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Reprogramming of IL-12
secretion in the PDCD1 locus
improves the anti-tumor activity
of NY-ESO-1 TCR-T cells

Segi Kim, Cho I Park, Sunhwa Lee, Hyeong Ryeol Choi
and Chan Hyuk Kim*

Department of Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea
Introduction: Although the engineering of T cells to co-express immunostimulatory

cytokines has been shown to enhance the therapeutic efficacy of adoptive T cell

therapy, the uncontrolled systemic release of potent cytokines can lead to severe

adverse effects. To address this, we site-specifically inserted the interleukin-12 (IL-

12) gene into the PDCD1 locus in T cells using clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based genome

editing to achieve T-cell activation-dependent expression of IL-12 while ablating the

expression of inhibitory PD-1.

Methods: New York esophageal squamous cell carcinoma 1(NY-ESO-1)-specific

TCR-T cells was investigated as a model system. We generated DPD-1-IL-12
-edited NY-ESO-1 TCR-T cells by sequential lentiviral transduction and CRISPR

knock-in into activated human primary T cells.

Results: We showed that the endogenous PDCD1 regulatory elements can tightly

control the secretion of recombinant IL-12 in a target cell-dependent manner, at

an expression level that is more moderate than that obtained using a synthetic

NFAT-responsive promoter. The inducible expression of IL-12 from the PDCD1

locus was sufficient to enhance the effector function of NY-ESO-1 TCR-T cells, as

determined by upregulation of effector molecules, increased cytotoxic activity,

and enhanced expansion upon repeated antigen stimulation in vitro. Mouse

xenograft studies also revealed that PD-1-edited IL-12-secreting NY-ESO-1

TCR-T cells could eliminate established tumors and showed significantly greater

in vivo expansion capacity than control TCR-T cells.

Discussion: Our approach may provide a way to safely harness the therapeutic

potential of potent immunostimulatory cytokines for the development of effective

adoptive T cell therapies against solid tumors.
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Introduction

Adoptive T-cell therapy (ACT) has shown successful clinical

outcomes against some cancer types. For example, chimeric antigen

receptor-T (CAR-T) cells exhibited a high proportion of complete

responses against B cell malignancies (1, 2) and multiple myeloma (3).

T cell receptor-T (TCR-T) cells or tumor-infiltrating lymphocytes

(TILs) have shown objective clinical response in synovial carcinoma

(4) and melanoma (5), although the longevity of their therapeutic

effect was limited. However, the majority of patients with solid tumors

do not benefit from these therapies, likely owing to the impaired

function of T cells in the suppressive tumor microenvironment

(TME) (6, 7). This suggests that modulation of immune responses

within the TME is crucial for improving the efficacy of ACTs against

solid tumors.

Co-delivery of cytokines in conjunction with conventional ACT

has proven to be an attractive approach (8), since it can both directly

enhance the activity of transferred T cells (9–12) and modulate

inhibitory immune cells in the suppressive TME (13, 14). The

cytokine, interleukin-12 (IL-12), which is mainly produced by

activated antigen presenting cells (15), has been extensively studied

owing to its potent immune-activating and tumor-suppressive

activities. In T cells, IL-12 signaling induces pro-inflammatory Th1

responses (16) while inhibiting the induction of regulatory T and

Th17 cells (17, 18). IL-12 is also known to promote IFN-g secretion
and the cytotoxic potential of CD8 T and natural killer (NK) cells (19,

20). In response to IL-12, tumor cells can upregulate antigen

presentation (21) and myeloid-derived suppressor cells can be

converted to exhibit a T cell-supportive phenotype (22, 23). These

observations have led to the engineering of T cells to secrete

exogenous IL-12, which has been demonstrated to enhance the

cytotoxic activity of T cells, deplete tumor-associated macrophages,

and recruit innate immune cells to improve tumor control in animal

models (13, 24–26). However, since the systemic exposure of IL-12 is

poorly tolerated (27, 28), high serum levels of IL-12 released from

engineered T cells have caused life-threatening side effects in clinical

investigations (29). Thus, the safe exploitation of the therapeutic effect

of IL-12 in ACT requires a novel approach that will allow the cytokine

to be delivered locally at the tumor site in a tightly controlled manner.

When T cells are activated upon the recognition of antigens via the

TCR, transcriptional and posttranslational regulation tightly coordinate

the exact up- and downregulation of multiple genes (30) whose activity

dysregulation may result in failure to control disease or the development

of an autoimmune condition (31). Thus, the reprogramming of genes

whose expression levels are induced by TCR signaling provides an

attractive strategy for controlling transgene expression in a target cell-

dependent manner. One such gene candidate is the immune checkpoint

receptor, programmed cell death 1 (PD-1), which is well characterized for

its critical inhibitory effects on T cells as well as its inducible expression

upon TCR activation (32). The transient expression of PD-1 rapidly

declines to basal levels in the absence of TCR signaling, which critically

minimizes transgene expression outside of the tumor tissue.

Furthermore, ablating inhibitory PD-1 expression on T cells alone has

shown benefits in maintaining robust T cell activity (33, 34), suggesting

that PD-1 may be an optimal target for the reprogrammed expression of

exogenous IL-12.
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Here, we aimed to rewrite the PDCD1 locus to express IL-12

instead of PD-1 in New York esophageal squamous cell carcinoma 1

(NY-ESO-1)-specific T cells. To this end, we used clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-associated

protein 9 (Cas9) technology with recombinant adeno-associated virus

6 (AAV6) donors to knock-in a recombinant single-chain IL-12

sequence. The targeted insertion of IL-12 into the PDCD1 locus

resulted in the strict regulation of IL-12 expression through antigen-

dependent T cell activation while simultaneously inactivating the

expression of endogenous PD-1. The secretion of IL-12 from the

PDCD1 locus enhanced the effector function of NY-ESO-1 TCR-T

cells and promoted their proliferation during repetitive tumor

challenges in vitro, leading to superior anti-tumor activity in

xenograft models.
Materials and methods

Cell lines

The A375 cell line was purchased from the American Type

Culture Collection (ATCC). A375 cells were genetically engineered

with lentivirus to generate Zsgreen-2a-Luciferase- or PD-L1-

overexpressed A375 (A375-ZF or A375-PDL1) cells. The Lenti-X™

293T and AAVpro® 293T cell lines were purchased from Takara Bio.

