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and Yujun Zhao*

Engineering and Technology Research Center for Transplantation Medicine of National Health
Comission, Third Xiangya Hospital, Central South University, Changsha, China
Ischemia-reperfusion injury (IRI) is a common complication of surgery, which can

cause rapid deterioration of the liver function, increase the risk of graft rejection,

and seriously affect the prognosis of patients. The signal transducer and activator

of transcription 3 (STAT3) protein has been implicated in pathogenesis of IRI. STAT3

influences the mitochondria through multiple pathways and is also involved in

apoptosis and other forms of programmed cell death. STAT3 is associated with

Janus kinase (JAK), phosphoinositide-3 kinase (PI3K), and heme oxygenase-1

(HO-1) in liver IRI. The STAT3 pathway plays a dual role in IRI as it can also

regulate lipid metabolismwhichmay have potential for treating IRI fatty liver. In this

review, we summarize research on the function of STAT3 in liver IRI to

provide references for its application in the clinic.
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Ischemia-reperfusion injury (IRI) is a common complication after liver surgery (such as

surgery for liver cancer or liver transplantation). The interruption of the oxygen supply

during ischemia causes hepatic sinusoidal stenosis as well as secondary microcirculation

disorders (1, 2). Various factors such as tissue hypoxia, nutrient deficiencies, and metabolic

disruption during ischemia can lead to hepatocyte injury. Inflammatory factors, apoptotic

pathways, and reactive oxygen species (ROS), which are activated during reperfusion, can

result in a rapid deterioration of the liver function, which also increases the risk of rejection

and can adversely affect patient prognosis (3, 4). IRI is usually classified as warm IRI in vivo

and cold IRI in vitro. Although both are primarily caused by hypoxia and the consumption of

substrates caused by ischemia, the treatment methods differ due to the differences in the

temperature and cell metabolic energy (5). Liver IRI is still a major problem in liver surgery,

and no effective treatments are currently available. Signal transducer and activator of

transcription (STAT) proteins are a class of transcription factors present in the cytoplasm,

and mainly function to transmit signals from cell-surface receptors to the nucleus. The STAT

family consists of seven distinct members, namely, STAT1, STAT2, STAT3, STAT4,

STAT5A, STAT5B, and STAT 6. These STAT proteins contain between 750 and 850

amino acids and have similar structures and functions. STAT3 is composed of six different
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functional regions, namely, the N-domain/STAT protein interaction

domain, coiled-coil domain (CCD), DNA-binding domain (DBD),

linker domain, the SH2 domain, and the Transcriptional Activation

Domain (TAD) (6, 7). There are prior reviews about the involvement

of STAT3 in many organs. However, the role of STAT3-related

signaling pathways in liver IRI has not been systematically

summarized. Therefore, we have analyzed the relevant literature

with keywords such as STAT3, ischemia reperfusion injury, and

liver, amongst others. This paper aimed to review the various

studies of STAT3 in liver IRI and discuss its associated pathways

and different roles, to provide a reference for further research.
1 Structure and function of STAT3
and the relationship between STAT3
and the mitochondria

The human STAT3 gene is located on chromosome 17q21 and

encodes an 89-kDa protein (8). STAT3 mainly consists of three

different isoforms, namely STAT3a, STAT3b, and STAT3g, of

which the first is the most common. STAT3a can bind to IL-6 and

IL-10 secreted by macrophages. STAT3b can inhibit the synthesis of

inflammatory factors and plays an anti-inflammatory role while

STAT3g is mainly produced by the degradation of STAT3a and is

activated by differentiated neutrophils (9, 10).

Moreover, based on in vitro and in vivo experiments, Lucy Xi Lou

showed that STAT3 knockout resulted in increased expression of

transaminase and inflammatory indicators suggesting that

endogenous STAT3 plays a protective role in IRI (11). However,

the upstream and downstream pathways associated with STAT3 were

not investigated in this study, and the specific mechanism requires

confirmation by subsequent experiments. Endogenous negative

regulators of STAT3, such as suppressor of cytokine-induced STAT

signaling (SOCs), can bind to activated receptors and interact with

Janus kinase (JAK), which in turn inhibits the activation of the STAT

pathway (12). In addition, there are nuclear factors that can bind to

phosphorylated STAT, commonly known as PIAS (protein inhibitors

of activated STATs), of which PIAS3 is a specific inhibitor of STAT3.

