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Architecture of the SARS-CoV-2-
specific T cell repertoire
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and Apollinariya V. Bogolyubova1*
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Moscow, Russia, 2Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
The T cell response plays an indispensable role in the early control and successful

clearance of SARS-CoV-2 infection. However, several important questions

remain about the role of cellular immunity in COVID-19, including the shape

and composition of disease-specific T cell repertoires across convalescent

patients and vaccinated individuals, and how pre-existing T cell responses to

other pathogens—in particular, common cold coronaviruses—impact

susceptibility to SARS-CoV-2 infection and the subsequent course of disease.

This review focuses on how the repertoire of T cell receptors (TCR) is shaped by

natural infection and vaccination over time. We also summarize current

knowledge regarding cross-reactive T cell responses and their protective role,

and examine the implications of TCR repertoire diversity and cross-reactivity

with regard to the design of vaccines that confer broader protection against

SARS-CoV-2 variants.
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GRAPHICAL ABSTRACT
1 Introduction

The clinical manifestations and subsequent immune response

to SARS-CoV-2 infection are diverse, with patients exhibiting a

wide range of disease severity and susceptibility to future

reinfections. T cells are crucial for early control and successful

clearance of viral infections alongside the humoral response. The

involvement of CD4+ and CD8+ T cells in the immune response

reduces the severity of disease (1–3), and the presence of pre-

existing SARS-CoV-2-specific T cells can prevent the development

of COVID-19 (4, 5) and decrease the risk of reinfection (6).

Accordingly, it has been shown that a subgroup of seronegative

patients was partially protected from infection by T cells (7, 8). On

the other hand, anergy of T cells is associated with a poor

prognosis (9).

However, it is not only the magnitude of the T cell response but

also its diversity that ultimately influences the outcome of infection

(10, 11). Recently, researchers have focused on analyzing the

dynamics of the TCR repertoire as an indicator of the immune

response in autoimmune diseases such as multiple sclerosis (12) and

rheumatoid arthritis (10), viral infections (13), and cancer (14).

TCR repertoire analysis is also proving useful as a biomarker of the

response to immunotherapy (15). The TCR repertoire can provide

insights into immunodominance, functionality, and the protective

effects of the T cell response (16, 17). Even though some conclusions

may be ambiguous due to different approaches and consideration of

both antigen-specific and non-antigen-specific data such as

characteristics of overall TCR repertoire, TCR repertoire analysis

offers a valuable tool for understanding the parameters of T cell-

mediated immune responses to SARS-CoV-2 and the impact of
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viral mutations on immunological protection against newly-

emerging SARS-CoV-2 variants.
2 Structure of the T cell repertoire
and COVID-19 infection

The ability of the adaptive immune system to protect host

organisms from a wide variety of pathogens is facilitated by the

production of T cells that collectively express a large and diverse

repertoire of unique TCRs. Naïve TCR diversity is generated by

random rearrangement of the V and J segments of the TCR alpha

(TCRa) genes and V, D, and J segments of the TCR beta (TCRb)
genes in maturing T cells within the thymus. But the ultimate

structure of memory repertoire is shaped by interactions of these

naïve cells with various pathogens over the course of a lifetime. The

size, frequency, and publicity of individual clonotypes within a TCR

repertoire can reveal both successful and failed immune responses,

and recent studies have shown that the SARS-CoV-2-specific

repertoire not only has its own architecture (18), but also differs

depending on the severity of the disease and can change over

time (19).

The SARS-CoV-2 proteome comprises at least 29 proteins (20),

and as such, the number of potential epitopes is huge. However, the

immunogenic regions of this proteome are unevenly distributed.

ORF1 is the largest SARS-CoV-2 protein, and makes the largest

contribution to T cell recognition, although the much-smaller

ORF3 and Spike (S) proteins have a higher density of

immunogenic epitopes compared to ORF1 (21). About 25% of

the overall antigen-specific T cell response is accounted for S
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protein response (22). Other structural proteins are highly

recognized as well and accounted for roughly 55% of CD4+ and

CD8+ T cell response (22, 23). Many immunogenic epitopes in

SARS-CoV-2 have been identified (24–27). However, most of these

do not achieve 100% immunogenicity in convalescent donors (5)