All cell lines were cultured in Dulbecco’s modified Eagle’s medium

(DMEM; Welgene) supplemented with 10% heat-inactivated fetal

bovine serum (Opti-Gold; Genedepot) and 1% penicillin/

streptomycin (Gibco).
Lentivirus production and transduction

To produce lentiviruses, Lenti-X™ 293T cells were transiently

transfected with a lentiviral backbone and three packaging plasmids:

pMD2.G (#12259; Addgene), pMDLg/pRRE (#12251; Addgene), and

pRSV-Rev (#12253; Addgene). Briefly, 10 mg of each DNA was mixed

with 120 mg of PEI MAX (Polysciences) in Opti-MEM (Gibco) and

incubated at 37°C for 10 min. The mixture was added dropwise into

HEK293T cells that had been plated onto 150-mm2 dishes 24 h

before. After 6 h, the medium was replaced with fresh DMEM and the

cells were maintained for 48 h. The culture supernatants containing

lentivirus were collected and fi l tered using a 0.45-mm
polyethersulfone membrane filter. Unpurified viral supernatants

were used for the transduction of cell lines. For the transduction of

human primary T cells, viral supernatants were further purified by

ultracentrifugation. The viral supernatants were overlaid on 10%

sucrose in Dulbecco’s phosphate-buffered saline (DPBS) and then

ultracentrifuged at 25,000 rpm for 2 h at 4°C. After centrifugation, the

cleared supernatants were removed and DBPS was added to the

lentivirus pellet without resuspension. After overnight incubation at

4°C, the virus was resuspended and stored at –80°C. To transduce the

cells with lentivirus, 1 × 106 cells were mixed with purified or

unpurified viruses in culture medium containing 30 mg of

protamine sulfate (Sigma-Aldrich). Spin inoculation was performed

by centrifugation at 1,000 × g for 90 min at 32°C, and thereafter the
frontiersin.org
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cells were maintained at 37°C. After 24 h, the transduced cell medium

was replaced with fresh culture medium.
AAV vector construction and production

The gene encoding human single-chain IL-12 (scIL-12; p40 and

p35 subunits connected with the G6S linker), which was adopted

from a previous report (25), was synthesized by Integrated DNA

Technologies and cloned into the AAV-backbone plasmid (#20296;

Addgene). The promoterless donor sequence encoded the knock-in

donor genes flanked by two homology arms (614-bp left homology

arm and 658-bp right homology arm), a self-cleaving T2A in-frame

with a guide RNA cut site, followed by scIL-12, a self-cleaving P2A,

truncated low-affinity nerve growth factor (tLNGFR), and the bovine

growth hormone polyA signal (bGHpA).

For the production of recombinant AAV-6 virus, AAVpro® 293T

cells were transiently transfected with an AAV backbone plasmid and

two packaging plasmids (pHelper and pRC-6; #6665; Clontech).

Briefly, a mixture of DNA and PEI MAX was transfected as

described above for lentivirus production. After 6 h, the medium

was replaced with fresh culture medium and the cells were maintained

for 72 h. AAV was purified from both the culture supernatant and

pelleted cells by iodixanol-based density gradient ultracentrifugation,

as previously described (35). The titers of recombinant AAV6 were

determined by quantitative PCR using inverted terminal repeat-

targeting primers (36).
Single-guide RNA and Cas9 protein

The sequence of the guide RNA targeting exon 1 of the PDCD1

locus (5′- GGCCAGGATGGTTCTTAGGT-3′) was designed using the
web-based guide RNA design platform, CRISPR RGEN Tools (http://

www.rgenome.net/). The single-guide RNA (sgRNA) was transcribed

in vitro and purified as previously described (37). Immediately before

electroporation, Cas9 protein (Enzynomics) and PDCD1 sgRNA were

mixed at a 1:5 molar ratio and incubated for 10 min at 37°C to prepare

the PD-1 targeting ribonucleoprotein (RNP).
Genetic engineering of human primary
T cells

The blood of an anonymous healthy human donor was acquired

from ASAN Medical Center (Seoul, Korea) under a protocol

approved by the institutional review board. Peripheral blood

mononuclear cells (PBMCs) were isolated from the whole blood by

density gradient centrifugation using Sepmate-50 Tubes (STEMCELL

Technologies) and cryopreserved in freezing medium (90% FBS/10%

dimethylsulfoxide) until use. Frozen PBMCs were thawed and CD3+

human primary T cells were purified using a Pan T-cell isolation kit

(Miltenyi Biotec). The resulting T cells were activated using

Dynabeads Human T-Activator CD3/CD28 (Thermo Fisher

Scientific) at a 1:1 bead-to-cell ratio. One day after activation, T

cells were collected and transduced with a lentivirus encoding NY-

ESO-1-specific TCR. After overnight incubation, the culture medium
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of the TCR-transduced T cells was replaced with fresh culture

medium. Two days after transduction, the T cells were collected

and the Dynabeads were magnetically removed to perform genome

editing. A Neon Transfection System 10 mL Kit (Invitrogen) was used

for the electroporation of CRISPR RNP. First, 1 × 106 NY-ESO-1

TCR-transduced T cells were resuspended in T buffer, mixed with

PD-1-targeting RNP, and electroporated (1,400 V, 10 ms, 3 pulses).

Electroporated T cells were transferred to fresh culture medium and

maintained at 37°C for 15 min. The T cells were diluted to 0.5 × 106

cells mL–1 with culture medium, and recombinant AAV6 virus was

added at a multiplicity of infection of 5 × 104. After 24 h, the culture

medium was replaced with fresh culture medium with a cell density of

0.5 × 106 cells mL–1. The medium was changed every 2 days. T cells

were cultured in a T cell medium consisting of RPMI1640 (Gibco),

10% FBS (Gibco), 2 mM GlutaMAX (Gibco), 1 mM sodium pyruvate

(Gibco), 55 mM 2-mercaptoethanol (Thermo Fisher Scientific), 10

mM HEPES (Sigma-Aldrich), and 1% non-essential amino acids

(Gibco), supplemented with recombinant human interleukin-2 (300

IU mL–1; BMI Korea).
Stimulation for detection of PD-1 and
tLNGFR upregulation

To investigate activation-dependent transgene upregulation, 1 ×

106 NY-ESO-1 TCR-T cells were stimulated with 5 mg of plate-coated
CD3 antibody (clone, OKT3; Bio X Cell) and 2 mg of soluble CD28

