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Background: Pre-clinical development and in-human trials of ‘off-the-shelf’

immune effector cell therapy (IECT) are burgeoning. IECT offers many

potential advantages over autologous products. The relevant HLA matching

criteria vary from product to product and depend on the strategies employed

to reduce the risk of GvHD or to improve allo-IEC persistence, as warranted by

different clinical indications, disease kinetics, on-target/off-tumor effects, and

therapeutic cell type (T cell subtype, NK, etc.).

Objective: The optimal choice of candidate donors to maximize target patient

population coverage and minimize cost and redundant effort in creating off-the-

shelf IECT product banks is still an open problem. We propose here a solution to

this problem, and test whether it would be more expensive to recruit additional

donors or to prevent class I or class II HLA expression through gene editing.

Study design: We developed an optimal coverage problem, combined with a

graph-based algorithm to solve the donor selection problem under different,

clinically plausible scenarios (having different HLA matching priorities). We then

compared the efficiency of different optimization algorithms – a greedy solution,

a linear programming (LP) solution, and integer linear programming (ILP) – as

well as random donor selection (average of 5 random trials) to show that an

optimization can be performed at the entire population level.

Results: The average additional population coverage per donor decrease with

the number of donors, and varies with the scenario. The Greedy, LP and ILP

algorithms consistently achieve the optimal coverage with far fewer donors than

the random choice. In all cases, the number of randomly-selected donors

required to achieve a desired coverage increases with increasing population.

However, when optimal donors are selected, the number of donors requiredmay

counter-intuitively decrease with increasing population size. When comparing

recruiting more donors vs gene editing, the latter was generally more expensive.

When choosing donors and patients from different populations, the number of

random donors required drastically increases, while the number of optimal

donors does not change. Random donors fail to cover populations different

from their original populations, while a small number of optimal donors from one

population can cover a different population.
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Discussion: Graph-based coverage optimization algorithms can flexibly handle

various HLA matching criteria and accommodate additional information such as

KIR genotype, when such information becomes routinely available. These

algorithms offer a more efficient way to develop off-the-shelf IECT product

banks compared to random donor selection and offer some possibility of

improved transparency and standardization in product design.
KEYWORDS
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1 Introduction

Immune effector cell therapy (IECT) products are used for a

variety of therapies for cancers and viral infection. “Off-the-shelf”

refers to the ability to leverage healthy donors for on-demand or,

more commonly, cryopreserved IECT products. A proliferation of

published and ongoing trials attests to increasing interest in off-the-

shelf allo-IECTs for anti-viral and anti-neoplastic indications. (See

Tables 1, S1 for a detailed list of proposed therapies.) Far more allo-

IECTs are in preclinical development, as reviewed by Depil et al.

(42) and Perez et al. (43).

The potential advantages of allogeneic over autologous IECT

approaches include (a) immediate availability of cryopreserved

product; (b) avoiding inadequate collection of starting material

from patient leukapheresis due to lymphopenia or autologous T or

NK cell dysfunction (due to the immunosuppressive effects of

cancer or the extent of prior chemotherapeutic and

immunomodulatory treatments); (c) avoiding treatment delays

introduced by complex logistics and manufacturing failures; (d)

possible improvements to standardization and dose–response

prediction; (e) time for additional cell modifications that could

increase efficacy, safety, or persistence; (f) ease of repeat dosing; and

(g) economies of scale that can reduce the cost burden on healthcare

systems and may increase accessibility of IECT worldwide.

On the other hand, allo-IECT faces several challenges, including

the risk of graft-vs-host disease (GvHD) and the rapid elimination

of the cell product by recipient NK or T cells (Depil et al. (42).

GvHD occurs when the donor-derived T cells attack the recipient’s

healthy tissue. This donor cell reaction is associated with HLA

molecules on the recipient tissue that are not expressed in the

donor. Conversely, the host can reject the target cells, when foreign

HLA molecules on the donor-derived cells trigger the recipient’s T

cells to react against the donor-derived cells. Alternatively, recipient

NK cells can react against donor cells that are missing an HLA

molecule native to the recipient. These are reasons why IECTs with

“HLA independent” mechanisms of anti-viral or anti-cancer

efficacy may sti l l benefi t from consideration of HLA

compatibility. Strategies for overcoming these challenges are

described in the Supplementary Tables. For example, disrupting

the TRAC locus to prevent TCR expression can eliminate the risk of

GvHD in the context of donor T-cell therapies. Knocking out the
02
beta2 microglobulin gene to prevent expression of class 1 HLA on

donor T or NK cells may “hide” them from recipient T cells to

increase persistence, but additional gene editing would be necessary

to reduce the likelihood of lysis by recipient NK cells noticing a

“missing self” ligand. A chimeric 4-1BB-specific alloimmune

defense, proposed by Mo et al., enables CAR-T cells to evade

alloreactive recipient T and NK cells, yet spares recipient resting

T and NK cells. This avoided immunocompromise and promoted

persistence and anti-tumor efficacy (44).

The optimization strategies for choosing a set of candidate

donors consistent with the challenges described in Table S2 depend

on the clinical context and the extent of genetic engineering deemed

feasible. Foremost is the indication for therapy. For example, IECT

may safely be rejected after clearance of an infection with no latent

form but may need to persist for recurring infections. Similarly, if a

tumor is rendered operable by neoadjuvant IECT debulking, long-

term IEC persistence may be superfluous after successful tumor

resection. However, IEC persistence may be essential in situations

where sub-clinical malignancy may lead to relapse. We must also

consider the anticipated adverse effects of IEC persistence due to

on-target/off-tumor effects, such as B-cell aplasia for CD19+ ALL or

myeloid aplasia for CD123-directed CAR-T cell therapy.

