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Institute (LIMES), University of Bonn, Bonn, Germany, 5Nitte University Centre for Science Education and
Research (NUCSER), Nitte (Deemed to be University), Mangalore, India
Both gene expression and protein concentrations are regulated by genetic

variants. Exploring the regulation of both eQTLs and pQTLs simultaneously in a

context- and cell-type dependent manner may help to unravel mechanistic basis

for genetic regulation of pQTLs. Here, we performed meta-analysis of Candida

albicans-induced pQTLs from two population-based cohorts and intersected the

results with Candida-induced cell-type specific expression association data

(eQTL). This revealed systematic differences between the pQTLs and eQTL,

where only 35% of the pQTLs significantly correlated with mRNA expressions at

single cell level, indicating the limitation of eQTLs use as a proxy for pQTLs. By

taking advantage of the tightly co-regulated pattern of the proteins, we also

identified SNPs affecting protein network upon Candida stimulations.

Colocalization of pQTLs and eQTLs signals implicated several genomic loci

including MMP-1 and AMZ1. Analysis of Candida-induced single cell gene

expression data implicated specific cell types that exhibit significant expression

QTLs upon stimulation. By highlighting the role of trans-regulatory networks in

determining the abundance of secretory proteins, our study serve as a framework

to gain insights into the mechanisms of genetic regulation of protein levels in a

context-dependent manner.
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Introduction

Genome-wide association studies (GWAS) have successfully

identified tens of thousands of associations between single

nucleotide polymorphisms (SNPs) and human diseases. Correlating

these GWAS SNPs with molecular traits (QTLs) such as gene

expression (eQTLs) is a commonly used strategy to prioritize causal

genes. This is partly due to the robustness of RNA-sequencing

technologies and the feasibility of eQTLs to provide insights into

the molecular mechanisms of genetic variants associated with

complex diseases (1). The majority of the eQTL studies have made

use of RNA extracted from whole blood and analyzed using bulk

RNA-sequencing approaches to unravel disease biology. However,

this approach is limited in identifying a genetic variant’s cell-type-

specific and context-dependent impact on gene expression levels (2,

3) or causal cell types of a particular disease.

In addition to eQTLs, protein quantitative trait loci (pQTLs) are

also important molecular traits to understand GWAS findings.

Circulating plasma proteins play essential roles in various biological

process such as signaling and defense against infections but also, the

dysregulation of proteins themselves lead to various diseases and are

mostly the targets for therapeutic interventions (4). Proteins provide

the closest link to phenotypic traits as being the ultimate product of

transcripts. Given that not all RNA alterations lead to functional

changes, studies of genetics regulation at protein level are warranted.

By making use of secretory protein and genotype data from 30,931

samples, a recent pQTL study (5) showed that approximately 29% of

the pQTLs are also GWAS SNPs. Also, pQTLs can be tissue- and

context-specific. For example, SNPs affecting cytokine production

upon ex-vivo blood stimulation were shown to overlap with SNPs

associated with infectious and inflammatory diseases (6). However,

which specific cell type is contributing to the production of these

secretory proteins is unclear. In addition, by examining the

relationship between pQTLs and eQTLs, previous studies have

demonstrated the disparity of genetic variants associated with

mRNA expressions and protein abundances as summarized by a

minireview (7), and a recently published study affirms this

observation with substantial difference between pQTLs and eQTLs

where only 32% of the index eQTLs variants were replicated in pQTLs

(8). While previous studies examining the extent of overlap between

pQTLs and eQTLs extensively explored steady-state conditions, the

degree to which these findings are replicated in stimulated conditions

remain elusive.

Proteins constitute the largest class of drug targets and thus, the

identification of disease-mediating candidate proteins is crucial to

bridging the gap between human diseases and the genome (9).

However, the proportion of pQTLs mostly overlapping with known

disease-associated loci is very limited with percentages as low as 29%

(5) and 12% (10) observed in previous studies. Studying pQTLs in the

right context could provide more explanation of the link between

genetics and diseases as well potential targets for treatment. To tackle

these challenges, in this study, we first aimed to identify pQTL

variants upon ex-vivo Candida albicans stimulation in two

independent European cohorts. Secondly, we combined the pQTLs

identified with cell-type-specific eQTLs upon Candida albicans

stimulation to prioritize genes at the genomic regions regulating the

protein abundances. This study provides deeper insights into the
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genetic basis underlying variations in Candida-stimulated protein

abundance as we identified pQTLs through meta-analysis which

colocalized with cell-type-specific cis-eQTLs.
Materials and methods

Study populations

The 500FG cohort of healthy individuals of Western European

ancestry comprises of 237 males and 296 females with age range of 18

to 75 years, being part of the Human Functional Genomics Project,

HFGP (www.humanfunctionalgenomics.org ).

The 1M-scBloodNL cohort comprises of 120 individuals, 53

males and 67 females between 27 to 78 years. This cohort is part of

the Lifelines DEEP cohort, a prospective population cohort of

participants from the northern Netherlands (11).
PBMC isolation and Candida albicans
stimulation experiments

500FG cohort
Peripheral blood mononuclear cells (PBMCs) collection has been

previously described (6). With informed consent, venous blood was

drawn from the cubital vein of study participants into 10mL EDTA

Monoject tubes (Medtronic, Dublin). The fraction of PBMC was

obtained by density centrifugation of EDTA blood diluted 1:1 in

pyrogen-free saline over Ficoll-Paque (Pharmacia Biotech, Uppsala).