and T cells of each individual recognize 30 to 40 different CD4+ and

CD8+ epitopes (22). This can be explained by the fact that the

structure of the TCR repertoire is mostly determined by the

presence of specific HLA alleles (28, 29), as well as the fact that

epitopes compete for antigen presentation (30). Moreover, different

TCRs have different probabilities of formation during the

recombination process, such that the frequency of naïve cells with

such TCRs may vary (28, 31). Lastly, methods of assessing

immunogenicity can differ in their sensitivity and specificity, and

the structure of the repertoire may vary in different studies. One

particularly important factor is the time of sampling: at the peak of

infection, more than 10% of total CD8+ T cells may be specific to a

single SARS-CoV-2 epitope (21, 26). A month after infection, the

frequency of most epitope-specific T cell populations is typically <

1% of total CD8+ T cells (24, 32–35).

The abundance of a given memory T cell clonotype in blood

does not correlate with the immunodominance of its corresponding

epitope (32, 35, 36). For example, studies have shown that CD8+ T

cells specific to the highly immunogenic epitope YLQ are present at

very low levels in the blood of convalescent donors (36, 37).

Limited diversity of T cell repertoire seems to be associated with

severe disease (38, 39), whereas higher diversity is more likely to

result in successful elimination of the virus. Multiple studies have

found that the overall diversity of non-antigen-specific TCRs in

blood samples taken from patients with COVID-19 is lower than

that of healthy donors (40, 41), and is even lower in patients with

severe disease. For example, a cohort of patients with pneumonia

had a slightly less diverse overall TCR repertoire compared to those

with mild disease (38) presumably due to expansion of SARS-CoV-

2 specific T to defend against the infection cells in symptomatic and

hospitalized individuals (42) On the other hand, low repertoire

diversity may be a prognostic factor and explain the higher risk of

serious illness and death in elderly patients (43–47), as it is well

known that TCR repertoire diversity declines with aging, and this is

also known to affect the antiviral response to other pathogens, such

as the human influenza A virus (48, 49).

In general, peripheral selection and expansion of antigen-specific

clonotypes driven by persistent pathogens leads to a higher

proportion of shared clones among abundant clonotypes (50). The

overlap of the overall non-antigen specific TCR repertoire between

individuals is significantly higher in COVID-19 patients than in

healthy individuals (41), and this is primarily because some epitopes

of SARS-CoV-2 tend to give rise to shared, public clonotypes (35, 36,

51). Public clonotypes tend to have short CDR3 regions and arise

from specific V(D)J-rearrangement events that occur with higher

probability (28). Such clonotypes are thought to play a crucial role in

establishing an effective pathogen-specific response and infection

control of other pathogens like Cytomegalovirus (CMV), Epstein-

Barr virus (EBV) and Adenovirus (52, 53).

Numerous studies have shown that the TCR repertoire in

patients with mild COVID-19 infection remains relatively diverse
Frontiers in Immunology 03
within CDR3 central region, with high generation probability

compare to severe patients (38). This leads to a broad range of

SARS-CoV-2-specific sequences observed in mild disease, with

many public CDR3 sequences (19, 36, 38, 54) This potentially

explains why pneumonia patients have TCRs with longer CDR3

regions arising from lower-probability V(D)J-rearrangement events

relative to the SARS-CoV-2-associated TCR repertoires in patients

with mild disease, which also tend to prominently feature public

clonotypes (38, 40). TCR repertoire profiles in asymptomatic

infection is similar to mild disease (36).

It was demonstrated that preferential usage of V-, D-, and J- genes

is significantly different in different viral infections including COVID-

19 (55). Moreover, few studies demonstrated overrepresentation or

underrepresentation of particular V-, D- and J-segments in patients

with different COVID-19 clinical picture (55). Asymptomatic patients

had overrepresentation of TRAV (TRAV17, TRAV12-1, TRAV19,

TRAV35, and TRAV41), TRBV (TRBV12-5 and TRBV19) (56),

TRAJ16 and TRBJ2-1 (57) genes compared to patients with

symptoms. Frequency of TRAV2, TRAJ8, TRAJ40, TRBV3-1 and

TRBV5-1 were the highest in symptomatic patients (57) while four

TCBV gene segments (TRBV5-6, TRBV14, TRBV13 and TRBV24-1)

were found to be overrepresented in severe patients with little Jb gene-
segment skewing (58). Another 25 sequences of the central part of the