antibody (clone, CD28.2; Bio X Cell). After 48 h, stimulated T cells

were collected and PD-1 upregulation and tLNGFR expression were

analyzed using flow cytometry.
Flow cytometry

For the detection of cell surface marker, 2 × 105 T cells were

washed and probed with antibodies in FACS buffer (1% bovine serum

albumin [BSA] in DPBS) for 20 min at 4°C. To exclude the dead cell

population, cells were stained with the fixable vitality dye, eFluor 780

(65-0865-14; eBioscience) for 10 min at 25°C. After being washed

with FACS buffer, the cells were probed with chloroform-conjugated

specific antibodies. NY-ESO-1-targeting TCR expression was

determined with allophycocyanin (APC)-conjugated TCR Vb13.1
antibody (362410; BioLegend), and CD3ϵ and TCR a/b were

detected with Alexa Fluor® 488 anti-human TCR a/b antibody

(306712; BioLegend) and Brilliant Violet (BV)-421-conjugated CD3

antibody (300434; BioLegend). PD-1 upregulation was analyzed using

BV421-conjugated CD279 antibody (367422; BioLegend). tLNGFR

expression was analyzed using APC-conjugated CD271 antibody

(130-113-418; Miltenyi Biotec). To detect CD4 and CD8, PerCP-

CP/Cyanine5.5-conjugated CD4 antibody (357414; BioLegend) and

APC-conjugated CD8 antibody (344722; BioLegend) were used. To

determine differentiation status, BV421-conjugated CD45RO

antibody (562641; BD Biosciences) and PE-conjugated CD197

antibody (560765; BD Biosciences) were used. To analyze

intracellular proteins, surface-stained cells were fixed and

permeabilized using a Cytofix/Cytoperm Fixation/Permeabilization

Solution Kit (BD Biosciences). After being washed with intracellular
frontiersin.org

http://www.rgenome.net/
http://www.rgenome.net/
https://doi.org/10.3389/fimmu.2023.1062365
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2023.1062365
staining buffer (1% BSA, 0.1% sodium azide, and 0.1% saponin in

DPBS), the cells were probed with following antibodies. IFN-g
secretion was detected with BV711-conjugated IFN- g antibody

(564039; BD Bioscience). The releases of granzyme B (GzmB) and

perforin were detected using APC-conjugated GzmB antibody

(396408; BioLegend) and PE-conjugated perforin antibody (353304;

BioLegend), respectively. The percentage of proliferative cells after

repeated stimulation was analyzed with APC-conjugated Ki67

antibody (556027; BD Biosciences). All flow cytometry data were

acquired with a BD LSRFortessa X-20 Cell Analyzer (BD Biosciences)

and analyzed using the FlowJo software (BD Biosciences).
Cytokine measurement

To detect IL-12 secretion after target-cell recognition, 2 × 105

A375 cells were plated on 24-well tissue culture plates. After 20–24 h,

5 × 105 NY-ESO-1 TCR-T cells resuspended in IL-2-free T cell culture

medium were added to the A375 cells. After 2 days, the culture

supernatant was collected and the secretion of IL-12 was measured

using flow cytometry with a Human IL-12p70 Flex Set (BD

Biosciences). To detect the releases of IFN-g, TNF-a, IL-10, and IL-

2, NY-ESO-1 TCR-T cells were co-cultured with A375 cells as

described above and the cytokines released to the culture

supernatant were measured using a cytometric bead array (CBA)

assay with a Human th1/th2 Cytokine Kit (BD Biosciences).
Western blotting

For the detection of STAT-4 and phospho-STAT4 (p-STAT4), 2 ×

106 NY-ESO-1 TCR-T cells were stimulated with 5 mg of plate-coated

CD3 antibody for 72 h. To detect Bcl-xL upregulation, 2 × 105 A375 cells

were plated on 24-well tissue culture plates for 24 h, after which 1 × 106

NY-ESO-1 TCR-T cells were added and maintained for 72 h. After

stimulation, T cells were collected and lysed using NP-40 protein

extraction buffer (Elpis Biotech) supplemented with a proteinase

inhibitor cocktail (Sigma-Aldrich) and phosphatase inhibitor (Roche).

The amount of protein in the lysates was quantified using a BCA protein

assay kit (Thermo Fisher Scientific). Protein lysates (20 mg) from each

sample were separated on precast 4%–12% Bis-Tris gradient gels

(Invitrogen) using sodium dodecyl–sulfate polyacrylamide gel

electrophoresis. Separated proteins were transferred to polyvinylidene

fluoride (PVDF) membranes (Thermo Fisher Scientific) using an iBlot 2

Dry Blotting System (Thermo Fisher Scientific). Each membrane was

blocked with 4% BSA in TBS with 0.5% Tween-20 (TBS-T) and probed

with primary antibodies at 4°C overnight. The membranes were washed

with TBS-T and incubated with secondary antibodies conjugated with

horseradish peroxidase (HRP) at RT for 1 h. The following primary and

secondary antibodies were used: anti-STAT4 (#2653, 1:1000; Cell

Signaling), anti-phospho STAT4 (Tyr693) (#5267, 1:1000; Cell

Signaling), anti-Bcl-xL (A19703, 1:1000; Abclonal, Wuhan, China),

anti-actin (A2228, 1:20000; Sigma-Aldrich), anti-mouse IgG-HRP

(#31430, 1:10000; Invitrogen), and anti-rabbit IgG-HRP (#31460,

1:10000; Invitrogen). Blot images were acquired using a ChemiDoc MP

system (Bio-Rad) and processed using Image Lab software (Bio-Rad).
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Cytotoxicity assay

First, 2 × 104 Zsgreen positive A375 cells were resuspended in 100

mL of culture medium and plated in 96-well tissue culture plates for

24 h. Then, 2 × 104 NY-ESO-1 TCR-T cells were resuspended in 100

mL of the culture medium, added into A375 cells, and maintained for

120 h. The green signal from A375 cells was monitored every 2 h

using an IncuCyte S3 Live-Cell Analysis System (Sartorius).
Repeated tumor challenge