It can block dimerization of the STAT3 monomer or promote the

dissociation of dimerized STAT3, thus inhibiting STAT3 activation

(13). STAT3 has two different phosphorylation sites, namely,

Tyrosine 705 (Y705) and Serine 727 (S727). STAT3 phosphorylated

at Y705 dimerizes and translocates to the nucleus, while

phosphorylation at S727 leads to translocation to the mitochondria

(14, 15). P-STAT3 regulates the activity of the electron transport

chain (ETC) through S727 (16). Mitochondria are the main sites for

ROS production, and the ETC is the most important source of ATP

(17). In IR, excessive ROS and Ca2+ can cause the opening of the

mitochondrial permeability transfer pore (MPTP) and adversely

affect the mitochondrial membrane potential. This, in turn, can lead

to peroxidation of the mitochondrial membrane, the release of

cytochrome c, the inhibition of ATP synthesis, and, finally,

irreversible cell death caused by mitochondrial membrane

peroxidation (18, 19). ROS can activate STAT3 during IRI (20).

STAT3 can inhibit MPTP opening caused by ROS production

(Figure 1), thereby reducing mitochondrial damage (21). The levels
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of P-STAT3 in the mitochondria increase rapidly during

reperfusion, while the P-STAT3 level in the cytosol decreases

rapidly (22). Phosphorylated STAT3 (P-STAT3) is usually present

in mitochondrial inner membrane adjacent to the matrix and is

important for maintaining mitochondrial integrity. GRIM-19, the

main component of mitochondrial complex I, promotes the entry of

P-STAT3 into the mitochondria (23).The binding of P-STAT3 to the

respiratory chain increases the membrane potential and increases

ATP production. STAT3 knockdown can inhibit the rate of

mitochondrial respiratory chain and complex I, II activity, which

can then lead to the release of excess cytochrome C, thereby

aggravating IRI (24).
2 STAT3-related modes of death

Liver IRI is associated with various forms of cell death, including

necrosis, apoptosis, autophagy, and ferroptosis, but those most

associated with are apoptosis and autophagy. Apoptosis is a form of

programmed cell death responsible for the maintenance of homeostasis

in multicellular organisms (25). A number of studies have reported that

50-70% of endothelial cells and 40-60% of hepatocytes undergo

apoptosis during reperfusion (26, 27). STAT3 can inhibit apoptosis

in two distinct ways. First, STAT3 can play a direct anti-apoptotic role

by upregulating the expression of the anti-apoptotic protein Bcl-2 and

downregulating the expression of the pro-apoptotic protein Bax (28–

30). Second, STAT3 can also inhibit MPTP formation to stabilize the

mitochondrial membrane potential DYm and thereby reduce ROS

production, both of which can simultaneously inhibit the release of

apoptosis-related cytokines, suppress caspase-related death pathways,

attenuate the fragmentation of genetic material DNA, and ultimately

inhibit apoptosis (31, 32). Autophagy is a process involved in the
FIGURE 1

The effects of P-STAT3 on the mitochondria in hepatic IRI. P-STAT3
can promote ATP synthesis by increasing the activity of respiratory
chain complex I and II. P-STAT3 also inhibited the opening of mPTP,
thereby inhibiting the expression of Bax and the release of CytC, and
finally alleviating apoptosis.
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degradation of proteins and organelles in cells. Autophagy-related 5

(ATG5) and Microtubule-associated protein 1 Light BII (LC3BII) are

two important autophagy-related proteins in IR. Yufang Han found

that STAT3 was able to activate ATG5-mediated autophagy, thereby

attenuating IRI (33). Shipeng Li reported that microRNA-17 (mir-17)

promoted the expression of autophagy protein LC3BII by inhibiting the

expression of STAT3, and ultimately aggravated liver IRI (34).