Cells were washed twice in saline and suspended in medium (RPMI

1640) supplemented with gentamicin (10 mg/mL), L-glutamine (10

nM) and pyruvate (10mM). The cells were counted in a Coulter

counter (Beckman Coulter, Pasadena) and the number of was

adjusted to 5 x 106 cells/mL. A total of 5 x 105 PBMCs were added

in 100 ul to round-bottom 96-well plated (Greiner) and incubated

with 100 uL of stimulus (heat-killed Candida albicans yeast of strain

ATCC MYA-3573,UC 820, 1 X106/mL or RPMI 1640 as previously

described (12).

1M-scBloodNL cohort
PBMCs from 120 volunteers were isolated and stimulated as

previously described (13). Briefly, we used Cell Preparation Tubes

with sodium heparin (BD) to isolate PBMCs, which were

cryopreserved until use in RPMI1640 containing 40% FCS and 10%

DMSO. After thawing and a 1h resting period, unstimulated cells

were washed twice in medium supplemented with 0.04% BSA and

directly processed for scRNA-seq. On the other hand, for stimulation

experiments, 5x105 cells were seeded in a nucleon sphere 96-well

round bottom plate in 200 ul RPMI1640 (supplemented with 50 ug/

mL gentamicin, 2 mM L-glutamine and 1 mM L-glutamine and 1mM

pyruvate). The cells were stimulated with 1x106 CFU/ml heat-killed

Candida albicans blastoconidia (strain ATCC MYA-3573, UC 820),

50 ug/ml heat-killed M. tuberculosis (strain H37Ra, In vivogen) or

1x107 heat-killed P. aeruginosa (In vivogen) for 3h or 24h, at 37˚C in a

5% CO2 incubator. After stimulations, cells were washed twice in

medium supplemented with 0.04% BSA. Cells were then counted

using a haemocytometer, and cell viability was assessed by Trypan
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http://www.humanfunctionalgenomics.org
https://doi.org/10.3389/fimmu.2023.1069379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Boahen et al. 10.3389/fimmu.2023.1069379
Blue. While scRNA-seq data was generated for all the above-

mentioned stimulations, Olink data was generated for only Candida

albicans stimulation.
Measurement of inflammatory proteins

Inflammatory protein concentrations were measured using

Olink® proteomics platform. In fact, supernatants were collected

after 24h of Candida albicans stimulation and submitted to Olink

Proteomics for analysis using the inflammatory panel assay of 92

analytes. Olink data are presented as Normalized Protein eXpression

values (NPX, based on log2 scale). Immunoassays utilized by Olink

are based on the Proximity Extension Assay (PEA) technology (14),

which makes use of oligonucleotide-labeled antibodies binding to

their respective protein. When the two antibodies are brought in

proximity, a DNA polymerase target sequence is formed, which is

subsequently quantified by quantitative real-time polymerase chain

reaction (qPCR).
Preprocessing/filtering of protein data
and normalization

Filtering of Olink generated data was restricted to only Proteins as

the samples passed Olink internal quality control across all proteins.

We excluded all proteins which failed to be quantified in at least 85%

of the samples, meaning all proteins with more than 15% samples

missingness (NPX value below the protein-specific limit of detection

(LOD) value) were excluded from downstream analysis. The

remaining Proteins with NPX values below the LOD were replaced

with protein-specific LOD values.

Following per-protein cleaning, 42 and 35 proteins were available

for the 1M-scBlodNL and 500FG cohorts respectively (Figure S1A).

Out of these proteins, 26 were common between both cohorts.

The protein distributions on log2 scale were not normally

distributed (Figure S1B). We applied rank-based inverse normal

transformation as implemented in the GenABEL R package (15), to

transform the data to mimic Gaussian distribution (Figure S1C).
SNP genotyping, quality control
and imputation

The procedures for genotyping, genetic data filtering and genotype

imputation of the 500FG cohort had been previously described (6).

Extracted DNA was genotyped using the commercially available SNP

chip, Illumina HumanOmniExpressExome-8 v1.0. Following pre-

imputation filtering steps for both markers and individuals, the

remaining dataset SNP genotypes were imputed with GoNL as

reference panel (16).

For Lifelines Deep cohort, genotyping and imputation was

performed as previously described (17). Both the HumanCytoSNP-

12 BeadChip and the ImmunoChip platforms (Illumina, San Diego,

CA, USA) were used to genotype the isolated DNA. Independent

markers quality control was performed for both platforms and

subsequently merged into one dataset. After merging, genotype
Frontiers in Immunology 03
SNPs were imputed using IMPUTE2 (18) against the GoNL

reference panel.
Correlation analysis

Pairwise Pearson correlation analysis using the ‘corrr” R package

was performed on the normalized protein abundances after adjusting

for age and sex. Based on Pearson’s correlations for each pair of

proteins, co-expression protein networks were reconstructed (using

significant correlation coefficient threshold of 0.7, (absolute(r) > 0.70),

a cut-off denoting a very strong strength of association.
Identification of pQTLs after Candida
albicans stimulation

The association analysis of genotype-phenotype correlation was

carried out using two main approaches. In the first method, the

univariate approach was performed using the linear regression in

PLINK (19). The pQTL analysis was conducted independently for

both cohorts, that is one analysis for the 1M-scBloodNL and another

for 500FG cohorts. In the second method, multivariate test of

association based on canonical correlation analysis (CCA) (20), was

conducted. CCA extracts the linear combination of highly corrected

traits that explain the largest possible amount of the covariation

between genetic variants and all traits (Proteins in this case). To

control for potential confounding factors, we adjusted for covariates

such as age and sex on normalized protein abundances and, regressed

the residuals of each protein and protein network on SNP genotypes.
Meta-analyses

Summary statistics from both primary studies were utilized to

perform meta-analyses.