2 × 105 PD-L1-overexpressed A375 cells were plated on culture

plates and incubated for 24 h. The culture medium were replaced with

fresh culture medium containing 10 mg mL-1 mitomycin C (Sigma-

Aldrich). After incubation at 37 °C for 3h, A375 cells were washed

with DPBS three times. For co-culture, 1 × 106 NY-ESO-1 TCR-T

cells were added into mitomycin C treated A375 cells. Four days later,

T cells were counted using a Countess II Automated Cell Counter

(Thermo Fisher Scientific) and re-challenged with fresh mitomycin

C-pretreated A375-PDL1 cells. Three stimulations and cell counts

were performed at intervals of four days. When the cells were counted,

Trypan Blue (Gibco) was used to discriminate dead cells.
Xenograft mouse model

Animal care and experiments were performed according to a

protocol approved by the Animal Care Committee of the Korea

Advanced Institute of Science and Technology. First, 1 × 106 A375-ZF

or A375-ZF-PDL1 cells were subcutaneously injected into the right

flanks of 8–10-week-old male NSG mice (Jackson Laboratory). Mice

were intravenously injected with 1 × 106 NY-ESO-1+ TCR-T cells at 7

days after tumor injection in the A375-ZF model or at 6 days after

tumor injection in the A375-ZF-PDL1 model. Tumor growth was

monitored weekly using an IVIS® Lumina II In Vivo Imaging System

(PerkinElmer). Quantification of the luminescent signal was

performed using the Living Image software (PerkinElmer). To

investigate the infiltration of T cells at tumor sites, A375-ZF-PDL1-

engrafted NSG mice were euthanized at 6 days after T cell injection,

and tumors were harvested. The collected tumors were roughly

chopped into small fragments (2–4 mm) and incubated with 20 mg
of DNase I (Sigma-Aldrich) and 125 mg of collagenase IV (Sigma-

Aldrich) with gentle shaking for 1 h at 37°C. After being washed with

DPBS, the cells were treated with ACK Lysing Buffer (Gibco) and

filtered through a 70-mm nylon mesh filter. The resulting single-cell

suspension was analyzed by flow cytometry.
Statistical analysis

All graph generations and statistical analyses were conducted

using GraphPad Prism (GraphPad Software). Statistical significance

was determined using two-tailed paired or unpaired Student’s t-test,

one-way analysis of variance (ANOVA) with Tukey’s multiple

comparisons, or two-way repeated-measures ANOVA with Holm-

Sidak’s multiple comparisons test. For all analyses, a P-value <0.05
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was considered statistically significant (*P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001).
Results

DPD-1-IL-12-edited NY-ESO-1-specific
T cells secrete IL-12 in an antigen-
dependent manner

To insert the IL-12 transgene into the PDCD1 locus, we used

CRISPR/Cas9 and AAV6-based knock-in systems, which have

previously demonstrated robust and precise gene modifications in

human T cells (38). To disrupt the PDCD1 locus, we designed four

sgRNAs targeting the first exon of PDCD1 (Supplementary

Figure 1A). We selected sgRNA#4 for further experiments because

it resulted in a high knock-out efficiency (91.17%) when Cas9/sgRNA

ribonucleoprotein (RNP) complexes were electroporated into

activated human T cells (Supplementary Figure 1B). A promoterless

AAV-6 donor matrix was designed to replace the endogenous PD-1

sequence with a single-chain IL-12 sequence, thus resulting in the

expression of IL-12 under the control of PDCD1 regulatory elements

with concurrent knock-out of PD-1 expression. A self-cleaving P2A

sequence was linked to the N-terminus of IL-12, followed by

sequences encoding a self-cleaving T2A and truncated low-affinity

nerve growth factor, tLNGFR, which was used as a surface marker to

determine the knock-in efficiency (Figure 1A).

To edit the PDCD1 locus of tumor-specific TCR-T cells that

recognize the cancer testis antigen, NY-ESO-1157–165 SLLMWITQV

(NY-ESO-1 TCR-T cells) (39), we first transduced T cells with

lentivirus encoding NY-ESO-1 TCR and then subsequently

conducted Cas9 RNP/AAV6 knock-in into transduced T cells

(Figure 1B). This process did not influence the viability or

expansion of the resulting DPD-1-IL-12 edited NY-ESO-1-specific

T cells (NE1DPD-1-IL-12) (Supplementary Figure 2). As a control

group, NY-ESO-1 TCR-T cells treated only with Cas9 (NE1Cas9) or

NY-ESO-1 TCR-T cells treated with Cas9/sgRNA RNP without AAV

(NE1DPD-1) were generated. Five days after electroporation and

AAV donor transduction, the surface expression of NY-ESO-1 TCR

was measured in each group using flow cytometry (Figure 1C). We

confirmed that CRISPR editing after lentiviral transduction did not

affect the expression of the transduced NY-ESO-1 TCR, as there was

no significant difference between the three groups in the positive

percentage or mean fluorescence intensity (MFI) of NY-ESO-1 TCR.

Next, we examined whether CRISPR knock-out or knock-in was

successfully achieved by performing flow cytometry on day 10

(Figure 1D). Before stimulation, neither PD-1 nor tLNGFR was

expressed in any group. Upon stimulation with anti-CD3 and anti-

CD28 antibodies, about 60% of NE1Cas9 T cells became PD-1

positive, whereas less than 10% of NE1DPD-1 or NE1DPD-1-IL-12
T cells expressed PD-1. Additionally, up to 30% of NE1DPD-1-IL-12
T cells displayed tLNGFR expression after stimulation (Figure 1E),

indicating that the donor sequence was successfully inserted in frame

and expressed under the endogenous PDCD1 regulatory elements

upon T cell activation. Flawless integration of the transgene was also

confirmed by in-out PCR analysis of genomic DNA from NE1DPD-1-
IL-12 T cells (Supplementary Figure 3).
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After confirming the accurate insertion of transgenes, we

investigated whether IL-12 could be secreted in a target cell-

dependent manner (Figure 1F). Engineered NY-ESO-1 TCR-T cells

were co-cultured with NY-ESO-1+ A375 tumor cells for 48 h, and the

amount of IL-12 secreted into the culture supernatants was analyzed

using a CBA assay (Figure 1G). NE1Cas9 and NE1DPD-1 T cells did

not produce IL-12 before co-culture, and NE1DPD-1-IL-12 T cells

showed only slight leakage of IL-12 (2.662 pg/mL). Upon target cell

recognition, NE1DPD-1-IL-12 T cells released approximately 20 pg/

mL of IL-12 into the culture supernatant, whereas NE1Cas9 and

NE1DPD-1 T cells showed minimal IL-12 release.