Therefore, the potential relationship between STAT3 and liver IRI

reported during autophagy needs to be further explored.
3 STAT3 and liver cells

The liver is the largest parenchymal organ in the human body,

and contains non-inflammatory cells such as hepatocytes and

endothelial cells as well as inflammatory cells such as Kupffer cells

and lymphocytes.
3.1 STAT3 and non-inflammatory cells

Hepatocytes account for 80% of the liver tissue maintaining its

main metabolic functions. In the carbon tetrachloride and alcohol

models of acute liver injury, the inflammatory index was found to be

lower in STAT3-knockout mice, while the inflammatory index was

higher in the ConA-induced hepatitis and LPS-induced models of

STAT3-knockout mice. STAT3 may inhibit inflammation by

inhibiting STAT1, so STAT3 can inhibit the activation of the pro-

inflammatory factor STAT1 in ConA-induced and LPS-induced

hepatitis (35–38). STAT3 has a dual role in hepatocytes. Model

differences are one of the important reasons, which need to be

further explored in other models in the future. Some researchers

have found that the degree of apoptosis and increased inflammatory

response in mice with endothelial-cell STAT3 knockout in the

alcoholic liver model, but the specific mechanism has not been

explored. There are few studies on STAT3 in endothelial cells, and

further exploration of its actions is needed in the future (39).
3.2 STAT3 and inflammatory cells

Hepatic macrophages are termed Kupffer cells (KCs). KCs

account for 20% to 35% of all the non-parenchymal cells in the

liver and are an important component of the immune cell

compartment. KCs can generate oxidative stress through regulating

different pathways and stimulating the production of TNF-a and

other inflammatory factors, thereby aggravating IRI (40). KCs act

mainly through the recognition of Toll-like receptors (TLRs), which

are important receptors involved in the inflammatory cascade (41,

42). TLR4 is the most important member of the TLR family, and

STAT3 is one of its important ligands. TLR4-deficient mice have

significantly reduced IRI. KCs are activated by two mechanisms

(Figure 2), M1 and M2. M1 can release various inflammatory

factors and cause tissue damage, whereas M2, in contrast to M1,

has anti-inflammatory effects (43, 44). SS-31 is a novel antioxidant

targeting mitochondria, whose main effects include promoting the
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production of ATP and inhibiting ROS production (45, 46).

Longcheng Shang reported that SS-31 could inhibit the production

of mitochondrial ROS, thereby reducing the phosphorylation of

STAT1 and STAT3. This can suppress the polarization of M1

macrophages, inhibit the release of inflammatory factors such

as TNF-a and IL-1b, and ultimately alleviate liver IRI (47).

Dexmedetomidine is a selective a2 adrenergic receptor agonist used

for sedation and anesthesia in surgical patients. Haoming Zhou found

that dexmedetomidine could activate the peroxisome proliferator-

activated receptor-g (PPARg)/STAT3 pathway, thereby promoting

the activation of M2 macrophages, suppressing the release of TNF-a
and other inflammatory factors, and ultimately alleviating liver IRI

(48–50). Zhuqing Rao reported that hyperglycemia could aggravate

liver IRI by inhibiting the polarization of M2 macrophages and IL-10

activation by inhibiting STAT3 through CCAAT/enhancer-binding

protein(C/EBP) protein-mediated ER stress (51). Roquin-1 is an E3

ubiquitin ligase originally identified in a mutated gene in SLE mice

(52). Lei Zheng found that Roquin-1 effectively inhibited the

polarization of M1 macrophages and promoted the activation of

M2 macrophages, which inhibited AMP-activated protein kinase a

(AMPKa) activity and promoted the activation of mammalian target

of rapamycin (mTOR) and STAT3, which, in turn, led to the reduced

production of related inflammatory factors and ultimately alleviated

hepatic IRI (53). Tammy M found that proteolysis inducing factor

(PIF) may activate STAT3 in human Kupffer cells, thereby inducing

the inflammatory response. To improve the condition of patients with

cachexia, inhibitors of this pathway should be further investigated

(54). Lara Campana found that the STAT3-IL10-IL6 pathway

promotes phenotypic transformation of human macrophages,
FIGURE 2

STAT3 has opposing effects on macrophages. On the one hand, it can
promote the release of inflammatory factors and aggravate IRI by
activating M1; on the other hand, it can activate M2, inhibit the release
of inflammatory factors, thus alleviating IRI. The different effect
depends on the activator of STAT3.
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thereby alleviating acute liver injury (55). Ozturk Akcora STAT3

inhibitor BWP1066 inhibits the release of inflammatory cytokines

from human macrophages, thereby alleviating acute liver injury (56).