Association results for both the 500FG and 1M-scBloodNL

cohorts obtained from the univariate approach were combined

using the weighted sum fixed-effect model as implemented in the

METAL software program (21). The multivariate approach

implemented in PLINK does not compute beta estimates and

standard errors. Therefore, the meta-analysis of the multivariate P-

values was carried out using sum of z (Stouffer’s) method as

implemented in the metap R package (22).
Genetic colocalization analyses

Colocalization analysis of cell-type-specific cis-eQTL and pQTL

signals was conducted using Bayesian colocalization method which is

implemented in the coloc package in R (23). We retrieved the

genome-wide cell-type-specific cis-eQTL summary statistics from a

previously published study using the 1M-scBloodNL cohort (13).

Additionally, we performed trans-eQTL mapping only for the top

pQTLs to ascertain their trans-eQTL effect. The eQTLs from this

study were identified using PBMCs in an unstimulated condition as

well as after 3h and 24h in vitro-stimulations with three different
frontiersin.org
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pathogen stimulations, namely Candida albicans, M. tuberculosis and

P. aeruginosa. Cis-eQTL was defined as SNP-gene distance of 100kb

window and FDR < 0.05. However, for overlap comparison with

pQTLs, we re-tested the relevant SNPs to ensure that SNPs outside

the defined cis-region are included.

From our pQTL mapping results, we selected the index variants

(SNPs with the smallest P value) for each protein and extracted all

variants within a window size of 1Mb around the index pQTL variant

for further analysis. The default prior probability (1x10-6) that a

random variant in the region is causal to both traits was applied. A

posterior probability (PP4 >= 0.75) is considered as strong evidence of

colocalization. LocusCompareR, being an R package was used for the

visualization of results (24).
Results

Identification of protein quantitative trait
loci (pQTL) in univariate manner

To identify SNPs associated with the concentration of specific

proteins induced upon 24h Candida albicans stimulations, pQTL

analysis was performed in two independent population-based

cohorts. A total of 445 participants (500FG (N= 325) and 1M-

scBloodNL (N=120) cohort) were studied for whom both genotype

and Olink protein abundances were measured upon ex vivo 24h

Candida albicans stimulation of their PBMCs (Figure 1). After

genotype imputation and quality control, 4,095,761 SNPs and 26

inflammatory proteins remained that were common between both

cohorts and that were used as input for the pQTL analysis. The

protein data for both cohorts were generated in different batches.

Therefore, pQTL analysis was run in each cohort separately, after

which results (Figure S2) were integrated using meta-analysis to

increase statistical power. We identified a genome-wide significant

cis-acting pQTL variant rs484915 (P value = 1.81x10-8) on

chromosome 11 correlating with MMP-1 production (Figure 2A;
Frontiers in Immunology 04
Table 1). In addition, the other top SNPs correlating with the

remaining 25 proteins were trans-acting pQTLs with strong

suggestive associations (P value > 5.0 x10-8 to 5 x10-6). For

example, the second most significant hit aside the genome-wide

significant cQTL, is an intronic SNP rs62205465 residing in the

ZNF133 locus and exhibited an association strength closed to the

genome-wide significant threshold (P value = 5.80 x10-8) with MCP-3

concentrations. Figure 2A illustrates the association results of all the

proteins analyzed and their corresponding top SNPs (lowest P-value).
Comparison between pQTL and cis-eQTL
upon Candida albicans stimulation

Previously, we had conducted a genome-wide eQTL analysis per

major cell type using scRNA-seq data from unstimulated and 3h and

24h pathogen-stimulated (Candida albicans, M. tuberculosis, P.

aeruginosa) PBMCs in the 120 individuals from the 1M-scBloodNL

cohort (13). This data was used to interrogate whether the same pQTL

SNP could also affect gene expression levels to explore the degree of

association between pQTLs and eQTLs. Note that the pQTL data

captures the bulk secretion of proteins coming from PBMCs that were

stimulated for 24h with Candida albicans, whereas the eQTL data was

collected for each cell type separately. Out of the 24 unique top pQTL

variants with a suggestive or genome-wide significant association (P

value from 1.81 x 10-8 to 5.89 x 10-6) identified from meta-analyzed

results of the univariate approach (Table 1), we could only overlay 20

with the scRNA-seq derived eQTL data of the 1M-scBloodNL cohort,

as eQTL data for the remaining 4 SNPs (rs36067904, rs13033376,

rs62129298, and rs7018706) were not available. Seven out of the 20

tested SNPs showed an eQTL effect upon 24h Candida albicans

stimulation in at least one cell type (FDR < 0.05) (Figure S3).