CDR3 region were found predictive for severe infection (54). The data

suggest distinct clonal expansion influence on the disease progression.
3 Dynamics of the TCR repertoire
after COVID-19 infection

During SARS-CoV-2 infection, the diversity and clonality of the

antigen-specific TCR repertoire peaks within 8–14 days, then

contracts slightly (25, 59) before returning to basal levels within

one week after virus elimination (60). A SARS-CoV-2 specific TCR

repertoire can be detected in the vast majority of convalescent

patients, persisting for up to 15 months after viral clearance with a

slight decrease (35, 42, 59) or even increase of clonal diversity (61).

Moreover, SARS-CoV-2 epitope-specific T cells are able to

proliferate in individuals who were vaccinated after infection (42)

or in the re-detectable positive cases (Y. 62). Notably, SARS-CoV-1

specific T cells have demonstrated an impressive ability to persist

for long periods of time, with one study detecting such clones up to

17 years after infection (63).

The durability of an antigen-specific response is determined by

characteristics such as the publicity, diversity, and clonality of

clonotypes recognizing that antigen (35, 51). It has been shown

that long-term immunity is principally mediated by the clonal

diversity of the antigen-specific T cell response (35, 61), whereas

clonality does not appear to play a significant role (35). In some

cases, however, dominant clones in the acute phase coincide with

those found in the recovery phase (59). Numerous studies offer clear

evidence that a highly diverse repertoire protects against a wide

range of antigens of CMV, EBV and Human Immunodeficiency

Virus-1 (HIV-1) (64, 65), and it is quite likely that such repertoires

are associated with a higher level of avidity, affinity, and overall

functionality (66, 67).
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Despite numerous attempts to predict the longevity of virus-

specific T cell immune response based on repertoire characteristics

(35, 51, 68, 69), Bensouda Koraichi et al. study surmised that TCR

clonotypes dynamic can be described by geometric Brownian motion.

The model includes random unstimulated T cell proliferation and

death, as well as asymptomatic or weakly symptomatic antigenic

stimulation. However, the actual longevity of response varies from

individual to individual, and in young individuals, the repertoire

changes faster than in older individuals (70). Thus, at the moment,

TCR clonotypes cannot be considered as the sole reliable predictor of

the strength and effectiveness of the immune response.
4 Vaccine-induced T cell response
and TCR repertoire

The high levels of mortality and morbidity associated with

COVID-19 have prompted a massive, global vaccine development

effort. At the time of writing this review, more than 170 vaccines

have been developed, according to the World Health Organization

(WHO) (https://www.who.int/publications/m/item/draft-

landscape-of-covid-19-candidate-vaccines). Nearly a dozen of

these are now in clinical use, and most demonstrate high

efficiency in terms of protection (71, 72) and induce an immune

response closely resembling that induced by infection in terms of

immunophenotype, magnitude of CD4+ response and antibody

levels (73–75). However, vaccine-induced CD8+ T cell expansion

seems to be relatively weaker and with fewer distinct clonotype

clusters compared to those induced by natural infection (76).

Only a small subset of vaccines consists of inactivated viral

particles or mixtures of different viral proteins. Instead, the vast

majority are aimed at inducing an immune response to the S

protein (77). This approach produces a skewed T cell response that

is enhanced against immunodominant epitopes (51) while also being

targeted at less-dominant S-derived epitopes in vaccine recipients

compared to convalescent individuals (78). In the aftermath of natural

infection, the resulting CD8+ T cell clones are likely to recognize a

broader set of viral epitopes that are not encountered in vaccines (76),

and this T cell repertoire also demonstrates a higher rate of cross-

recognition of epitopes from common-cold coronaviruses (79).

Nevertheless, the repertoire induced by S protein-based vaccines is

generally capable of protecting against existing variants as well as

emerging variants of concern (VOCs) (80–82).