STAT3 is essential for the growth and development of B lymphocytes,

and IL-21 secreted by T cells promotes the transformation of CD19+B

cell precursors into plasma cells that secrete IgG. Leptin can promote

the secretion of IL-6 and TNF-a by human B cells through activation

of the JAK2/STAT3 pathway and thus aggravate the inflammatory

response (57–59). STAT3 in CD8+T lymphocytes is closely related to

IL-21. In CD8+T lymphocytes, IL-6 can promote the expression of

STAT3, which promotes the production of IL-21 and ultimately

stimulates the production of CD8+ memory cells (60). STAT3 plays

an important role in Th17 cells. STAT3 promoted the secretion of the

anti-inflammatory factors TGF-b1 and IL-10 by CD4+T

lymphocytes, inducing more Th3 cells (61).
4 STAT3 and upstream
inflammatory cytokines

KCs can secrete several inflammatory cytokines. Many

inflammatory factors such as the interleukin family (ILs) can act as

ligands to influence STAT3 activation. ILs that function as ligands

mainly include IL-6, IL-11, and IL-22. For example, Heng Zhou

reported that after vagotomy, the expression of IL-22 was decreased,

and then the expression of STAT3 was reduced, inflammatory cell

infiltration was increased, and IRI was aggravated. Exogenous IL-22

supplementation can promote the phosphorylation of STAT3,

thereby promoting the expression of the cyclin D1 gene, and

ultimately reversing liver IRI; however the mechanisms through

which cyclin D1 can potentially reverse IRI in this model needs to

be further explored (62). Paul J Chestovich found that IL-22 could

effectively promote the phosphorylation of STAT3, inhibit the

production of inflammatory factors, and ultimately reduce liver IRI

but the endogenous IL-22 content was significantly increased after 24

hours of reperfusion (63). Bai, Y reported that IL-22 could activate

STAT3, inhibit apoptosis and oxidative stress, and alleviate biliary IRI

after liver transplantation (64). Wanzhen Li found that Ac2-26, a

derivative of the endogenous inflammatory inhibitor Annexin A1

(AnxA1), can inhibit hepatocyte apoptosis induced by the

mitochondrial pathway through activation of the IL-22/STAT3

pathway. Ac2-26 can also protect ATP and the mitochondrial

membrane potential (MMP), inhibit MDA and ROS production,

thus reducing IRI (65, 66). Nicolas Melin found that the TLR5

agonist CBLB502 can attenuate hepatic IRI by binding to the TLR5

receptor and stimulating IL-22 production by affecting the different

immune cells through activation of STAT3 (67). These findings

suggest that IL-22 can act as an important inflammatory factor and

associate closely with STAT3, which is worthy of further study in the

future. Miao Zhu showed that IL-11 could inhibit the

phosphorylation of STAT3, thereby suppressing the activation of

inflammatory factors such as TNF-a and IL-10, and thus attenuating

liver IRI (68). Some relevant inflammatory factors play an important

role in chronic liver injury, and IL-17A is a key factor in liver fibrosis.

Xiao Wei Zhang found that activation of the IL-17A/STAT3 pathway

can inhibit autophagy in liver cells, thus aggravating liver fibrosis,
Frontiers in Immunology 04
while an IL-17A inhibitor could reverse the development of fibrosis

(69). Hongwei Tang added IL-6 rs1800796 into human L02 cells to

activate the IL-6/STAT3 pathway, inhibit the expression of autophagy

proteins, and thus reduce IRI. Recombinant human IL-6 can be a

therapeutic target for hepatic IRI (70). Kun Xie found that exosomal

mir-1246 derived from human umbilical cord blood mesenchymal

stem cells can regulate the balance of helper/modulator T cells

through the mir-1246-mediated IL-6-gp130 (IL-6 receptor)-STAT3

axis, which ultimately could attenuate liver IRI (71). Matsumoto

pointed out that ischemic preconditioning (IPC) can significantly

reduce hepatic IRI through activation of the IL-6-GP130-STAT3 axis,

but the specific mechanisms require further exploration (72). Dayoub

R found that the IL-6-STAT3-thrombopoietin (TPO) pathway can

stimulate the production of megakaryocytes in the spleen and bone

marrow and play a hemostatic role after acute liver injury (73). Rania

Dayoub found that exogenous the acute phase response (ALR) can

inhibit the IL-6/STAT3 pathway in L-02 cells, inhibit acute phase

proteins (APPs) and thus ultimately inhibit inflammatory response.