Among these seven, two pQTLs showed genome-wide significant

association with gene expression levels specifically in monocytes. The

first cis-acting pQTL, rs484915 showed association with both MMP-1

protein concentrations and gene expression (Figure 2B). Of note, only
FIGURE 1

Overview of study cohorts, study design and analyses conducted. We performed protein quantitative trait loci (pQTL) mapping utilizing protein
abundances and imputed genotypes in two population-based cohorts of individuals of European ancestry. We used two approaches to identify pQTL
signals which were meta-analyzed and subsequently colocalized with cell-type specific eQTLs and candidemia GWAS signals to uncover genomic
regions of shared association.
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this pQTL among the seven was associated with the corresponding

gene of the protein. The second is trans-acting SNP rs10276582

associated with CCL4 protein production affected AMZ1 gene

expression levels (Figure 2C). This observation suggests AMZ1 may

regulate CCL4 protein levels depending on an individual’s genotype at

SNP rs10276582 (or any other SNP in high LD).

To elucidate whether the effects of the significant eQTLs were

detectable only in Candida stimulations after 24h, we further assessed
Frontiers in Immunology 05
their impact in unstimulated condition, 3h Candida stimulations, as

well as in Mycobacterium tuberculosis stimulations after 24h. We

observed that the effects of the cis-eQTLs were less pronounced before

stimulation and after 3h Candida stimulation, which suggests

temporal regulation of gene expression following Candida

stimulation. Nearly equal strength of association was identified in

the case of M. tuberculosis stimulations after 24h for only the trans-

acting variant SNP rs10276582 (Figure 2C).
A

B

C

FIGURE 2

Identified pQTL SNPs and their association with cell-type specific cis-eQTLs. (A) Manhattan plot of pQTL genetic variants associated with 26 proteins
identified using a univariate approach and after meta-analysis. The red bold horizontal line depicts the genome-wide significant threshold (p-value < 1 x
10-8) and the black dashed denotes the suggestive association threshold (p-value = 1 x10-5) Top pQTL variants and their correlated proteins are displayed
on the plot. Barplots of pQTL variants correlating with - MMP-1 (B) and CCL4 (C) with genome-wide significant eQTLs in monocytes. The horizontal axis
shows all the cell types considered and the vertical axis represents the negative log10 p-values for eQTLs. Each strip in the barplot corresponds to gene
correlating with the pQTL variants (rs484915 and rs10276582). The barplot is also grouped per stimulation and timepoints together with pQTL variants.
The horizontal red dashed line corresponds to 0.05 P-value, FDR corrected.
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Colocalization analysis identifies causal
genes at Candida albicans-induced pQTLs

Next, to uncover the potential mechanisms underlying the

observed pQTLs, we tested whether SNPs impacting protein

concentrations at specific loci are also the same causal regulatory

eQTLs through colocalization analysis. We identified strong evidence

of colocalization for both pQTLs and eQTLs. For instance, in the

MMP-1 locus (Figure 3A), the posterior probability (PP.H4) was

0.998 (Figure 3B). Also, the trans-acting pQTL SNP rs10276582

located in the AMZ1 locus on chromosome 7 (Figure 3C), showed

significant colocalization (PP.H4 = 0.996) with the eQTL effect. eQTL

analysis revealed association of this variant with three different cis

genes, GNA12 (P = 7.1 x 10-1), TTYH3 (P = 1.7 x 10-2) and AMZ1 (P =

7.31 x 10-12) (Figure 3D), indicating the presence of multiple causal
Frontiers in Immunology 06
genes at this locus. However, both GNA12 and TTYH3 exhibited

weaker strength of association than AMZ1, which showed statistically

significant association. Thus, pinpointing AMZ1- which is predicted

to belong to a large metallopeptidase protein family and interacts with

cell receptors and growth factors, as the potential causal gene in this

genomic region. This observation demonstrates that cis-regulation of

gene expression levels maybe involved in the mechanisms by which

distal variants impact protein expression.

Exploring other mechanisms of pQTLs function on
protein levels

To further understand the mechanisms or regulation of the trans-

pQTL, we first looked for evidence of the genes near or at the trans

loci encoding for any of the proteins interacting with our tested

protein. To do this, we used an annotation database – Human
TABLE 1 Summary of the top pQTLs from meta-analysis of 26 proteins common in 500FG and 1M-scBloodNL.