To support emerging efforts at product standardization and to

maximize population coverage while minimizing costs associated with

collecting redundant donors, we propose a solution to the maximal

coverage problem for different scenarios and compare the optimal

coverage with the one obtained from randomdonors. These algorithms

could accommodate information beyond HLA typing, such as KIR

genotyping or polymorphisms in other immune response genes.
2 Methods

2.1 Genotype data

The datasets obtained from the Ezer-Mizion Bone Marrow

Donor Registry include 1,040,503 donors. The population HLA

haplotype frequencies were estimated using a multi-race

expectation-maximization algorithm (45). The HLA of each

donor was imputed using GRIMM (46) and the most probable

five locus (A, B, C, DQB1, and DRB1) genotypes were chosen.
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TABLE 1 List of clinical trials of alloreactive immune effector cellular therapies. We list for each trial its reference, the type of disease treated, the cell
type, the HLA constraint, and the target cell surface antigen or virus. Additional details are given in the Supplementary Tables.

Key Published Trials of Allogeneic Immune Effector Cell Therapy

Reference Disease
Indication Methodology

Cell type HLA constraints Target/Manufacturing N

Liu et al. (1) B-cell lymphoma
and CLL

Cord-
blood-
derived NK
cells

Partial matching for the first 9 subjects, then enrolled with no regard to
matching

CD19 targeting CAR, IL15,
iCASP9

Benjamin et al.
(2)

B ALL T cells Not stated CD19 targeting CAR, TCR KO,
CD52 KO

Mailankody
et al. (3)

MM T cells Not stated BCMA targeting CAR, TCR
KO, CD52 KO

Lekakis et al.
(4)

B-cell lymphoma T cells Not stated CD19 targeting CAR, TCR KO,
CD52 KO

Neelapu et al.
(5)

B-cell lymphoma T cells Not stated CD19 targeting CAR, TCR KO,
CD52 KO

Quach et al.
(6)

B-cell lymphoma T cells Best of HLA class I and II matching CD30 targeting CAR, EBV-
specific TCR

Bachanova
et al. (7)

B-cell lymphoma
and CLL

IPSC line-
derived NK
cells

Not stated CD19 targeting CAR, CD16 Fc
receptor, IL15/IL15 receptor
fusion

Patel et al. (8) B-cell lymphoma IPSC line-
derived NK
cells

Not stated CD19 targeting CAR, CD16 Fc
receptor, IL15/IL15 receptor
fusion

Jain et al. (9) B ALL T cells Not stated CD19 targeting CAR

Vasu et al.
(10)

AML/MDS NK cells HLA and KIR genotyping (not further described) with demonstration of in
vitro expansion

Al-Homsi
et al. (11)

MM T cells Not stated BCMA targeting CAR, TCR KO

Ramos et al.
(12)

B-cell lymphoma
and ALL

NK T cells Not stated CD19 targeting CAR, IL-15,
and shRNA targeting beta-2
microglobulin and CD74

Li et al. (13) T cell ALL T cells Not stated CD7 targeting CAR, CD7 KO,
TCR KO

Holstein et al.
(14)

MM Placental
CD34+
cell-derived
NK cells

Not stated

Cooley et al.
(15)

AML/MDS Placental
CD34+
cell-derived
NK cells

Not stated

Kistler et al.
(16)

Breast cancer NK cells Not stated

Hu et al. (17) B-cell ALL T cells Not stated CD19/CD22 targeting CAR,
TCR KO, CD52 KO

Patel et al. (8)
and Hong
et al. (18)

Solid tumors and
lymphoma

iPSC-
derived NK
cells

Not stated

Qasim et al.
(19)

B-cell ALL T cells Not stated (“mismatched”) CD19 targeting CAR, TRAC
KO, CD52 KO

(Continued)
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TABLE 1 Continued

Key Published Trials of Allogeneic Immune Effector Cell Therapy

Reference Disease
Indication Methodology

Cell type HLA constraints Target/Manufacturing N

Tzannou et al.
(20)

CMV post-HCT T cells ≥2 of 8 shared HLA antigens Peptide stimulation: IE1, pp65

Withers et al.
(21)

CMV, ADV, or
EBV post-HCT

T cells ≥1 of 6 shared HLA-antigens (-A, -B, -DRB1); highest number of HLA
matches with antiviral activity through the shared HLA antigen(s).
Secondary preference to products with highest virus-specific MHC-tetramer
CD8+ cells or IFN g response.

Peptide stimulation: pp65,
AdV5 Hexon, BZLF1, LMP2,
EBNA1

Leen et al. (22) CMV, ADV, or
EBV after HCT

T cells Specificity for the target virus through a shared HLA allele. Secondary
preference to maximize HLA matches.

Transduction with Ad5f35pp65
multivirus-specific vector

Haque et al.
(23), Haque
et al. (24) and
Haque et al.
(25)

PTLD after HCT
or SOT

T cells Maximize HLA match out of 6 (HLA-A, B, DR), with ≥1 HLA-A and ≥1
HLA-B match. Secondary preference to CTLs with the highest cytotoxicity in
chromium release assays against patient LGLs and low killing of patient
PHA blasts, mismatched LCLs, and K562.