However, endogenous ALR activates the IL-6/STAT3 pathway

and enhances the inflammatory response, so ALR has a dual role.

However, the relationship between ALR and STAT3 phosphorylation

needs further investigation (74). IL-6 is pleiotropic factor. As a ligand,

it can play a positive role by activating the various downstream

proteins. On the other hand, persistent release of IL-6 in has been

implicated in various diseases. Thus, the key challenge remains to

effectively balance the physiological and pathological functions of IL-

6 in cells.
5 JAK - STAT3 pathway

The JAK-STAT pathway was originally discovered by Darnell et al.

It is known to be an important intracellular signal transduction

pathway, and has been implicated in the regulation of growth,

differentiation, apoptosis, and development of various cells (Figure 3).

It can promote the phosphorylation and activation of diverse proteins

with tyrosine residues, generate a cascade reaction of kinase activation,

and transduce the activated signal to other molecules, such as STAT,

thereby triggering a series of genetic and protein changes (75, 76). In

mammals, more than 40 cytokines can potentially activate the JAK

-STAT pathway to influence hepatic IRI (77–79). JAK is a tyrosine

kinase widely present in different types of cells, and can be divided into

four types, namely, JAK1, JAK2, JAK3, and TYK2 (80). When the

ligand binds to its surface receptor, it causes changes in the cytosolic

part of the receptor, thus promoting the phosphorylation of the JAK

protein. STAT3 and JAK are closely bound together in the resting state.

When JAK is phosphorylated, STAT3 and JAK are separated to

promote the phosphorylation of STAT3, and the activated STAT3

can undergo heterodimerization followed by the translocation to the

nucleus, which can promote the transcriptional expression of the

various genes (80–82). The STAT3 TAD contains three different

sites, namely Y701, Y705, and Ser 727. Since TAD contains binding

sites for its own dimer, it is quickly activated once stimulated in the cell.

Exposure of Tyr705 can accelerate the process of heterodimerization,

and it has been documented that increased phosphorylation of STAT3

at Tyr705 in the nucleus can reverse the inhibition of STAT3

phosphorylation at 727 during IRI (20, 83, 84).
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JAK-STAT3 activation can attenuate liver IRI. For instance,

Mahmoud AR has found that coenzyme Q10 (CoQ10), which forms

part of the mitochondrial respiratory chain in hepatocytes, was able to

suppress apoptosis and oxidative stress by activating the JAK1/STAT3

pathway (85). Fingolimod (FTY720) is an inhibitor of the Sphingosine-1-

phosphate (S1P) receptor with diverse anti-inflammatory effects (86).

XiangminHe demonstrated that Fingolimod (FTY720) could activate the

JAK2/STAT3 pathway, thereby inhibiting hepatic IRI induced by

acetaminophen (APAP) (87). Relevant studies have confirmed that

STAT3 in hepatocytes can promote liver regeneration after

hepatectomy. However, Feng D found that STAT3 had no effect after

6 h of APAP-induced ALI (88, 89) while Nishina T observed that STAT3

was still functional after 24 h; thus the specific relationship between

APAP and STAT3 requires further investigation (90).The authors also

reported that P-JAK2/P-STAT3 expression decreased after ischemia-

reperfusion alone, which was inconsistent with previous results. The

authors explained that it was related to time, and the times of IRI in this

model were 1 h and 6 h, both of which were significantly shorter than

those used in previous studies (91). Therefore, it is necessary to further

study the activation of the pathway at the different time points in the

future. Heng Chao Yu found that the Notch pathway could also activate

JAK2/STAT3, promote the expression of manganese superoxide

dismutase (MnSOD), inhibit ROS and apoptosis, and ultimately

attenuate hepatic IRI (92). Cardiotrophin-1 was originally used as a

drug to promote cardiac hypertrophy (93). Maria Iniguez reported that

the myocardial nutrient cardiotrophin-1 could attenuate hepatic IPI by

activating the JAK/STAT3 pathway, but the specific mechanism requires

further study (94). Mengxia Zhong found that desflurane inhibited mir-

135b-5p, thereby stimulating JAK2-STAT3 activation, inhibiting

apoptosis, and ultimately alleviating liver IRI (95). However, there are

also several reports that support the opposite conclusion. L Xiong found

that mir-93 could inhibit the JAK/STAT3 pathway, thereby suppressing
Frontiers in Immunology 05
the production of apoptosis, inflammatory factors and transaminases,