SNP CHR A1 A2 P-value Zscore Weight D Protein Cell type Distance Closet gene

rs484915 11 A T 1.81x10-8 -5.629 445 – MMP-1 Monocyte cis MMP1

rs62205465 20 T C 5.80x10-8 -5.425 445 – MCP-3 Monocyte trans ZNF133

rs1213356 6 T C 6.04x10-8 -5.417 445 – CSF-1 Monocyte trans HTR1B

rs2312407 3 A G 6.07x10-8 -5.417 445 – OSM Monocyte trans BCHE

rs2312407 3 A G 1.12x10-7 -5.306 445 – uPA Monocyte trans BCHE

rs11078386 17 A C 1.58x10-7 5.243 445 ++ Flt3L CD4T trans NT5M

rs2026849 21 A G 2.64x10-7 -5.148 445 – TNFRSF9 Dendritic trans NRIP1

rs62129298 19 C G 2.80x10-7 5.136 445 ++ TGF-alpha Monocyte trans TMIGD2

rs6489484 12 T C 2.88x10-7 5.131 445 ++ CXCL1 Monocyte trans EFCAB4B

rs16989226 20 A G 3.25x10-7 -5.108 445 – LIF Monocyte trans SMOX

rs603138 20 C G 3.39x10-7 -5.1 445 – EN-RAGE Monocyte trans ANKRD5

rs10276582 7 C G 3.83x10-7 -5.077 445 – CCL4 Monocyte trans AMZ1

rs7018706 9 A T 3.89x10-7 -5.074 445 – IL-12B Dendritic trans TMEM38B

rs10279458 7 T C 4.02x10-7 5.068 445 ++ IL-1-alpha Monocyte trans GRID2IP

rs10444744 14 A G 5.59x10-7 5.005 445 ++ CXCL10 Monocyte trans FLRT2

rs13033376 2 A T 6.18x10-7 -4.986 445 – IFN-gamma CD4T trans INSIG2

rs62429432 6 A C 6.77x10-7 4.968 445 ++ CXCL9 Dendritic trans PARK2

rs10790768 11 A T 8.61x10-7 4.921 445 ++ MCP-2 Monocyte trans CNTN5

rs7434489 4 A G 1.42x10-6 4.822 445 ++ MCP-1 Monocyte trans FAM149A

rs10733128 1 T C 1.44x10-6 4.82 445 ++ CD40 Dendritic trans U6

rs2312407 3 A G 1.71x10-6 -4.786 445 – CCL20 Monocyte trans BCHE

rs10411415 19 C G 2.33x10-6 4.722 445 ++ LAP-TGF-beta-1 CD4T trans SGK110

rs10869325 9 A G 2.57x10-6 4.702 445 ++ TNF Monocyte trans RORB

rs242997 22 A G 3.23x10-6 4.656 445 ++ CD5 CD4T trans LARGE

rs12644632 4 A G 3.64x10-6 4.631 445 ++ CD6 CD4T trans KCTD8

rs36067904 13 A T 5.89x10-6 -4.53 445 – CXCL5 Monocyte trans FAM155A
D, Direction of effect size; Bold, SNP affecting 3 proteins; A1, Effect allele; CHR, chromosome; Cell type represents the cells in which the pQTL proteins are mostly expressed in the 1M-scBloodNL cohort.
++ means positive effect size and – means negative effect size.
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Integrated Protein-Protein Interaction Reference (HIPPIE) (25) and

defined trans genes as all genes falling within 1Mb window centered

on the top 25 identified trans-pQTL loci. Generally, we did not

observe any interacting partners between the trans genes and the

trans affected proteins. We have presented some examples to

demonstrate the findings. (Figures S4-5).
Frontiers in Immunology 07
Co-regulation of Candida albicans-induced
protein levels

It is possible that some of the genetic variants may affect multiple

proteins, so we wanted to explore whether there is strong correlation

between protein concentrations upon stimulation. To explore the
A

B D

C

FIGURE 3

Summary of colocalization analyses between pQTL and eQTL. (A) Regional association plots at the MMP-1 locus for MMP-1 protein QTL result (top
panel) and cis-QTL expressions result (bottom panel) on chromosome 11. (C) Regional association plots at the AMZ1 locus with CCL4 protein QTL result
(top panel) and cis-QTL expressions result (bottom panel) on chromosome 7. The sentinel SNPs (rs484915 and rs10276582) are indicated with blue
diamond shape and other surrounding SNPs are colored with different levels of linkage disequilibrium with the sentinel SNPs. The horizontal axis
indicates chromosomal positions (NCBI human genome build 37) and the vertical axes represent negative log10 p-values and recombination rates (cM/
Mb) estimated from 1000 Genome Project (European population) version 3.3. (B, D) Correlation plots with strong evidence of colocalization between
pQTLs and eQTLs as indicated by PP.H4 (posterior probability of shared causal variants) values.
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patterns underlying Candida-induced protein production, we

performed correlation analyses. We observed mostly significant

positive pairwise correlation (with the exception of MCP-1 and

MCP-2) between the 26 proteins in the 500FG cohort, which

contains the largest number of individuals from which samples

were collected (Figure 4A). However, in the 1M-scBloodNL cohort,

divergent patterns of correlation strengths were observed, including

weaker and negative correlations between CSF-1, IL-12B and IFN-

gamma, contrasting the positive correlation observed in the 500FG

cohort (Figure 4B). To understand what might underlie this

observation, we performed the Fligner-Killen test to evaluate

whether there is significant donor variation of these proteins

between the two cohorts. While we observe significant difference

for CSF-1 (Fligner-Killeen:med chi-squared = 19.893, p-value = 8.19 x

10-6) and IL-12B (Fligner-Killeen:med chi-squared = 5.0642, p-value
Frontiers in Immunology 08
= 0.02442), there was no evidence to suggest that the variance in IFN-

gamma concentrations significantly differ between both cohorts

(Fligner-Killeen:med chi-squared = 0.3097, p-value = 0.5779).

In the 500FG cohort, the strongly pairwise correlated proteins

acting as protein network consisted of 24 out of the 26 proteins

common between both cohorts (Figure 4C). For example, the

correlation coefficient between uPA and OSM was as high as 0.91,

while CD40 exhibited an approximately 0.9 between CD5 and CD6.

