test of log-rank, P< 0.05. (F) Univariate cox regression analyses analysis to assess the clinical prognostic value of
independent glioma datasets in low/high risk groups. The hazard-ratio scale is log2 scaled. (G) Univariate and multivariate analysis regression analysis
evaluates the clinical prognostic value of independent glioma datasets in low/high risk groups.
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Comparison of anti-cancer drug sensitivity
based on exosome-related risk score

We compared sensitivity to 56 anti-cancer drugs in patients in the

high and low risk score group to identify potential treatment

modalities. The result shows that the IC50s of Axitinib, ARTA,

AKT, BIRB.0796, CCT007093, Cisplatin, Cyclopamine, and

Doxorubicin were significantly higher in patients with high-risk

score group. The IC50s of Bicalutamide, BMS.754807, Bosutinib,

and Bryostatin.1 were significantly higher in low-risk score group

(Supplementary Figure 3).This effectively demonstrates the

significance of the exosome-related gene signature.
The inference of the benefaction of risk
signature in immunotherapy

By dividing up the patients in the melanoma dataset

(GSE78220) cohort into various risk risk score groups, the

capacity of the risk score to predict the response of patients to

immune-checkpoint therapy was investigated. High-risk patients

showed improved immunotherapeutic outcomes (Figure 6C).The

ability of the risk score to predict a patient’s response to immune-

checkpoint therapy was examined by segmenting the patients

in the GBM dataset (SRP155030) cohort into different risk

score groups.Patients at high risk had better responses to

immunotherapy (Figure 6B) (23). The capacity of the risk score to

predict the response of patients to immune checkpoint therapy was

explored by relegating the IMvigor210 cohort patients (urothelial

carcinoma dataset) to various risk score groups. Patients with a

high-risk score exhibited better immunotherapeutic responses

(Figure 6A). Patients who received atezolizumab as the anti-PDL1

medication and had a high-risk score showed a significantly reduced
Frontiers in Immunology 06
overall survival (OS) compared to those who had a low-risk

score. (Figure 6D).
Discussion

Exosomes, which play a role in intercellular communication, are

extracellular vesicles released by the majority of eukaryotic cells (24).

Exosomes are important regulators of cancer initiation and

progression, and growing data show that they can promote the

malignancy of gliomas by inhibiting the immune system or

changing the tumor microenvironment (25–27).As exosomes are

durable in peripheral blood, they are prospective tumor-derived

materials for the characterization of tumor behavior. Exosomes can

be monitored, and exosome-derived proteins and RNAs can also be

used for diagnosis (28). As a result, it appears that analyzing the

molecular make-up of exosomes released by glioblastoma cells is a

very promising avenue for the creation of non-invasive diagnostic

techniques for this disease (29).

To explore and confirm the predictive value of the exome in

glioma, we developed a risk score based on genes found in tumor-

derived exosomes. The risk score provided information on

immunological and stromal states and predicted survival in glioma

patients. Between low- and high-risk scores, there were notable

discrepancies, showing high efficiency in predicting patients 3 years

and 5 years survival probability. Cox regression analysis showed that

the risk score was a better independent prognostic factor in patients

with glioma than in those with other characteristics (P<0.001). Three

novel tumor-derived exosome genes, insulin‐like growth factor

binding protein 6 (IGFBP6), VGF (non-acronym), and T-cell

Receptor Constant b Chain-1 (TRBC1), which significantly affected

the risk score, were also identified. IGFBP6 is a soluble binding

protein that is a part of the insulin-like growth factor (IGF) system
A B

FIGURE 4

(A) Risk score-based immune checkpoint expression heatmap (B). Heatmap for immune responses based onESTIMATE, McCounter, ssGSEA and TIMER
algorithms in risk store. *P <0.05; **P <0.01; ***P <0.001; ****P <0.0001.
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FIGURE 5

(A) Genes with the highest frequency of somatic mutations in the group with high risk scores are listed below. (B) Genes with the highest frequency of
somatic mutations in the group with low risk scores are listed below. (C, D) The heatmap showing the concurrence or mutual exclusivity of the top 25
most mutated genes in the two clusters.p< 0.05, *p< 0.01. (E) The Forest plot listing the top 3 most mutated genes between the two clusters.
A B DC