and leading to the alleviation of liver IRI (96). Ziqi Cheng reported that

pemafibrate, a selective inhibitor of PPARa, could inhibit the release of

inflammatory factors produced by Kupffer cells, attenuate the JAK2/

STAT3b/PPARa pathway, suppress cell apoptosis as well as autophagy,

and ultimately attenuate liver IRI (97). Ning Zhang found that

Magnesium Lithospermate B, a traditional Chinese medicine, could

markedly inhibit the production of inflammatory factors such as TNF-

a and IL-6 by inhibiting the JAK2/STAT3 pathway, thereby attenuating

hepatic IRI (98). Maria Cecilia S. Freitas reported that the JAK2 inhibitor

AG490 could negatively regulate JAK-STAT signaling, thereby reducing

the production of inflammatory factors, inhibiting apoptosis, and

ultimately reducing IRI. It was also found that STAT1 activation was

more likely to cause IRI than STAT3 (99). Y X Zhu found that

dexmedetomidine can inhibit JAK/STAT3 signaling, apoptosis and the

inflammatory response, as well as oxygen-glucose deprivation (OGD)-

mediated human hepatic IRI (100). STAT1 and STAT3 have been

reported to exert opposite effects on cell proliferation, differentiation,

and apoptosis, which deserves further study in the future (101).
6 STAT3 and PI3K/AKT

The phosphoinositide-3 kinase (PI3K)/protein kinase B (PKB/AKT)

is an important pathway involved in protein synthesis and is closely

related to the regulation of redox reactions in mitochondria. PI3K/AKT

can alleviate hepatic IRI by inhibiting the release of inflammatory factors

and cell apoptosis while promoting autophagy (102). Bibo Ke reported

that heme oxygenase-1 (HO-1) could promote the phosphorylation of

STAT3, activate PI3K/AKT, inhibit the release of TNF-a and IL-10

induced by TLR-4, leading to reduced IRI (103). Bibo Ke found that

STAT3 could activate PI3K/AKT by activating b-catenin, inhibiting IL-
FIGURE 3

The role of the STAT3 pathway in liver ischemia-reperfusion injury. FTY720, Cardiotrophin-1, Desflurane, Mild Hypothermia, IL-6, and Leptin reduce
hepatic ischemia-reperfusion injury by activating JAK-STAT3 pathway. MLB, Pemafibrate, and Dexmedetomidine can attenuate the injury by inhibiting the
JAK-STAT3 pathway. IL-22, HO-1 and IL-11 can directly activate and inhibit STAT3 respectively. STAT3 can also attenuate ischemia-reperfusion injury by
inhibiting mPTP opening and thereby reducing ROS release.
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12 and Bax, and ultimately attenuating liver IRI (104). Huang J found

that the nuclear factor E2-related factor 2 (Nrf2)-HO-1 axis could

activate the Notch1/Hairy and enhancer of split homolog-1(Hes1)/

STAT3 pathway, promote the macrophage differentiation and PI3K/

AKT pathway activation, inhibit apoptosis, and ultimately reduce liver

IRI (105). Therefore, the STAT3/PI3K/AKT pathway can play a key role

in acute injury but the specific downstream mechanism of PI3K/AKT

needs to be further explored.
7 STAT3 and lipid metabolism

Given the increasing number of patients with nonalcoholic fatty liver

disease (NAFLD), the number of patients with fatty liver disease

requiring organ transplantation has increased. Fatty liver is susceptible

to IRI and two different hypotheses have been proposed to account for

this, namely, impaired hepatic microcirculation and mitochondrial

dysfunction (Figure 4). The volume of the steatotic hepatocytes

becomes larger, squeezing and narrowing the perisinusoidal space,

thus increasing the resistance of hepatic microcirculation. Fatty liver

can also cause mitochondrial dysfunction through promoting the

production of ROS, thereby interfering with cellular energy

metabolism in the liver (106, 107). STAT3 activates peroxisome

proliferator-activated receptor (PPAR)g, then up-regulates the

transcription of C/EBP, and promotes the transformation of

preadipocytes into adipocytes. STAT3 knockout mice showed weight

gain due to hypertrophy of adipocytes, suggesting that STAT3 plays a

role in lipid degradation. JAK2-STAT3 promotes lipid degradation by

inhibiting the expression of fatty acid synthase and acetyl-CoA

carboxylase (108, 109). In several adipose models, STAT3 knockdown

in the hepatocytes was observed to aggravate steatosis (35, 110, 111).
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Sterol regulatory element-binding protein-1 (SREBP-1) is a transcription