Given that STAT4 is known as an early target gene of IL-12

signaling (40), we next examined the status of p-STAT4 in engineered

T cells. Engineered NY-ESO-1 TCR-T cells were stimulated on anti-

CD3-coated plates for 3 days and the levels of STAT4 and p-STAT4

were determined by western blotting (Figure 1H). Before stimulation,

STAT-4 was not phosphorylated in any group. After stimulation, only

NE1DPD-1-IL-12 T cells displayed a strong STAT-4 phosphorylation,

which indicate the biological activity of the single-chain IL-12

released from the edited PDCD1 locus. Overall, these results

demonstrate that site-specific integration of the single-chain IL-12

gene into the PDCD1 locus enabled functional IL-12 to be produced

by NY-ESO-1-specific T cells in a target cell-dependent manner.
The endogenous PD-1 promoter tightly
regulates the knock-in transgene

PD-1 expression is known to respond dynamically to TCR

activation (41, 42). Here, we measured the expression levels of PD-

1 and tLNGFR after stimulation of T cells to determine whether the

transgenes inserted into the PDCD1 locus would behave similarly

(Figure 2A). The percentage of PD-1-positive cells in the NE1Cas9 T

cells increased significantly at 2 days after stimulation, returned to

almost baseline by day 4, and then re-elevated after the second

stimulation. In contrast, minimal levels of PD-1-positive cells were

detected in the NE1DPD-1 and NE1DPD-1-IL-12 T cell cells,

confirming that the expression of inhibitory PD-1 was successfully

abolished. Interestingly, the expression of tLNGFR was detected only

in the NE1DPD-1-IL-12 T cells, where it showed kinetics similar to

those of PD-1 expression in the NE1Cas9 T cells. These results

indicate that our approach successfully utilizes the intrinsic

regulatory mechanism of PD-1 to control transgene expression

while simultaneously blocking the expression of endogenous PD-1.

As previously reported (25, 26), a synthetic promoter that

responds to TCR activation could be used as an alternative strategy

to our approach. Therefore, we next compared the expression

patterns of a transgene inserted into the PDCD1 locus with those

controlled by a synthetic nuclear factor of activated T-cells (NFAT)-

responsive promoter. To monitor expression, we used a transgene

encoding a green fluorescent protein and tLNGFR (Zsgreen-2A-

tLGNFR) which was either inserted site-specifically into the

endogenous PDCD1 locus using CRISPR knock-in (DPD-1-

Zsgreen), or randomly integrated into the genome with the NFAT-

responsive promoter using lentivirus (NFAT-Zsgreen, Figure 2B).

After cells were stimulated with anti-CD3 and anti-CD28 antibodies,

the upregulation of Zsgreen and tLNGFR was measured using flow
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cytometry (Figure 2C). Before stimulation, we found that NFAT-

Zsgreen T cells exhibit leaky expression of Zsgreen and tLNGFR,

which was not observed in DPD-1-Zsgreen T cells. After stimulation,

consistent with the results obtained from NE1DPD-1-IL-12 T cells,

DPD-1-Zsgreen T cells displayed tightly controlled transgene

expression that was upregulated on day 2 and returned to the

baseline by day 4. NFAT-Zsgreen T cells also showed inducible

transgene up-regulation at 2 day post-stimulation, but to a

significantly higher level than that seen for DPD-1-Zsgreen T cells,

as determined by the percentages (Figure 2D) and MFI (Figure 2E) of

Zsgreen+ and tLNGFR+ cells. Furthermore, unlike DPD-1-Zsgreen T
Frontiers in Immunology 06
cells, NFAT-Zsgreen T cells exhibited significant levels of residual

transgene expression on day 4. The significant levels of leaky

transgene in NFAT-Zsgreen T cells, together with their high

expression levels upon stimulation, may account for the unexpected

toxicity observed in patients infused with NFAT-driven IL-12-

expressing T cells (29). Collectively, these results suggest that,

compared to the NFAT-responsive promoter, PD-1 regulatory

elements can provide a better control of transgene expression

without leakage and induce moderate levels of transgene expression

with rapid kinetics, which could mitigate the potential toxicity of IL-

12 secreted by engineered T cells.
A
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FIGURE 1

CRISPR-mediated PDCD1 locus editing to generate DPD-1-IL-12-NY-ESO-1-specific T cells. (A) Schematic diagram for the targeted insertion of IL-12
into the PDCD1 locus using CRISPR RNP and AAV6 delivery (LHA and RHA: left and right homology arms, respectively, 2A: self-cleaving peptide,
2tLNGFR: truncated low-affinity nerve growth factor receptor, pA: polyA signal). (B) Timeline for the consecutive lentiviral transduction, electroporation,
and AAV6 transduction to generate DPD-1-IL-12-edited NY-ESO-1-engineered T cells. (C) Five days after electroporation, the surface expression levels
of NY-ESO-1 TCR on engineered T cells were analyzed using flow cytometry and the percentage and mean fluorescent intensity (MFI) of NY-ESO-1 TCR
were quantified (n = 4; four independent experiments with four donors). Data were analyzed using one-way ANOVA. ns, not significant.
(D) Representative flow cytometry plot of PD-1 and tLNGFR upregulation in engineered T cells two days after stimulation with aCD3 and aCD28.
(E) Percentage of tLNGFR in engineered T cells before and after stimulation. Data are presented as the mean ± SEM (n = 6; six independent donors).
(F) Schematic diagram of the stimulation-dependent release of targeted IL-12 from the edited PDCD1 locus. (G) After T cells were stimulated with A375
cells for 2 days, the amount of IL-12 secreted into the culture supernatant was measured using a CBA assay. Data are presented as the mean ± SEM
(n = 3; three independent experiments with three donors). (H) Representative western blot image showing Tyr 693 phosphorylation of STAT-4 in
NYESO1-DPD-1-IL-12 T cells before and after stimulation with aCD3 for 3 days (n = 3; three donors).
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NE1DPD-1-IL-12 T cells exhibit enhanced
effector function in vitro

Next, we investigated whether the IL-12 secreted from NE1DPD-1-
IL-12 T cells could directly affect the effector function of TCR-T cells. As

IL-12 signaling is known to be associated with increased IFN-g
production (19), we used intracellular flow cytometry to measure IFN-

g expression levels in engineered T cells co-cultured with A375 tumor

cells for 24 h. Our results confirmed that NE1DPD-1-IL-12 T cells

showed significantly higher proportions of IFN-g-positive T cells and

higher MFI compared to control T cells (Figure 3A). CBA-based analysis

indicated that NE1DPD-1-IL-12 T cells produce higher levels of IFN-g,
TNF, and IL-10, but lower levels of IL-2, compared to control T cells

(Figure 3B); this is consistent with the results from previous studies (13).