Sensitization by EBV-BLCLs

Neuenhanh
et al. (26)

CMV after HCT T cells ≥1 shared HLA class I allele that can restrict the CMV-specific target Direct isolation: MHC-
Streptamer purification of CMV
epitope-specific T cells from
unstimulated donor
leukapheresis

Tzannou et al.
(27)

CMV, ADV, EBV,
BK, or HHV-6
after HCT

T cells Specificity for target virus through shared HLA alleles. Secondary preference
to overall HLA match. Used epitope mapping, cytokine profiling and
cytotoxicity to confirm antiviral activity through ≥1 shared HLA allele prior
to selecting a VST line.

Peptide stimulation: IE1, pp65,
Hexon, Penton, EBNA1, LPM2,
BZLF1, VP1, large T, U11, U14,
U90

Doubrovina
et al. (28)

PTLD after HCT T cells Selection based on: (a) Cytotoxicity assessed against autologous donor- and
patient-derived EBV+ BLCL and EBV− PHA blasts, and (b) against a panel
of allogeneic EBV-BLCL, each matching one of the HLA alleles expressed by
the T cells. cf. Comments.

Sensitization by EBV-BLCLs

Feuchtinger
et al. (29)

CMV after UCB T cells Not stated Peptide stimulation: pp65,
enriched for IFN g secretion

Barker et al.
(30)

PTLD after UCB T cells Cytotoxicity in chromium release assay against a panel of EBV+ and EBV−
targets expressing one set of HLA A, B, C, DR, and DQ alleles shared by the
CTL donor. CTLs with the closest HLA match to the UCB unit (and hence
the lymphoma) restricted by one or more of the CTL donor’s HLA alleles,
and HLA match >2/10 to the patient, was selected.

Sensitization by EBV-BLCLs

Prockop et al.
(31)

PTLD after HCT
or SOT

T cells HLA type, immune phenotype, lack of alloreactivity, EBV-specific
cytotoxicity, and HLA restriction as per Doubrovina et al. (28).

Sensitization by EBV-BLCLs

Papadopoulou
et al. (32)

CMV, ADV, EBV,
BK, or HHV-6
after HCT

T cells Specificity for target virus if reactivation/infection (vs. prophylaxis) Peptide stimulation: IE1, pp65,
Hexon, Penton, EBNA1, LPM2,
BZLF1, VP1

Moftuoglu
et al. (33)

PML T cells Most closely matched (minimum requirement: ≥1 HLA class I and ≥1
HLA class II allele match)

Peptide stimulation: VP1, VP2,
VP3, ST, LT

Sun et al. (34) EBV+ Hodgkin
lymphoma

T cells Minimum ≥3/6 HLA match Sensitization by EBV-BLCLs

Gallot et al.
(35)

PTLD after HCT
or SOT, EBV+
lymphoma after
autologous HCT

T cells ≥1 match for HLA class 1 and EBV specificity through a shared HLA allele
(priority); negative cytotoxicity test against the patient’s PHA blasts; EBV-
CTLs cytotoxicity score >15% against the autologous EBV-LCLs and > 2�
that observed against patient PHA blasts

Sensitization by EBV-BLCLs

Naik et al.
(36)

Primary
immunodeficiency:
EBV or CMV prior
to or after HCT;
PTLD

T cells Various strategies. Donors were 3/10 to 9/10 matched to patients. Various

(Continued)
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2.2 Problem goal

Given two sets of genotypes, R1 and R2 , of donors and patients,

respectively, each with 2 mismatch rates, a and b, we say that

genotype j (dj) of donors matches genotype i (gi) of patients if it

obeys some matching condition—for example, at most a

mismatches in class 1 and b mismatches in class 2. The goal is to

find the minimal set of donor genotypes that optimizes the

patients’ coverage.

The method includes two stages.
Fron
1. Find for each donor genotype dj in the donor population

(R1) which patient genotypes it can match (further denoted

as Sj).

2. Assuming a weight pi for each genotype in a patient

population (R2), which represents the number of patients

with the same genotype, the problem can be stated in two

similar ways: (A) Given a maximal size of the set of donors

r1 ⊂ R1, jr1j = N , find the subset of donor genotypes that

maximizeso
i
pij(gi ∈ Sj, dj ∈ r1), or alternatively, (B) for a

required coverage P =o
i
pij(gi ∈ Sj, dj ∈ r1), find the

minimal subset that produces a coverage of P.
2.3 Graph model—Stage 1

For each genotype dj in the donor population (R1, j = 1, 2…,N1),

create a node of the full unphased genotype (denoted UMUG—

Unphased Multilocus Unambiguous Genotype) and then create

edges from the genotype node to the appropriate class 1 and class 2
tiers in Immunology 05
nodes, C1j and C2j. A Ckj node is composed of a pair of class k

genotypes (e.g., A1 + A2    ̂B5 + B8    ̂C12 + C3 for the appropriate set

of genes A,B,C). Here, we use a two-field representation of the alleles

(e.g., A*02 : 01).

First, merge all patient genotypes and save the number of

occurrences. For Ckj, with z alleles, create the combination of all

z − 1 alleles Ckl , and create edges from the full genotype (e.g., A1 +

−    ̂B5 + B8    ̂C12 + C3 in the example above). Repeat the iterative

process, starting from Ckl , until z − a alleles for class 1 and z − b

alleles for class 2. For the patient genotypes, we create the same

connection but with opposite edge direction (Figure 1). The weight

of patient genotype vertex is the number of genotype occurrences.