The antigen-specific TCR repertoire induced by both the virus

and vaccines undergoes significant clonal contraction over time

(79), along with an overall decrease in immune response (35), and

the only way to increase protection over the long term may be

booster vaccination (78).
5 Changes in the previously primed
TCR repertoire after vaccination

Over time, SARS-CoV-2-primed T cells transition to a memory

phenotype, and the diversity of the SARS-CoV-2-specific TCR
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convalescent individuals (35). Since T cells and antibodies provide

effective antiviral protection, the exhaustion of any of them leads to

a decrease in protection properties, which was shown in the large-

scale prospective study (8). However, the existence of a pool of

memory cells is important for fending off the virus in future

encounters, and the complete absence of SARS-CoV-2-specific

antibodies and T cells may lead to reinfection, although

neutralizing antibodies play more important role in protection

from reinfection (83)

Vaccination offers a way to boost previously primed immunity,

and it has been shown that the vaccine-induced cellular response is

more robust in convalescent donors. Most convalescent individuals

demonstrate the same level of T cell and humoral response as

previously-unexposed individuals after one shot of mRNA vaccine

(84). Because the antigen-specific CD8+ T cell response develops

more slowly than the CD4+ T cell response after natural infection

and primary vaccination (5), it reaches its maximum only after

administration of the second vaccine dose (84).

Vaccine response patterns may differ due to the difficulty of

involving naïve CD8+ precursors in the immune response. While

the vaccine-induced response of CD4+ T cells includes both the

recruitment of memory cells and the proliferation of new, unique S

protein-specific CD4+ T cells (79) in convalescent individuals, a

rapid boost of S protein-specific CD8+ T cells is predominantly

provided by persisting early memory S protein-specific CD38-CD8+

T cells (85, 86). Moreover, the overall magnitude of the S protein-

specific CD8+ T cell response to vaccination in convalescent

individuals is the same as in previously unexposed individuals

due to the involvement of the memory compartment. However, it

has been shown that vaccination selectively stimulates the

expansion of S protein-specific clones and the contraction of

clonotypes with non-S-protein specificity in convalescent

donors (51).

SARS-CoV-2 mutations can reduce recognition of the virus by

the CD8+ T cell compartment, possibly due to escape from HLA

binding (87), although the T cell response is generally capable of

effectively responding to mutant viral strains (88, 89). Vaccine-

induced T cell response was also preserved across different SARS-

CoV-2 variants while B cell and neutralizing antibodies recognition

was significantly reduced (90). Moreover T cell response may be

enhanced with booster vaccination (78, 91). which substantially

increase effectiveness of protection against reinfection from 24.7%

with previous infection up to 41.8% with combination of infection

and vaccination. However, the most important thing is that

vaccination after infection is much more effective against hospital

admission or severe disease than infection alone: the effectiveness of

protection increased from 74.6% to 97.4% with vaccination (92).

Nevertheless, there remains a need for further vaccine

optimization and the incorporation of more immunogenic

epitopes (93) that can elicit more broadly protective T cell

responses (81) even in the face of the emergence of new SARS-

CoV-2 variants. This is especially important for the protection of

immunocompromised individuals and elderly people, and despite a

greater proportion of pre-existing memory T cells in the elderly

compared to the young, booster vaccination has been shown to be
frontiersin.org

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
https://doi.org/10.3389/fimmu.2023.1070077
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zornikova et al. 10.3389/fimmu.2023.1070077
less effective in older individuals due to the minimal contribution of

memory clonotypes in supporting high-quality T cell responses (94).
6 Cross-reactiveness of
T cell repertoire

Amore robust T cell response is also conferred by their capacity

for cross-reactivity. A single T cell can cross-react to up to 106–107

foreign peptides (95), and this has been shown to be an essential

feature of the T cell response (96–98). For some individuals who

remain asymptomatic and seronegative even after close contact with

COVID-19 patients (5), it has been shown that T cell-mediated

protection may arise from cross-reactivity to T cells that target self-

antigens and epitopes derived from various other pathogens

including CMV, influenza A, EBV and HIV-1 (99, 100). Some

parts of SARS-CoV-2 are very highly conserved relative to other

‘common cold’ human coronaviruses (HCoVs) (101, 102), and pre-

existing protective T cells most likely originate from memory T cells

derived after exposure to viruses such as HCoV-OC43, HCoV-

HKU1, HCoV-NL63 and HCoV-229E (4), which circulate widely in

the human population (63, 103, 104).