NE1DPD-1-IL-12 T cells co-cultured with A375 tumor cells for 24 h also

displayed higher expression of GzmB (Figures 3C, D), but no difference

in the percentage or MFI for perforin, compared to control T cells

(Supplementary Figures 4A, B). Next, we evaluated the cytotoxic function

of the engineered TCR-T cells by co-culturing them with Zsgreen-

overexpressing A375 cells. When the green signal on tumor cells was

measured every 2 h by a live cell imaging system, NE1DPD-1-IL-12 T

cells showed a more rapid decrease in the green signal compared to
Frontiers in Immunology 07
control T cells (Figure 3E). These results indicate that IL-12 secretion

from the PDCD1 locus enhances the effector function of NY-ESO-1-

specific T cells, resulting in more efficient killing of target cancer cells.

IL-12 signaling has been reported to reprogram CD8+ T cells into

effector memory and effector T cells (43, 44), which can elicit

immediate effector functions in response to antigen recognition.

Thus, we analyzed the differentiation status of the T cells before

and after repeated exposure to target cells, based on the expression

levels of CD45RO and C-C motif chemokine receptor 7 (CCR7)

(Supplementary Figures 5A, B). Under homeostatic expansion

conditions, the proportion of CD8+ T cells was similar among all

three groups (Supplementary Figure 5C). After repeated stimulation,

most T cells were skewed toward the CD8 phenotype, but the

percentage remained similar in all groups. The proportion of

effector memory CD8 T cells (CD45RO+CCR7–) was higher among

NE1DPD-1-IL-12 T cells than in the control group (Figure 3F). The

ratio of effector memory CD8 T cells to central memory CD8 T cells

(CD45RO+CCR7+) was also increased in NE1DPD-1-IL-12 T cells

(Figure 3G), indicating that PDCD1-driven-IL-12 secretion during

the repetitive exposure to antigens had impacted the differentiation of

CD8+ T cells. Similar changes in effector and central memory T cell

pool were observed in CD4+ T cells (Supplementary Figures 5B, D).
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C

FIGURE 2

Tight control of transgene expression by the endogenous PDCD1 promoter. (A) Kinetics of PD-1 upregulation and tLNGFR expression in engineered T
cells after two constitutive stimulations with aCD3 and aCD28. The arrow indicates the stimulation time points. Data are presented as the mean ± SEM
(n = 3; independent experiments). (B) Schematic diagram of PD-1 promoter and NFAT-responsive promoter employed for expression of Zsgreen-2a-
tLNGFR transgenes. (C) Representative flow cytometry plot for expression of Zsgreen and tLNGFR at 2-day intervals after stimulation with aCD3 and
aCD28. (D) Percentage of Zsgreen and tLNGFR expression levels of engineered T cells in C. (E) MFI of Zsgreen and tLNGFR of engineered T cells in C.
Data in D and E are presented as the mean ± SEM (n = 3; three independent experiments). P-values of D and E were determined by two-tailed unpaired
t-test. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 were considered statistically significant. ns, not significant.
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NE1DPD-1-IL-12 T cells greatly expand
during chronic antigen stimulation

The immunosuppressive TME is believed to inhibit the

proliferation and survival of adoptively transferred T cells (7, 45).

Since proper T cell expansion is crucial for the success of T cell

therapy (46, 47), we investigated the expansion ability during repeated

tumor challenges. NY-ESO-1-specific T cells were repeatedly co-

cultured with A375-PDL1 cells that had been pretreated with

mitomycin C 3 times at 4-day intervals, and cell numbers and

viability were monitored by cell counting with Trypan Blue staining

(Figure 4A). After the first antigen stimulation, there was no

difference in the number of cells among the three groups. However,

after the second and third challenges, NE1DPD-1-IL-12 T cells were

significantly more abundant than control T cells. Furthermore,

although repeated stimulation gradually reduced the overall

viability in all groups, NE1DPD-1-IL-12 T cells showed higher
Frontiers in Immunology 08
viability at all tested time points compared to control T

cells (Figure 4B).

Next, we investigated whether this enhanced expansion of NE1DPD-
1-IL-12 T cells was due to changes in apoptosis resistance or proliferative

capacity. As a previous study demonstrated that IL-12 signaling inhibits

TCR-induced T cell death by regulating caspases and anti-apoptotic

molecules (48), we measured the percentage of annexin V-positive cells.

However, we found no between-group difference after the third

stimulation (Supplementary Figure 5A). We also found that the

expression levels of the antiapoptotic marker, Bcl-xL, and the master

anti-apoptotic regulator, c-FLIP, were similar in all groups

(Supplementary Figures 5B, C). The levels of cleaved caspase-3 and -8

were also similar across all groups (Supplementary Figures 5D, E). These

findings suggest that apoptosis resistancemay not significantly contribute

to the increased number of NE1DPD-1-IL-12 T cells observed following

repeated stimulation. In contrast, when the proliferative capacity of T

cells was evaluated by measuring Ki67 expression after the third
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FIGURE 3