Given two sets of donor andpatient genotypes,R1 andR2 of sizeN1

andN2, respectively, for each genotypedj fromR1, define Sj to be all the

genotypes from R2 (reachable from dj through the graph); the problem

can be stated as the maximal coverage of R1 by the union of the Sj.
2.4 Optimal coverage

Linear programming: This problem can be formulated as an

LP problem (47): xj is a binary flag that represents whether a donor

with genotype dj was chosen in the cover (r1). yi represents whether

patient genotype gi is covered by r1. We define a loss function

Loss =oxj, (1)

and minimize it subject to:

o
i∈N2

diyi = P (2)

o
gi∈Sj

xj ≥ yi (3)
TABLE 1 Continued

Key Published Trials of Allogeneic Immune Effector Cell Therapy

Reference Disease
Indication Methodology

Cell type HLA constraints Target/Manufacturing N

Vickers et al.
(37) and Kazi
et al. (38)

Primary
immunodeficiency
with EBV pre-
HCT; PTLD or
EBV after HCT or
SOT

T cells Maximize HLA class I and II matches, then minimize the number of
mismatches.

Sensitization by EBV-BLCLs

Chiou et al.
(39)

PTLD after SOT T cells Maximize HLA match (pre-2005—out of 6 loci; post-2005—out of 10 loci) Sensitization by EBV-BLCLs

Fabrizio et al.
(40)

CMV after HCT T cells Not explicitly stated Peptide stimulation: 15-mer
overlapping peptides spanning
pp65

Jiang et al.
(41)

CMV, EBV after
HCT

T cells Maximize the number of HLA matches with antiviral activity through shared
HLA antigen(s), out of 6. Secondary preference to the product with the
highest proportion of virus-specific responses through shared allele(s).

Peptide stimulation: pp65 and
EBV consensus peptides. Then,
CD137+ cells were selected and
sensitized in culture by peptide-
pulsed CD137− cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1069749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Israeli et al. 10.3389/fimmu.2023.1069749
yi ∈ ½0, 1� (4)

xj ∈ ½0, 1� (5)

Integer linear programming: For ILP, replace the last two with:

yi ∈ 0, 1f g (6)

if yi = 1, then gi is covered.

xj ∈ 0, 1f g (7)

if xj = 1, then Sj is selected for the cover.

Greedy algorithm: The greedy algorithm (48) at each iteration

chooses set v½i� that contains the maximum weight of uncovered

elements until the wanted percentage is covered.
3 Results

3.1 Optimal coverage

To estimate the optimal population coverage for populationR2 that

can be obtained using a set of donor cells from population R1 (that can

be the same or different populations), one can compute a coverage

problem. Each person i in population R2 is characterized by an HLA

genotype gi and a probability pi that represents the number of patients

whomay require treatment (or a preference)whoseHLAgenotype is gi.

The goal is to find a minimal subset of donors from population fdj ∈
r1 ⊂ R1g, such that the fraction of the population inR2 that can receive
a treatment from them is maximal. We can define for each donor j the

set of all patients who can receive a treatment from this donor Sj.

Formally, we try to find the subset r1 that maximizes:

max(o
i
pijgi ∈ Sj, dj ∈ r1) (8)

Note that the same person can receive treatments from different

donors, such that different Sj may overlap. The definition of Sj is

determined by the treatment proposed, and may differ drastically

between treatments. We have tested three protocols, with large
Frontiers in Immunology 06
differences between the resulting optimal number of donors

depending on the treatment.
1. The donor is KIR-Bw4mismatched to the patient and requires

a full match in class 2, while no match is required in class 1.

2. The donor and the patient have a maximal match at the

HLA-A and HLA-B loci. The patient and the donor must

both have A*02:01 and the donor must not be homozygote

in any HLA allele shared with the patient.

3. All A, B, C, DRB1, andDQB1 alleles that appear in the donor

should also be in the patient. The opposite does not have to

happen. For example, the donor may be homozygous at a

locus where the patient is heterozygote. In the case of

mismatch, a knockout for one of the donor alleles can be

performed, but at a high cost (which is equivalent to using

more donors with no knockout). In this case, we aim at

optimizing the cost and not the total number of donors.
To compute the optimal donor set for large populations, one

must first compute efficiently the coverage of each donor (Sj) and

then solve the optimization problem. We propose novel

solutions for each stage. The Sj computation is performed

through an extension of the GRIMM graph matching

Maiers et al. (46). The second is solved through a linear

programming problem.
3.2 Optimal coverage computation

We developed a graph-based algorithm to solve the following

problem: Given a set of patients, each with a genotype gi, a

donor with a genotype dj, and 2 mismatch rates, a and b, we look

for the set of patients who have at most a mismatches in class 1

and b mismatches in class 2. The genotypes covered can be

obtained through a traversal in that graph (see Section 3.3

and Figure 1).
FIGURE 1

Example of graph creation. Here, we allow one mismatch in both class 1 and class 2. For the donor genotype (dark blue) and the patient genotype
(pink), a sub-node of class 1 and class 2 (gray-blue nodes) was created, and then the sub-node of class 1 minus 1 and class 2 minus 1 (white nodes)
was created. Each sub-node was connected to the corresponding genotype nodes. The dashed gray edge shows that the white node is a sub-node
of the gray-blue node, but those edges do not exist in the graph. If there exists a path between two nodes that passes through class 1 sub-nodes
and through class 2 sub-nodes, then those nodes cover each other. Here exist two paths (the dashed path).
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Given the coverage obtained by the graph, one can solve the

optimization problem in Eq. 1 using four possible methods.
Fron
• A greedy solution, where, at each stage, the donor j provides

the largest coverage of the remaining population.