factor that can regulate liver lipid metabolism. STAT3 can inhibit

hepatic fat accumulation by suppressing SREBP-1, and ultimately

reduce hepatic steatosis (110, 112). Marco Carbone reported that the

addition of leptin to the preservation solution could activate STAT3 and

reduce the degree of apoptosis, thereby attenuating the development of

cold IRI (113). However, the specific mechanism of STAT3 in liver cold

preservation needs to be further explored. Renalase is a ubiquitous pan-

xanthine dinucleotide amine oxidase found in many organs (114). Tao

Zhang reported that renalase could activate the STAT3-SIRT1 pathway

and inhibit IRI in fatty liver (17). Zhihui Jiao found that the secretory

proteome of adipose-derived mesenchymal stem cells could inhibit the

expression of SOC3 and the negative feedback effect of SOC3 on STAT3

can lead to increase the expression of P-STAT3, and reduce IL-6, TNF-a
and other related inflammatory factors, thereby alleviating liver IRI

(115). Euno Choi found that P-STAT3 might aggravate liver steatosis

and inflammatory injury, which was the first time for P-STAT3 to be

explored in specimens of patients with fatty liver disease. The authors

did not clarify whether this effect was related to the leptin pathway, and

further research is needed to explore the relationship (116).Therefore,

STAT3 plays different roles in regulating the process of lipidmetabolism,

and future studies to investigate its role in fatty liver are warranted.
8 Conclusion

In hepatic IRI, STAT3 usually binds to the mitochondria to

regulate programmed cell death. STAT3 plays a role in many

hepatic cells. The STAT3-associated IR pathway includes

upstream cytokines, and JAK, and downstream PI3K/AKT. The

role of STAT3 in liver IRI is controversial (Table 1). On the one
FIGURE 4

Leptin/JAK/STAT3 related lipid metabolic pathway. On the one hand, STAT3 can activate PPARg, C/EBP and inhibit liver adipocyte maturation; on the
other hand, STAT3 can inhibit SREBP-1 and thus inhibit fat accumulation. Therefore, STAT3 has different roles in lipid metabolism.
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TABLE 1 An overview of the role of STAT3 in hepatic ischemia-reperfusion.

Author Journal Year Species Finding

Iñiguez M J Exp Med 2006 mouse Cardiotrophin-1 alleviates hepatic IRI by activating the JAK/STAT3 pathway.

Yu HC Hepatology 2011 mouse
The Notch pathway can activate the JAK2/STAT3 pathway, promote the expression of manganese superoxide
dismutase (MnSOD), ultimately alleviate hepatic IRI.

Ke B J Hepatol 2012 mouse HO-1 promotes STAT3 phosphorylation, activating PI3K/AKT thereby alleviating liver IRI.

Carbone
TM

Transpl Int 2012 rat Leptin can activate STAT3 and reduce the degree of necrosis and apoptosis, thereby alleviating cold IRI.

Chestovich
PJ

Transplantation 2012 mouse
IL-22 can promote the phosphorylation of STAT3, inhibit the production of inflammatory factors, and ultimately
alleviate liver IRI.

Ke B Hepatology 2013 mouse STAT3 can activate b-catenin followed by activation of PI3K/AKT, and ultimately alleviate hepatic IRI.

Huang J Mol Med 2014 mouse The Notch1/Hes1/Stat3 pathway promotes the activation of PI3K/AKT pathway, ultimately alleviating liver IRI.

Zhu M PLoS One 2015 mouse
IL-11 can inhibit the phosphorylation of STAT3, thereby
inhibiting the activation of inflammatory factors, and ultimately alleviating liver
IRI.

Li S Liver Transpl 2016 mouse
mir-17 promotes the expression of LC3BII by inhibiting the expression of STAT3, and ultimately aggravates
hepatic IRI.

Rao Z Front Immunol 2017 mouse Hyperglycemia can inhibit STAT3 through C/EBP protein mediated ER stress, thus aggravating liver IRI.