Enhanced effector function of DPD-1-IL-12-edited NY-ESO-1 TCR-T cells in vitro (A) Engineered T cells were co-cultured with A375 cells for 24 h. IFN-g
secretion was determined using flow cytometry. The percentage of IFN-g positive cells and the MFI of IFN-g were quantified. Data are presented as the
mean ± SEM (n = 3; three independent experiments with three donors). (B) Engineered T cells were co-cultured with A375 cells for 48 h and the
cytokines (IFN-g, TNF, L-10, and IL-2) released into the culture supernatants were measured by CBA assay; results shown are representative of three
experiments with three different donors. Data are presented as the mean ± SD of triplicates. (C) Engineered T cells were co-cultured with A375 cells for
48 h. The GzmB expression was determined by intracellular flow cytometric analysis. (D) The MFI of GzmB in the engineered T cells shown in (C, E)
Engineered T cells were co-cultured with Zsgreen+ A375 cells for 96 h. The green signal from tumor cells was measured using IncuCyte every 2 h. A
decrease in the green signal indicates that tumor cells were killed; results shown are representative of three experiments. Data are presented as the
mean ± SD. (F) Percentage of effector memory CD8 T cells (CD45RO+/CCR7–) after a third repetitive stimulation with A375-PDL1 tumor cells. (G) The
ratio of effector memory to central memory (CD45RO+/CCR7+) CD8 T cells in (F) Data of F and G are presented as the mean ± SEM (n = 4; individual
donors). The P-values of A, B, and D were determined by two-tailed unpaired t-test. The P-value of E was determined by repeated-measures ANOVA
followed by Holm-Sidak’s multiple comparisons test. Data of F and G were compared by two-tailed paired t-test. *P<0.05, **P<0.01, ***P<0.001, and
****P<0.0001 were considered statistically significant. ns, not significant.
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stimulation, NE1DPD-1-IL-12 T cells showed a significantly higher

percentage of Ki67 positive cells compared to control T cells

(Figures 4C, D). Consistent with this, NE1DPD-1-IL-12 T cells co-

cultured with A375-PDL1 cells for 3 days showed a more divided cell

population than the other groups, as determined by cell-trace violet dye

staining (Figures 4E, F). Taken together, our results indicate that IL-12

production from the edited PDCD1 locus contributed to expanding NY-

ESO-1-specific T cells under chronic antigen stimulation by enhancing

their proliferative capacity.
NE1DPD-1-IL-12 T cells exhibit superior anti-
tumor activity in vivo

To investigate the therapeutic efficacy of NE1DPD-1-IL-12 T cells

in vivo, we subcutaneously implanted immune-deficient NSG mice
Frontiers in Immunology 09
with 1 × 106 Zsgreen and firefly luciferase-overexpressing A375 cells

(A375-ZF), followed by intravenous injection of 1 × 106 NY-ESO-1+

TCR-T cells (Figure 5A). When the bioluminescent signal was

measured weakly to monitor the tumor burden, the tumor cells

were found to be completely eradicated in mice treated with

NE1DPD-1-IL-12 T cells (Figure 5B, Supplementary Figures 7A, B).

In contrast, NE1Cas9 and NE1DPD-1 T cells failed to control tumor

growth in this xenograft model, suggesting that the secretion of IL-12

from TCR-T cells played a critical role in tumor control. We then

carried out another in vivo experiment in which we used PD-L1-

overexpressing A375 cells (A375-ZF-PDL1) to mimic a more

immunosuppressive TME (Figure 5C). Under these experimental

conditions, NE1Cas9 T cells had virtually no effect on tumor

growth; NE1DPD-1 T cells cleared the tumor in one out of five

mice, likely reflecting the effect of PD-1 knockout in the T cells; and

NE1DPD-1-IL-12 T cells completely eradicated the tumors in all five
frontiersin.org
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FIGURE 4

Enhanced cell expansion of DPD-1-IL-12-edited NY-ESO-1 TCR-T cells during repeated tumor challenge (A) The expansion engineered T cells was
analyzed after repetitive stimulation with mitomycin C-pretreated A375-PDL1 cells three times every 4 d. Data are presented as the mean ± SEM (n = 4;
four independent experiments with individual donors). (B) The viability of expanded T cells in A was measured using a Countess II automated cell counter
with Trypan Blue staining. (C) Representative flow plot for Ki67 expression after the third stimulation in (A, D) The percentage of Ki67+ T cells after the
third stimulation (n = 3; individual donors). (E) Cell trace violet (CV)-stained engineered T cells were co-cultured with A375-PDL1 for 3 days. The diluted
CTV intensity was measured by flow cytometry. (F) Percentage of diluted CTV stained T cells that divided more than three times in E (n = 3; individual
donors). All data are presented as the mean ± SEM. The P-values of A and B were determined by repeated-measures ANOVA followed by Holm-Sidak’s
multiple comparisons test. P-values of D and F were determined by two-tailed unpaired t-test. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 were
considered statistically significant. ns, not significant.
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mice, further demonstrating the potent anti-tumor activity of

NE1DPD-1-IL-12 T cells (Figure 5C, Supplementary Figure 7C).

Lastly, to determine the degree of T cell expansion in vivo, we

analyzed isolated tumor tissues at 5 day after T cell injection

(Figure 5E). The harvested tumors were mechanically dissociated

and filtered to generate single-cell suspension and analyzed using flow

cytometry (Supplementary Figure 8). We observed a significantly

higher proportion of CD3+ T cells in the mice treated with DPD-1-IL-
12 T cells compared to those of the control groups (Figure 5F).

Overall, consistent with the findings from our in vitro experiments,

the results from in vivo xenograft models confirmed that the

engineering of T cells to secrete IL-12 from the PDCD1 locus can

profoundly enhance the anti-tumor activity of NY-ESO-1-specific

TCR-T cells.
Frontiers in Immunology 10
Discussion

A variety of cofactors, including soluble factors such as cytokines

or chemokines, as well as membrane-bound factors such as co-

stimulatory receptors or cytokine receptors, have been employed to

design ACTs with enhanced therapeutic potential (49–51). The co-

delivery of exogenous cytokines has been extensively investigated

because such factors have pleiotropic effects on both the therapeutic T

cell itself and on other immune and non-immune cells of the TME

(52). However, the constitutive secretion of some cytokines from

circulating ACTs raises potential safety concerns, given that systemic

administration of these cytokines often leads to severe side effects in

patients due to on-target off-tumor toxicity (28, 53, 54). Therefore, a

novel ACT engineering strategy that can limit their cytokine
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FIGURE 5