• A linear programming (LP) solution, where a GPLK

algorithm (49) is used. The LP provides partial fraction

for each donor. As such, it cannot be used in practice (since

one cannot take half a donor). This solution is an upper

bound for the optimal solution. We further show that the

greedy and ILP results are similar to the LP.

• Integer linear programming (ILP). We used the CBC

algorithm (50). This is the best theoretical solution.

• The random choice of donor. We computed the average

coverage of five random choices of N donors.
3.3 Scenarios

3.3.1 Scenario 1: NK cell therapy
An off-the-shelf NK cell therapy is being developed to treat

myeloid malignancies, as in Lamb et al. (51). It is hypothesized that

if the patient is missing a ligand (HLA) for which the donor

possesses the cognate KIR, some donor NK cells may be

uninhibited upon contact with malignant cells, improving the

donor-vs-leukemia effect. It is further hypothesized that

maximizing the class 2 HLA matching will improve donor cell

persistence. The limitations on the donors in this scenario are

as follows:
1. Donor is KIR-ligand mismatched to the patient.

2. Full match in class 2.

3. Six mismatches can be allowed in class 1.
For the KIR mismatched limitation, we used Bw4 expressed on

HLA A or B with 0–4 appearances. Two genotypes match in KIR if

both have the same epitopes (regardless of the number of

occurrences of each one). For class 2, we demanded no mismatch.

We computed the optimal coverage using a random choice, and

compared it to the different optimizations (greedy algorithm, LP, and

ILP) on a population of 100,000 patients and the same 100,000 donors,

and required a coverage of at least 50% of the population. The greedy

and ILP algorithm found similar minimal sets (Table 2), which are six

times smaller than the random. We also compared how many

genotypes are needed to cover different fractions of the population

by the greedy and random choice (Figure 2A). We further compared

the number of donors required to cover the population in the four

algorithms for different populations sizes: 300, 1K, 3K, 10K, 30K, 100K,

300K, and 1M (Figure 2B). In large populations, the random solution

requires more donors, whereas in the other algorithms, the number of

donors required actually decreases with the patient population size. In

a larger population, there is a greater chance offinding rare donors that

match multiple patients, and thus fewer donors are actually needed.

The patient population may be more heterogeneous, but we aimed to
tiers in Immunology 07
cover 50%, the algorithm. Thus, missing rare patients has a smaller

effect than finding better donors. On the other hand, the number of

donors required to cover an additional percent of the patient

populations increases as more coverage is required. While 10 donors

can cover 10% of the population, 40 donors are required to cover 40%

(Figure 2C). For small populations, the runtimes of the greedy

algorithms and ILP are similar. For large populations, ILP

resolves faster, but for populations above 30,000, the ILP algorithm

fails to converge following inherent limitations of the ILP

algorithm (Figure 3A).

3.3.2 Scenario 2: Neoantigen-specific TCR
T-cell therapy

A clinical bridge-to-transplant trial is open for patients with

relapsed acute leukemias. Following chemotherapy, patients will

receive off-the-shelf transduced TCR T-cell products specific for

immunogenic leukemia-associated epitopes presented on HLA-

A*02:01, such as p53 R175H (52) and WT37−45 (53). The limitations

in this scenario are as follows:
1. The donor and the patient must both have HLA-A*02:01.

2. To minimize the risk of intractable GvHD, the TCR T-cell

donor must not be homozygous at any HLA allele shared

with the patient.

3. To minimize the risk of “too prompt” a rejection of the

TCR T cells by patient NK cells, the donor and the patient

should be matched as much as possible at HLA-A and

HLA-B.
Only genotypes with HLA-A*02:01 were included in the graph.

If dj is homozygote in any HLA allele, then we removed from Sj all gi
with those alleles. The graph was changed to contain sub-nodes of

HLA-A and HLA-B instead of nodes of all class 1; sub-nodes of class

2 were removed.

For limitation 3, we implemented the greedy algorithm to find

at least three matches with a priority to four, defined as a constant

called Prior4. Assume patient genotypes of gi; in each iteration, we

want to choose the donor genotype dj that maximize:

Loss = (opi*Prior(i)jgi ∈ Sj) : (9)

If the number of matches between gi and dj in HLA-A and

HLA-B is 4, then Prior(i) = Prior4, else Prior(i) = 1.

Since one of the requirements of this scenario is to maximize the

matches at HLA-A and HLA-B between the donors and patients, we

tested how many donors are required for a full match in A and B, or

for a match of at least three out of four. We used again the greedy,

random, LP, and ILP algorithms. Beyond that, we implemented the

greedy algorithm to find at least three matches with different

priorities to four, as a function of Prior4.