Next, we sought to more accurately infer the protein network by

replicating the analysis in the 1M-scBloodNL cohort. While MCP-1

exhibited strong negative correlation with some proteins (such as

OSM and uPA) in the 500FG cohort, this pattern of correlation was

hidden in the network obtained from the 1M-scBloodNL cohort

(Figure 4D). A rather weaker and positive correlation was manifested

between MCP-1 and OSM (0.26) and uPA (0.24) and thus, MCP-1
A B

DC

FIGURE 4

Heatmaps of correlation analysis. (A, B) Correlation of 26 common proteins for the 500FG and 1M-scBloodNL cohorts respectively. Pairwise correlation
between proteins were computed using residual values after adjusting age and sex on protein levels. (C, D) Represents network of proteins with strong
pairwise correlation coefficients for the 500FG and 1M-scBloodNL cohorts respectively.
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was excluded from multivariate genetic association analysis as shared

genetic architecture is likely to underlie or trigger the observed strong

positive correlations.
Genome-wide identification of pQTLs
impacting protein network

Taking advantage of the tightly co-regulated pattern of the

proteins, we sought to identify SNPs impacting protein network

upon Candida stimulations aside the univariate association analysis.

After independent analyses in both cohorts, we identified a genome-

wide significant hit in the 500FG cohort as well as several suggestive

associations. The genome-wide significant SNP was rs938662 (P value

= 4.37 x 10-8), residing in the PRKCE locus (Figure S6A). This suggest

that PRKCE locus exhibit a pleotropic role as the top SNP in this

genomic region is associated with multiple highly correlated proteins.

There was no evidence of inflation of the test statistics as genomic

inflation factor (L) was computed to be 1.01 (Figure S6B). In the case

of the 1M-scBloodNL dataset, no statistically significant SNP was

found to be associated with proteins (Figure S6C), and corresponding

genomic inflation factor (L) was 0.99, indicating lack of inflation of

test statistics (Figure S6D).

To identify true or robust association signals, we synthesized

summary statistics from both cohorts through meta-analysis. Even

though no loci reached genome-wide significance, we identified

strong suggestive associations (Figure 5A). The top signal identified

was rs484915 (P value = 1.05x10-7), located at the MMP1 locus and

has previously been shown to alter expression levels of cis-genes in

multiple tissues and also blood protein concentrations (26). In the

univariate analysis, we found the same SNP rs484915 to be associated

with MMP-1 with slightly much stronger association based on P-

value (1.81x10-8). Interestingly, five proteins, namely MMP-1,

CXCL5, CCL20, CXCL1 and CXCL10 among the proteins forming

the network (Figure 5B), contributed with relatively stronger weights

or correlation coefficients to the observed association result of SNP

rs484915 to the protein network. This observation from the

multivariate approach demonstrates the pleiotropic effect of SNP

rs484915 which cannot be captured directly via univariate analysis

and also tease apart the main proteins whose expression levels are

being regulated.
Multivariate approach improves
statistical power

Next, we sought to investigate whether the joint analysis of

multiple correlated proteins with genetic variants offers some

advantage over univariate analysis. To achieve this aim, we directly

compared the P-values or distribution of P-values of genetic

variations identified using both approaches and restricted the

analysis to only the largest cohort, 500FG. We reasoned that such

analysis will be more credible to be conducted in a specific cohort due

to the variation seen in proteins’ correlation structure between both

cohorts. As expected, we observed stronger associations emanating

from the multivariate analysis compared to the univariate manner

(Figure 5C). The top 6 independent strong suggestive loci (P < 9 x10-7)
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identified via the multivariate approach were in all cases showing a

much stronger association when compared to the strength of

association (P values) of each protein analyzed separately

(Figure 5D). Furthermore, to characterize the identified pQTLs, we

targeted the top 6 strongest pQTL variants (rs938662, rs1501565,

rs188465730, rs1020993, and rs11902595), given the lack statistically

significant SNPs to elucidate their effect on cell-type specific eQTLs.We

found 3 out of 6 to be an eQTL as well in at least one cell type albeit one

with nominally significant effect. The overlapped SNPs showed weak

association with various cis-genes. For instance, the strongest effect was

observed for intronic SNP rs11902595 on chromosome 2 which was

nominally (P= 0.013) correlated with a lincRNA (RP11-191L7.1) in

CD8T cells.
Overlap of pQTLs with SCALLOP
consortium data

We further evaluated the overlap and strength of association

between our Candida 24h stimulated pQTL associations and

previously reported highly powered (21,758 participants)

unstimulated pQTL study published under the SCALLOP

consortium (5). We found only 8 proteins (MMP-1, CSF-1, CXCL1,

EN-RAGE, CCL4, MCP-1, CD40, CCL20) common between the 90

cardiovascular proteins measured in the previous study and the 26

proteins measured in the inflammatory panel used in our study. Using

nominal significance P-value < 0.05, the percentage of shared

Candida 24h stimulated pQTLs vs pQTLs identified using the

SCALLOP consortium data, ranged from 4.5% to 5.6%. Of these,

the top SNPs among the shared variants show nominal association

with 6 proteins after stimulation. However, cis-acting genome-wide

significant pQTL variant rs484915 (P = 1.81 x 10-8) correlating with

MMP-1 upon stimulation showed very strong association (P = 1.87 x

10-220) in the SCALLOP consortium data (Figure 6A). We further

observed one trans-acting pQTL variant rs3014874 exhibiting

suggestive association with EN-RAGE protein (5.87 x 10-4), but

exceeded the genome-wide significant threshold with P = 1.64 x 10-

29 in the SCALLOP consortium data (Figure 6B). Evidence from

previous studies indicate that this downstream variant (rs3014874)