Han YF J Cell Biochem 2018 mouse STAT3 can activate ATG5 protein-mediated autophagy, thereby alleviating IRI.

Zhu YX
Eur Rev Med
Pharmacol Sci

2018 human
Dexmedetomidine can inhibit the JAK/STAT3 pathway, and ultimately inhibit oxygen-glucose deprivation
(OGD) -mediated IRI.

Mahmoud
AR

Tissue Cell 2019 rat CoQ10 inhibits apoptosis and oxidative stress by activating the JAK1/STAT3 pathway.

Xie K IUBMB Life 2019 mouse Mir-1246 regulates IL-6-GP130 -STAT3 axis, and ultimately alleviates hepatic IRI.

Zhang N Front Pharmacol 2019 mouse MLB could inhibit the JAK2/STAT3 pathway, thus inhibiting liver IRI.

Zhang T
Oxid Med Cell
Longev

2019 mouse Renalase can activate the STAT3-SIRT1 pathway and inhibit IRI of fatty liver.

Zhu YX
Int
Immunopharmacol

2020 mouse Dexmedetomidine can activate the PPARg/STAT3 pathway, ultimately alleviating liver IRI.

Zheng L J Immunol 2020 mouse
Roquin 1 inhibits the activity of AMPKa and promotes the activation of mTOR and STAT3, thereby alleviating
liver IRI.

Wang W
Oxid Med Cell
Longev

2020 mouse
Mild hypoxia was found to activate the JAK2-STAT3-CPT1A pathway, ultimately promoting the b -oxidation of
fatty acids, and ultimately alleviating liver IRI.

Ozturk A FASEB Bioadv 2020 human
BWP1066 inhibits the release of inflammatory cytokines from macrophages
thereby alleviating hepatic IRI.

Shang L
Oxid Med Cell
Longev

2021 mouse SS-31 can inhibit the STAT3, ultimately alleviating liver IRI.

Zhong M J Chin Med Assoc 2021 rat Desflurane can inhibit mir-135b-5p to promote the activation of JAK2-STAT3, ultimately alleviating liver IRI.

Melin N Cell Death Dis 2021 mouse CBLB502 alleviates hepatic IRI through the IL-22-STAT3 pathway.

Jiao Z Stem Cell Res Ther 2021 pig
The adipose-derived mesenchymal stem cell secretome inhibit the expression of SOC3, increase the expression of
P-STAT3, to alleviate liver IRI.

Zhou H J Immunol Res 2021 mouse
IL-22 can promote the phosphorylation of STAT3, which in turn promotes the expression of cyclinD1, and
ultimately alleviates liver IRI.

Cheng Z PPAR Res 2021 mouse Pemafibrate can inhibit JAK2/STAT3b/PPARa pathway, ultimately alleviating liver IRI.

Tang H Mol Biol Rep 2021 human Recombinant human IL-6 can activate STAT3, inhibit autophagy proteins, and ultimately alleviate liver IRI.

He X Int J Mol Med 2022 mouse FTY720 activates the JAK2/STAT3 pathway to inhibit hepatic IRI induced by APAP.

Li W Peer J 2022 mouse Ac2-26 can protect ATP, mitochondrial membrane potential (MMP), and ultimately reduce IRI.
F
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hand, STAT3 can play a protective role through the modulation of

various proteins, inflammatory factors, and cells while on the

other hand, it can aggravate IRI. The reason can be partly

attributed to the fact that that P-Janus kinase (P-JAK) can

activate both STAT3 and STAT1, and STAT3 can inhibit

apoptosis whereas STAT1 can promote apoptosis. The JAK-

specific inhibitor AG490 can inhibit both, thus producing

different effects, but these are closely related to the length of the

model time (117). The same protein may have different effects at

different times and the same inflammatory factors can play diverse

roles. STAT3 can also play a dual role in the regulation of lipid

metabolism. On the one hand, STAT3 can promote the maturation

of adipocytes while, on the other hand, it can promote lipolysis.

STAT3 may also affect the microcirculation and energy

metabolism by influencing fat accumulation. Therefore, STAT3

has an important effect on IRI in fatty liver. The incidence of fatty

liver is increasing and it is necessary to further explore the

functions of STAT3 in adipocyte maturation and lipolysis. Thus,

further analysis of STAT3-related pathways in liver IRI is needed

to provide a foundation for clinical treatment.
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