We tested the four algorithms on a population of 100,000

patients and the same 100,000 donors; 24.956% of the population

had at least one copy of A*02:01. We thus looked for a more limited

coverage of at least 15% of the total population. For a match of

three, the ILP failed to find a solution. The performance of the

greedy with the priority to four provided a better solution compared
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to the regular greedy, the addition of three genotypes to cover a

greater number of four matches. For a required full match in A and

B, the greedy performance is equal to the ILP and LP, but much

more genotypes are needed (more than 50 time more) compared

with the model with only three out of four matches required in A
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and B or with the softer model where a preference is given to four

matches (Table 3).

We also compared how many genotypes are needed to cover

different fractions of the patient population by the greedy and

random choices (Figure 2D). In addition, we compared all the
B C

D E F

G H I

A

FIGURE 2

Coverage in different models. For each scenario described in the text, we checked how many donors are needed to cover the total population. Each
row is a different scenario. (A, D, G) The cost to cover the given percentage from the population of size 100K (x-axis) using two algorithms: greedy
and random choice. In G, options for random choice included the full genotype or knockout genotypes in each iteration (“Random”) or only full
genotypes (“Random - full”). (B, E, H) How many genotypes are needed to cover 50% (B), 15% (E), and 40% (H) of differently sized populations
represented on the x-axis on a log scale. The y-axis is on a log scale in (H). (C, F, I) The number of genotypes needed (y-axis) to cover × percentage
of the population (x-axis) in three different population sizes: 10K, 100K, and 1M.
TABLE 2 Scenario 1. Comparison of four algorithms: random, greedy, LP, and ILP, to cover 50% from a population of 100K patients by 100K donors,
where the patient population and the donor population are identical.

Percentage of population covered The number of genotypes needed Runtime (sec)

Random 50.150.21 306.617.33 6

Greedy 50.03 65 1079

LP 50 63.67 202

ILP 50 65 154
The comparison includes how many genotypes are needed to cover 50% of the patient population, and the runtime of each algorithm.
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algorithms for different populations sizes: 300, 1K, 3K, 10K, 30K,

100K, 300K, and 1M (Figure 2E). The greedy performances are

close to ILP and LP. Except for the randommodel, in all models, the

number of required donors stabilizes between 1,000 and 10,000

patients (at less than 30 donors). The number of required donors is

not affected by the population size for all coverage fractions tested

(Figure 2F). For the one mismatch case, the runtime of the greedy

algorithm is lower than the ILP, since we require a low coverage of

the pat ient populat ion, and i t converges us ing less

iterations (Figure 3B).

3.3.3 Scenario 3: Polyclonal T-cell infusion
A clinical trial of alpha/beta depleted T-cell therapy for various

malignancies (not post-HCT) is planned, as in NCT05001451 and

others reviewed in Saura-Esteller et al. (54), and the risk of clinically

significant GvHD with this product is deemed to be low. However,

the researchers seek to maximize HLA matching as they

hypothesize that this will increase donor T-cell persistence and

the ability to respond to the cross-presentation of tumor-associated

antigens, and improve efficacy. They are able to knock out single

HLA alleles using gene editing, but it is expensive. They seek to
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identify the most cost-efficient way to build the cell product bank:

Recruit more donors or remove mismatched HLA loci? The

limitations in this model are that all alleles that appear in the

donor should also be in the patient, with two options:
1. Full 10/10 HLA match (A, B, C, DRB1, and DQB1).

2. Knockout for one of the donor alleles, and match between

the nine other alleles between the donor and the patient. A

knockout solution costs like CostKOregular donors (CostKO
is a constant parameter). Formally, we minimize
Loss = (oxj*COSTj) (10)

If xj represents a full genotype, then COSTj = 1, else
COSTj = CostKO + 1.
We want to minimize the total cost for a given coverage of the

patient population.

In the graph, we added all nine allele combinations of each

donor genotype and created nodes similar to the full genotype

nodes, extended to the class 1 and 2 nodes similarly. In this graph,

the set R1 is larger than the number of donors (since we typically
TABLE 3 Scenario 2. Comparison of four algorithms: random, greedy, LP, and ILP, to cover 15% from a population of 100K patients by 100K donors,
where the patient population and the donor population are identical.

Match Prior4 Population covered 4 matches 3 matches Genotypes needed Runtime

Random 3M – 15.08 ± 0.08 387.4 ± 109.4 14,695.9 ± 139.4, 96.1 ± 5.7 1.5

Greedy 3M – 15.035% 502 14,533 26 83

Greedy 3M 2 15.007% 522 14,485 26 109

Greedy 3M 10 15.1% 1124 13,983 29 98

Greedy 3M 100 15.014% 1191 13,823 29 109

LP 3M – 15% 2,433.34 12,566.66 24.61 34

Random Full – 15 ±0.002 15,000 ± 2.2 – 5,752.2 ± 104.73 2

Greedy Full – 15% 15,000 – 1,565 310

LP Full – 15% 15,000 – 1,565 20

ILP Full – 15% 15,000 – 1,565 23
fro
The comparison includes how many genotypes are needed to cover 15% of the patient population, and the runtime of each algorithm. Match— number of at least matches at HLA-A and HLA-B.
Prior4 —the priority size for a full match at A and B. Population covered—Percentage of population covered. 4 matches—number of genotypes in the cover, with 4 matching in HLA-A and HLA-
B (the same for three matches). Genotypes needed—the number of genotypes needed for this cover.
B CA

FIGURE 3

Comparison between runtime of IP and greedy algorithms. The graphs show the effect of the population size on the runtime, in each of the scenarios: (A)
Scenario 1, (B) Scenario 2, (C) Scenario 3. In scenarios 1 and 2, the IP could not converge when populations were too large (the missing dots).
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added 10 more nodes per donor). We thus improved the

performance by connecting each node in R1 directly to matched

nodes from R2. In this scenario, the ILP is faster than the greedy and

it always converges (Figure 3C).