Some studies have shown that more than 20% of pre-pandemic

samples contained SARS-CoV-2-reactive T cells (63, 103, 104),

which protect patients from developing severe illness (105). But

other research has failed to confirm such strong cross-reactivity,

and has instead revealed that these cross-reactive T cells from pre-

pandemic samples have a predominantly naïve phenotype, which

means that they did not develop from an immune response to

HCoVs (32, 77). This difference in results may be attributable to the

choice of peptides used in the study. T cells specific to peptides that

are conserved among coronaviruses are more abundant and tend to

have a memory phenotype compared to those which recognize

unique SARS-CoV-2 peptides. Notably, CD8+ T cells that cross-

react to these conserved epitopes are much more plentiful in

patients with mild COVID-19 versus those with severe illness,

suggesting a protective role (105). Moreover, TCR repertoires that

recognize the same conserved peptides were similar in unexposed

donors and convalescent individuals (106). Other studies have

suggested that pre-existing T cells that react to SARS-CoV-2 RNA

polymerase may also be associated with asymptomatic disease

(4, 107).

One of the most cross-reactive epitopes in unexposed

individuals is SPRWYFYYLN105-113 (SPR) restricted in HLA-

B*07:02 (77, 108). The immunodominance of SPR originates

from a high frequency of naïve precursors in pre-pandemic

samples. Many naïve SPR progenitors arise from a highly diverse

TCRaß repertoire (77, 109), and a diverse SPR-specific CD8+ T cell

response with high functional avidity and antiviral effector

functions has been detected in patients with mild disease

compared to individuals with severe COVID-19 (108).

Interestingly to note that only one SPR homologous epitope from

HCoVs, LPRWYFYYL, has also demonstrated the ability to elicit a

cross-reactive response (109). Other highly immunodominant
Frontiers in Immunology 05
epitopes, like KPRQKRTATN257-265 (KPR), YLQPRTFLLS269-277
(YLQ), and QYIKWPWYIS1208-1217 (QYI), have been shown to be

abundant in pre-existing naïve T cell repertoires (32, 77, 108).

The importance of cross-reactive T cell response for protection

against newly-emerging mutant strains is well established (110).

New VOCs may be less susceptible to neutralizing antibodies (80,

111, 112), while T cells retain their protective capabilities (89, 113,

114). This protective capacity is shaped by the wide variety of

epitopes recognized in different people (21). Nevertheless, the

emergence of non-synonymous mutations in some T cell epitopes

can lead to a decrease in peptide and MHC binding or a reduced

ability to activate T cells (115, 116). However, such mutations are

rarely found in VOCs, and it is likely that an epitope that evades

presentation by one HLA allele will become presentable by the other

(87). This mechanism may explain why the magnitude of T cell

response to new variants is typically decreased by only 20–30%

(89, 117).

It should also be noted that cross-recognition does not always

provide protection, and can also be associated with worse disease

outcomes; this suggests that other mechanisms are coming into

play, including age-related differences in the involvement of

different cell populations in the immune response (118). Several

studies have examined the potential protective effects of Bacille

Calmette–Guérin (BCG) immunization due to the presence of

epitopes that resemble epitopes from SARS-CoV-2 (119, 120), but

clinical trials have offered no evidence for such protection (121).
7 Conclusion

The severity of COVID-19 can vary from asymptomatic to

lethal disease, and many different factors contribute to the outcome

of infection, most notably including gender, ethnicity, health, and

age (46, 47). However, demographics only partially explain the

differences in mortality rates between countries (122), and

numerous studies strongly point to the influence of the TCR

repertoire on the ultimate course of infection. It has been shown

that TCR repertoire diversity and clonality might determine the

success of the immune response to both the virus and the vaccine,

and several machine learning-based tools have been developed and

applied in order to distinguish between convalescent and naive

individuals (18) and predict disease outcomes (19, 54, 123) based on

TCR repertoire. Despite high hopes and numerous studies of cross-

reactive responses from pre-existing immunity to other HCoVs and

other pathogens, protectiveness of cross-recognition is still debating

(124). The studies to date have shown that protectiveness of cross-

recognition in the context of prior infection with SARS-CoV-2

against reinfection is relatively low and waned to 24·7% at 12

months, but may be significantly improved with vaccination (92).

Against this backdrop, the ongoing spread of SARS-CoV-2 and

emergence of new, potentially immune-escaping VOCs reinforces

the urgency of further optimizing the composition of vaccines based

on insights derived from research into the T cell response against

SARS-CoV-2.
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