located on chromosome 1 affects the expression levels of cis-genes in

blood as well as different tissues (Figure 6C). Given that eQTL effects

are dependent on context and tissue being studied, we investigated the

effect on this SNP on nearby genes in different cell types after candida

stimulation. Among all the cis-genes, SNP rs3014874 showed

association with only S100A9 gene (Figure 6D), making it the likely

causal gene. This observation further highlights the role of trans-

regulatory network in determining the abundance of circulating

plasma proteins in blood.
Discussion

In this study we applied integrative analysis of genomics,

proteomics and single cell transcriptomics in two independent

cohorts to better understand the genetic mechanisms that link

mRNA expression and proteins abundance following Candida

albicans stimulation of immune cells. First, we compared univariate
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versus multivariate pQTL analyses to test how the cross-trait

covariance information which is mostly unutilized in the univariate

analysis influence pQTL findings. We then overlaid the identified

pQTL SNPs with cell-type-specific eQTL results from PBMCs to help

disentangle the underlying mechanism of pQTL results and specify

the cell type that could be involved. The strength of this study is the

meta-analytic approach of combining two independent population-

based cohorts which makes it possible to identify true or consistent
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genetic associations. Also, for the genes involved in many phenotypes

or complex diseases’ progression, it is unclear in which cell type gene

regulation takes place. Thus, our approach emphasizes the application

of cell-type-specific and context-dependent cis-eQTL and pQTL data

in addressing this challenge.

One of the main observations from our study is that only 35% (7/

20) of the pQTLs significantly correlated with mRNA expressions at

single cell level, suggesting that eQTLs cannot be used as a proxy for
A

B

D

C

FIGURE 5

Summary of multivariate QTL mapping results and comparison with pQTLs identified using univariate approach. (A) Manhattan plot for meta-analyzed
pQTL multivariate analysis results of protein network. Strength of association (-log10 meta-p values) is shown on the vertical axis and the horizontal axis
depicts the chromosomal position of plotted SNPs. The blue horizontal dashed line and the red bold line represent suggestive (p-value = 1 x10-5) and
genome-wide (p-value < 5 x10-8) significant thresholds, respectively. (B) Barplot of the weights (contribution to the protein network association) on the
vertical axis plotted against all proteins forming the network (horizontal axis) using “ggbarplot” function in R. The red dashed line represents the threshold
of significant contributions. (C) Quantile-quantile (Q-Q) plots for the pQTL mapping results in the 500GF cohort. The p-values distribution of the
multivariate analysis (ALL PROTEINS) results are shown in blue and the remaining colors correspond to p-values of proteins analyzed separately. The gray
shaded area represents 95% confidence interval of the null hypothesis. (D) Plot of association results of all individual proteins and protein network (All
Proteins) plotted against the top six independent SNPs (horizontal axis) identified after multivariate analysis in the 500FG cohort. The color legend
represents strength of association of SNPs with protein levels (Pvalue), ranging from blue (weaker associations) to red (stronger associations).
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pQTLs when investigating molecular mechanisms underlying trait-

associated variants. The observation of limited overlap is consistent

with previously reported findings as the discrepancy between pQTL

and eQTL results were also detected in a larger cohort (GTEx

Consortium) utilizing over 900 individuals (27). Another recent

proteomic study also demonstrated that more than 2000 protein

associated variants had no eQTLs (28). Of note, in each of those

studies the protein data was a bulk measurement from circulating

proteins in the blood (potentially being secreted by any cell type in the

body), whereas the matched mRNA data was a bulk measurement

from the immune cells themselves. Similarly, in our own study the

protein data was a bulk measurement from PBMCs, whereas scRNA-

seq data was used to obtain cell-type-specific eQTL data. This

discrepancy can potentially result in different significant/top SNPs

being identified in the bulk pQTL versus the cell-type-specific eQTL

analysis. Given the recent emergence of high-throughput technologies

(29, 30) to measure both mRNA and protein levels simultaneously at

single cell resolution, future studies could directly compare cell-type-
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specific pQTL and eQTL results from exactly the same samples. This