In the greedy solution, at each iteration, we find the knockout

genotype that covers the maximum number of patients (SK ). Then,

we find how many full donors (NG) are needed to cover at least such

a number of patients. The total number of patients covered by the

NG donors is SF >= Sk. If the average cost If the average cost of a

patient coverage by a knockout ( SK
CostKO+1

) is smaller than the cost of

a patient with a regular donor ( SF
NG
), we choose the knockout

solution for this iteration, else we choose the full genotype solution.

Using the greedy algorithm, we tested how many full genotypes

and knockout genotypes are needed to cover 25% and 40% from

populations in size 50K and 100K when the knockout price is 5- and

10-fold the full genotype. When the price is higher by 10-fold, the

knockout does not pay off (Table 4). We compare the greedy and the

random choice, when the random can choose full genotype or

knockout genotype in each iteration, and when the random can

choose only full genotypes. As mentioned, the greedy chose only full

genotypes. Full genotypes are preferable when the cost is equal to 10-

fold (Figure 2G). For a coverage of 40% of the population, the greedy

always chooses full genotypes while the ILP chooses a few knockout
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genotypes that grew with the population size (Table 5), but in

comparing the four algorithms, it can be seen that the greedy LP and

ILP have a similar performance while the random choice is very

expensive (Table 6). Also, as the population size increases, so does the

number of genotypes needed (Figure 2H). The last also occurs for

coverage of less than 40%. For cost equal to 10-fold, we check the

number of genotypes needed to cover each percentage from the

population for populations of size 10K, 100K, and 1M. It can be

seen that for a small percentage of the population, one genotype can

cover a greater number of genotypes and therefore the ratio between

the number of genotypes that cover and genotypes successfully covered

increases as the percentage of the population increases (Figure 2I). All

the above-mentioned genotypes are for a donor population identical to

the patient population, where, in general, the knockout yields less

payoff, but when the populations are different, from a certain

percentage of population coverage, full genotypes cannot be matched

and the knockout solution must be used (Table 5).

3.3.4 Cross-population cellular therapy bio-bank
While there are differences between populations, the optimal

donor group is a small group that may actually be shared between

populations. To test for that, we examined the impact of using

different populations for the donors and the patients. In all
TABLE 4 Scenario 3. Greedy algorithm outcomes of different combinations of population size, price, and percentage of the population to cover.

Population size Price Population covered Total genotypes number Knockout genotypes number

50K 5 25% 2,106 1

50K 5 40% 6,315 29

50K 10 25% 2,116 0

50K 10 40% 6,472 0

100K 10 25% 2,406 0

100K 10 40% 8,339 0
Price—By how much the price of a knockout is greater than a full genotype. Population covered—Percentage of population covered. Total genotypes number—the number of knockouts and full
genotypes that need to cover. Knockout genotypes number—the number of only knockout genotypes that participate in the cover.
TABLE 5 Scenario 3. ILP outcomes of different population sizes to cover 40% of the patient population, for identical donor and patient populations,
compared to different donor and patient populations. where the cost of full is 1 and knockout is equal 10 + 1.

Size Identical populations Different populations

Total Cost Knockout Full Total Cost Knockout Full

300 117 0 117 1,240 112 8

1K 367 0 367 3,794 343 21

3K 1,001 0 1,001 8,866 797 99

10K 2,761 0 2,761 14,578 1278 520

30K 5,470 2 5,448 9,784 532 3,932

100K 8,321 16 8,145 9,147 58 8,509

300K 10,726 33 10,363 10,729 37 10,322
frontie
Full—the number of full genotypes that need to cover. Knockout—the number of knockout genotypes that need to cover. Total Cost— 11 · Knockout + Full.
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simulations, the donor population is a fixed 1 million donors from

the US, and the patient populations are set in different sizes from the

Israeli population (as described above). For random donor selection,

donors and patients from different populations require many more
Frontiers in Immunology 11
donors to cover the same patient fraction. In contrast, optimal

selection algorithms solve the coverage with a similar number of

genotypes as required for donors and patients from the same

population in all scenarios tested (Figure 4).
B C

D E F
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FIGURE 4

Optimal and random solutions when the donor population is 1 million US donors and the patients are from Israel. All plots are equivalent to Figure 2.
Each row is a different scenario: upper row - Scenario 1, middle row - Scenario 2, and lower row - Scenario 3. (A, D, G) The cost to cover the given
percentage from the population of size 100K (x-axis) using two algorithms: greedy and random choice. (B, E, H) How many genotypes are needed
to cover 50% (B), 15% (E), and 40% (H) of differently sized populations represented on the x-axis on a log scale. The y-axis is on a log scale in (H). (C,
F, I) The number of genotypes needed (y-axis) to cover × percentage of the population (x-axis) in three different population sizes: 10K, 100K, and
1M. While there is a large difference in the number of random donors required (much more here than in Figure 2), the number of optimal donors is
practically the same. The difference is especially large in Scenario 3. Note that for 1M patients, LP and ILP failed due to memory problem, and for
100K and 300K patients, the ILP did not converge.
TABLE 6 Scenario 3. Comparison of four algorithms: random, greedy, LP, and ILP, to cover 40% from the population of 100K patients by the same
100K donors.