FIGURE 6

(A) Anti-PD-1 clinical response status groups (CR/PR and SD/PD) with varying risk scores. Wilcoxon test was used to compare group differences (P =
0.0021 for Wilcoxon). (B) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma(P = 0.00019 for Wilcoxon).
(C) Various anti-PD-1 clinical response statuses in groups with varying risk scores (CR, PR, SD, PD). The Kruskal-Wallis test was used to compare group
differences (Kruskal-Wallis, P = 0.00025). (D) In the IMvigor210 dataset, Kaplan-Meier curves were created for the two risk score groups. Test of log-rank,
P = 0.001.
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(30). Through paracrine IGF2/IGF-1R signaling, IGFBP6 regulates

the growth of chemoresistant glioblastoma, which is produced by

scilicet chemosensitive tumor cells, and is secreted, which slows the

evolution of GBM (31). The IGF-I receptor (IGF-IR) may be a

promising target for GBM therapy because prior research has

shown that GBMs overexpress IGF-IR and insulin-like growth

factor receptor II (IGF-IIR) relative to the normal brain (32). One

neuropeptide, VGF, has been linked to several mechanisms of action

(33).Pro-BDNF is converted into mature the Brain Derived

Neurotrophic Factor (BDNF) by the action of VGF, which also

phosphorylates its receptor tropomycin receptor kinase B (TrkB) in

an auto-regulatory loop induced by BDNF (34). An earlier study

showed that immature dentate granule cells (DGCs) emit brain-

derived neurotrophic factor (BDNF) and that glioblastoma stem

cells (GSCs) express neurotrophic receptor kinase 2 (NTRK2), also

known as TrkB, an appropriate receptor for BDNF (35). According to

a study, BDNF-NTRK2 signaling promotes the AKT pathway to

support GSC survival and development (36). By inhibiting the BDNF-

NTRK-AKT-VGF axis, it may be possible to stop the DGC-GSC

connection from generating tumors. TRBC1 is a T cell receptor-chain

constant region with significant immunotherapeutic potential for T

cell malignancies (37).

In recent years, increasing studies have demonstrated that the

tumor immune microenvironment is crucial for the emergence of

cancer (38). The use of immunotherapy for cancer treatment is a

novel concept (39). There remains a huge challenge in identifying a

novel method for classifying patients who would benefit from

immunotherapy. Next, we attempted to create a solid link between

the risk score and tumor immune microenvironment. The high-risk

group also expressed more immune checkpoint markers, such as

ICAM-1, CCL-5, PDCD1, and CXCL9, and had a higher ESTIMATE

score, which tended to correspond to immune-invading cells. The

effects of therapeutic inhibitors that block PD-1/PD-L1 on

immunotherapy have been demonstrated in a previous study on

multiple cancers, which is consistent with our results that the risk

score could predict an effective treatment (40). To date, anti-PD-1

therapy has not been shown to confer survival benefits in patients

with recurrent glioblastoma (41). Our study examined the

effectiveness of anti-PD-1 therapy in the melanoma cohort

GSE78220 based on the risk score. IMvigor210, a cohort of patients

treated with atezolizumab in response to anti-PD-L1 antibodies, was

used to analyze the immunotherapy responses (42). We further used

glioma data to test the effect of response to PD-L1. Among patients

with high-risk scores, anti-PD-1/PD-L1therapy was more likely to be

beneficial, demonstrating that gliomas and melanoma have different

immune invasive microenvironments. Therefore, we propose that the

risk score may function as a sensitive measure for anticipating the

response of glioma patients to anti-PD-1/PD-L1 therapy. The risk

score developed in this study may also allow doctors to choose

different anti-cancer medications to treat gliomas. To identify

prospective treatment methods, the sensitivity to several anti-tumor

medications was evaluated between the high- and low-risk score

groups in this study.

A comparison of exosomal genes and risk scores led to

significant results. This study provides information that enables

us to increase the number of potential exosomal biomarkers and
Frontiers in Immunology 08
glioma prognostic indicators. To thoroughly evaluate exosome

biomarkers compared to routine clinical signs, substantial

randomized control tr ia l s are required . Our research

recommends the development of non-invasive methods for the

diagnosis and prognosis of diseases using exosomes from brain

tumors.This study was a retrospective bioinformatic analysis that

was unable to perform senescence analysis and exhaustion

phenotype analysis of immune cells infiltrating the tumor

microenvironment at a single-cell level, which was a weakness of

this study; In future prospective studies we will focus on this area

of exploration.
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