will provide the most definitive answer regarding the eluded low

overlap of both data modalities. Even so, this finding suggests that

protein regulation is much more complex than direct mRNA-protein

relationship: this is not necessarily surprising, as many post-

transcriptional processes are known to influence protein production

such as translation, processing and secretion. Therefore, on average

low correlation between mRNA and protein QTLs was not

unexpected. For instance, 6 different regulatory patterns have been

previously described as the mechanisms by which genetic variants can

influence the process of transcription to translation (31), such as in

scenarios whereby SNPs independently affect transcript levels and

protein abundance or SNPs responsible for both transcriptional and

translational alterations. Also, it is possible for mRNA decay or

extended half-life of the secretory proteins to explain why many

pQTL-depenednt effects were observed. Furthermore, proteolytic

activities can lead to the limited concordance between pQTLs and

eQTLs, which requires data on isoform-specific expressions levels for
A B

DC

FIGURE 6

Exploration of pQTL variants in plasma from unstimulated samples. (A, B) Scatter plots generated with the “ggbarplot” function of pQTLs from
unstimulated protein levels (SCALLOP) against candida-induced protein levels showing the proportion of shared pQTLs. Top cis-acting pQTL and trans-
acting pQTL are labeled respectively. Dot gray color represents unique pQTLs from the SCALLOP data analysis without stimulation and dot blue color
represents the number of overlapping pQTLs irrespective of stimulation status. (C) Regional association plot at the S100A9 locus using EN-RAGE pQTL
association results after candida stimulation. The top SNP rs3014874 on chromosome 1, with direct regulatory effect on multiple cis-genes is indicated in
blue diamond shape. (D) Barplot of the top trans-acting pQTL (rs3014874) association on multiple cis-genes (strips in the barplot) in the S100A9 locus in
various cell types (horizontal axis). At nominal level (red dashed horizontal line), SNP rs3014874 significantly affect only S100A9 gene in megakaryocyte. .
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further investigation. Thus, we advocate for future studies targeting

genome-wide Candida albicans-induced mRNA (cis and trans

inclusive) and cell-type-specific protein expressions analysis at

different time-windows aside 24h, which has the potential to refine

this observation and makes it feasible for genome-wide comparison of

the proportion of shared or unique pQTL and eQTL variants.

To help with the interpretation of how cell-type-specific eQTLs

regulate trans-acting pQTLs, colocalization analysis of lead pQTLs

and eQTL signals implicated the AMZ1 gene. This finding implies

that AMZ1 gene might be involved in the molecular pathways

underlying complex diseases, most probably the pathogenesis of

candidemia. Also, our analysis therefore predicts the sentinel SNP

rs1027658 associated with the trans-acting protein (CCL4) as a

probable causal variant and further shows that regulation of CCL4

protein levels is mediated by gene transcription. Apart from the trans-

genomic region, similar analysis also showed strong colocalization at

the MMP1 locus with the leading SNP (rs484915) located in the cis

region, suggesting a direct regulatory effect on MMP-1

protein concentrations.

Another interesting observation made in this study is the strong

correlation among proteins concentrations released by human

PBMCs upon Candida albicans stimulation, suggesting their

concerted role in immune regulation. In genetic studies, joint

analysis of correlated phenotypes in a single model, a so-called

multivariate approach, has been demonstrated to increase statistical

power relative to a univariate approach (32–34). Indeed, this was

clearly demonstrated in this study as well in the context of Candida-

stimulation using the larger cohort (500FG). For example, as the

intergenic SNP rs938662 was statistically significant when the

multivariate method was adopted, the lowest P value of the same

SNP in the univariate approach showed suggestive association (1.45

x10-4), correlating with CD5 proteins levels and strikingly, did not

show any associat ion with as many as 16/26 proteins

analyzed separately.

However, the added value of coupling proteins for joint genetic

analysis was not substantially detected after meta-analysis of both

cohorts as we expected since multivariate analysis is known to

perform relatively better especially, in the case of presence of

pleiotropy (35). The dissimilarity in the correlation structure

between the two datasets and the relatively weaker correlation

strength in the 1M-scBloodNL cohort is mostly capable of causing

the multivariate test from not out performing or boosting power than

the univariate test after the combined analysis. Even though smaller

sample sizes can lead to instability in estimating correlation coefficient

(36), technical and experimental variations can partially explain the

observed differences in correlation pattern seen in both datasets. Yet,

findings from the largest cohort demonstrates that these two

approaches are entirely orthogonal to detecting genotype-

phenotype relationship.

Identifying such context-dependent pQTLs may have

implications in understanding human complex diseases. Supporting

this argument, a recent powered study evaluating the relationship

between pQTLs and GWAS loci of 81 diseases and other clinical traits

found 69 out of 76 (number of phenotypes associated with the

genome-wide significant loci investigated) representing 90.8% of the

tested genetic associations with phenotypes were also associated with

at least one protein with strong evidence of colocalization (37). We
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therefore need larger studies with context-specific data to show

implications of context-specific pQTLs in explaining GWAS findings.

Several limitations of the present study are worth highlighting.

First, the use of a specific Olink panel with overrepresentation of

inflammatory proteins hinders broad analysis of proteins as the

current high-throughput Olink Explore panel is capable of profiling

thousands of plasma proteins. Second, sample size limitation made it

impossible to comprehensively characterize pQTLs. We therefore

acknowledge that upscaling the sample size might help identify

more significant genetic loci especially distal QTLs with relatively

smaller effective sizes and thus requiring large sample sizes to

be detected.

In conclusion, our study has pinpointed several possible

mechanisms through which protein levels in circulation are regulated

and delineate the specific cell type involved. In addition, we have

prioritized candidate genes at pQTL loci, providing great insight into

the genetic architecture of secretory protein levels following Candida

albicans stimulations. We believe that our functional genomic approach

can be extended to larger cohorts to obtain mechanistic insights into

pathogen-dependent protein regulations.
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