Cost Knockout Runtime
(s)

Random 191,000 ± 5,462 15,928 ± 480 500

Greedy 8,339 0 12,600

LP 8,321 13 485

ILP 8,321 16 484
Knockout—the number of knockout genotypes that need to cover. Cost-11 Knockout + number of full genotypes.
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4 Discussion

The optimal size of donor cell banks is a matter of practical

interest. For example, the group at Baylor College ofMedicine created

a bank of 32 multivirus-specific cell products (transduced with the

Ad5f35pp65 vector), of which 18 cell lines were used to treat 50

patients (22). Westmead Hospital created a bank of 31 multiantigen-

expanded, multivirus-specific cell products, of which 15 were used to

treat 30 patients (21). Memorial Sloan Kettering created a bank of 330

EBV-specific T-cell lines (stimulated with EBV-transformed B-

lymphoblastoid cells) and 125 CMVpp65-specific T-cell lines

(licensed to Atara Biotherapeutics) (31, 55). Donors for the EBV-

specific cell bank were recruited to represent 40 common class 1 HLA

alleles that can restrict EBV epitopes. The bank was estimated to

cover 95% of the New York population. By contrast, to treat EBV-

related post-transplant lymphoproliferative disorders, the Scottish

National Blood Transfusion Service performed a simulation using

HLA typing from 200 donors from Auckland targeting 304 patients

from the East of Scotland renal transplant waiting list, aiming to

maximize the number of HLA class 1 and 2 matches and minimize

the number of mismatches. Fifteen donors could cover 57% of the

patient population and 25 donors could cover 85%, but adding more

donors did not significantly increase the coverage. Therefore, the

panel size chosen was only 25 (37). In practice, among issued

products, there was a median of 3 class 1 matches (range 0–6), 2

class 2 matches (range 0–4), and 5 overall matches (range 2–9) out of

10 loci considered. Clinical responses were positively correlated with

number of HLA matches, with 100% of patients with matches at 8 to

10 (of 10) HLA loci responding (38).

These experiences show the wide variety of cell bank building

approaches. Our approach facilitates transparency about donor

selection and consequently might contribute to reproducibility of

outcomes when the “same” products are used in different

populations. We recognize that many factors impact the efficacy

of off-the-shelf treatment—such as whether the patients are on

immunosuppression, the tumor burden, tumor immunogenicity,

the presence of particular T or NK cell subsets in the infused

product, and the construct of synthetic components. Insofar as HLA

match may also impact efficacy, we offer a tool for rationally sizing a

bank. These algorithms can readily accommodate additional

factors. For example, the bank size can be adjusted to account for

the distribution of virus-specific activity in the donor population.

For example, seropositivity for CMV (as indicated by CMV IgG)

varies widely by age group and geography (56). If the manufacturer

is seeking CMV+ donors and knows, for example, that the CMV

seroprevalence in the donor pool is 60%, the model could be run

with simulations where each potential donor has a 60% chance of

being CMV+ and hence being eligible. Similar considerations apply

to adjusting the bank size for the rate at which the fully

manufactured product fails the release criteria.

An important aspect studied here is the difference between the

donor and patient populations. We have shown that when the

optimal donors are selected, the number of donors is not

significantly affected by differences between the donor and patient

populations. This is partly because the algorithms allow rapid
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identification of the “rarer” donors in the pool who meaningfully

increase population coverage, whereas random selection of donors

is more likely to select “redundant” donors. Another approach

would be to run the algorithm separately for small populations of

rare patient genotypes and thus ensure at least a partial coverage.

The algorithms led to a fairly constant number of donors

necessary with a population size of about a 100K, even in

scenario 3 where it took a somewhat larger population to reach a

stabilized number of donors. However, with a random sample, it is

much longer until a stable number of donors is reached, if ever.

The current solution is a coverage problem and is not sensitive

to the details of the required coverage. We have recently extended

the GRIMM, a matching algorithm (46), to allow multiple

mismatches. We can use this algorithm to allow for such

mismatches. Also, an interesting extension would be to solve the

maximum with a constraint that a given sub-population is covered

at some fraction.

One aspect of allogeneic cell therapies that we did not address is

the possibility of antibody mediated rejection of cells by the patient.

The patient may become alloimmunized to foreign HLA through

pregnancy or blood transfusions (57). The effect of donor-specific

antibodies in HCT (57) and in solid organ transplant (58) is well-

studied, but humoral rejection of allo-IECT is not. If it is found to

occur frequently or to undermine efficacy; in future work, we could

incorporate models of patient alloimmunization that can differ by

disease and other demographic factors.

We have simulated a small number of possible scenarios and

compared different solutions for the same scenario. In the majority of

reported studies, the number of treated individuals is small, and the

protocol for choosing donors is not reported. The computational speed

and flexibility of the approach presented here will enable better

standardization of allo-IECT to elucidate the impact of HLA

matching and additional donor-related factors, as both sets of

variables can be taken into account in designing the composition of

IECT banks. Our approach will enable scaling of current and future

studies to the full population using the smallest number of donors, and

enable registries like the NMDP to efficiently identify an optimal set of

donors for each allo-IECT trial they support.

The code for this analysis is available at https://github.com/

sapiris/CAR cells optimization.
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