Enhanced anti-tumor activity of DPD-1-IL-12-edited NY-ESO-1 TCR-T cells in vivo (A) Timeline for in vivo experiment performed with A375-ZF tumor
cells. Immunodeficient NSG mice were subcutaneously injected with 1 × 106 A375-ZF cells. After 7 days, 1 × 106 NY-ESO-1+ T cells were intravenously
injected. The luminescence signal from tumor cells was measured weakly using an in vivo imaging system (IVIS). (B) Quantitative analysis of
bioluminescent signal from individual mouse. DPD-1-IL-12 T cells exhibited superior anti-tumor activity (n = 4 mice per group). (C) Timeline for in vivo
experiments performed using the PD-L1-overexpressed A375 model. Six days after subcutaneous injection of A375-ZF-PDL1 cells, 1 × 106 NY-ESO-1+ T
cells were intravenously injected. The luminescence signal from tumor cells was measured weekly using IVIS. (D) Quantitative analysis of bioluminescent
signal from individual mouse. Tumors were cleared in only one of the PD-1 deleted NY-SO-1-treated mice. All NE1DPD-1-IL-12-treated mice were cured
from tumors (n = 4 mice for no T cells and NE1Cas9, n = 5 mice for NE1DPD-1 and NE1DPD-1-IL-12). (E) Timeline for investigating engineered T cells
infiltrated into the tumor site. A375-PDL1 tumor cells and NY-ESO-1 specific T cells were injected as in (C) At 11 d, the mice were sacrificed and tumors
were harvested. Tumors were mechanically dissociated and the infiltrated T cells were analyzed by flow cytometry. (F) The percentage of CD3+ cells in
tumor tissues (n = 4 mice per group). Data are presented as mean ± SEM. The P-value was determined by two-tailed unpaired t-test. *P<0.05 was
considered statistically significant. ns, not significant.
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expression within tumor tissues could help maximize the therapeutic

benefits while minimizing the potential adverse effects.

To address this goal, we employed an endogenous genetic

network influenced by TCR signaling to antigen-dependently

control the expression of IL-12, a potent pro-inflammatory cytokine

that has long been investigated in cancer immunotherapy. Based on

reports that the PDCD1 gene shows tight and dynamically regulated

expression in response to T cell activation (32, 42), we selected this

locus for targeted insertion of the IL-12 gene using the CRISPR/Cas9

genome editing tool. This strategy enabled us to express IL-12 under

the control of PDCD1 regulatory elements strictly in response to T cell

activation, with expression kinetics similar to those of endogenous

PD-1. In this manner, the engineered T cells were expected to secrete

IL-12 locally only upon encountering antigens within the tumor

tissue. In addition, CRISPR editing of the PDCD1 enabled us to

simultaneously knock out the PD-1 gene, further empowering T cells

to resist the functional exhaustion caused by inhibitory PD-1

signaling (45). Indeed, several studies have demonstrated that the

disruption of PD-1 using CRISPR results in the enhanced anti-tumor

activity of CAR-T cells (33, 55, 56), which was also partially observed

in our in vitro and in vivo experiments with NY-ESO-1 T cells lacking

PD-1 expression (NE1DPD-1 T cells).

Our results demonstrated that insertion of the IL-12 gene into the

PDCD1 locus induces a more moderate expression level of IL-12 with

a more strict reliance on TCR activation compared to that driven by

the NFAT-responsive promoter. In a previous study, genetically

engineered TILs expressing NFAT-IL-12 exhibited unexpected

toxicity in patients (29), which may be attributable to a high

amount of released IL-12. This report further described that low

levels of leaky constitutive expression of IL-12 from the engineered

TILs exert anti-proliferative effect, leading to difficulties in growing

sufficient numbers of cells ex vivo and likely contributing to the poor

persistence of cells in vivo. Another clinical study (NCT02498912) is

currently underway using CAR-T cells engineered to release IL-12

from an internal ribosome entry site (IRES) positioned immediately

after the CAR sequence in the vector (57, 58). The authors of this

study hypothesized that the release of less IL-12 from IRES-IL-12 (200

pg/mL) compared to NFAT-IL-12 (50,000 pg/mL) might minimize

potential IL-12-related toxicity issues. Of note, our DPD-1-IL-12-
edited T cells secreted even fewer IL-12 (20 pg/mL) than the T cells

engineered with NFAT-IL-12 or IRES-IL-12, and thus might offer

even more benefits for preventing the potential adverse effects

associated with IL-12. Nevertheless, a more thorough analysis with

respect to potential IL-12-related safety concerns must be conducted

before implementing our approach in clinical settings.

It is important to note that the moderate levels of IL-12 produced

in our system were sufficient to elicit superior anti-tumor activity

from DPD-1-IL-12-edited NY-ESO-1 T cells compared with non-

edited NY-ESO-1 T cells in both in vitro cytotoxicity assays and in

vivo xenograft mouse models. The expression of IL-12 in our system

was significantly lower (20 pg/ml) than in previously reported systems

such as IRES-IL-12 (200 pg/ml) (57), TET-IL-12 (1000 pg/ml) (59),

and NFAT-IL-12 (5000 pg/ml) (29). Different copy numbers of the

transgene as well as different promoter kinetics and strength may

account for this difference. Unlike retroviral vector systems used in

previous approaches, which randomly integrate multiple copies of
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transgenes into the host genome, our CRISPR knock-in system allows

us to add a single copy of transgene per chromosome precisely and to

control its expression through the endogenous transcription

machinery of the PDCD1 locus. Even with the low levels of IL-12

released by activated T cells, we observed along with the increased

production of pro-inflammatory cytokines, such as IFN-g and TNF,

the enhanced expression of GzmB, which is a major effector molecule

of T cells for inducing apoptosis in tumor cells. This appears to be

linked to the superior anti-tumor activity of PD-1-IL-12 edited T cells.

We also found that the transient expression of IL-12 significantly

enhanced the expansion of DPD-1-IL-12-edited T cells by promoting

their proliferation upon repeated antigen stimulation. This enhanced

proliferation is in sharp contrast to a previous report, which showed

that continuous retroviral IL-12 expression has deleterious effects on

T cell proliferation (25). The proliferation enhancement found in our

system may be particularly important for the enhanced anti-tumor

activity observed in vivo for DPD-1-IL-12-edited T cells. Collectively,

our results suggest that the target-dependent and moderate

expression of IL-12 derived from the PDCD1 locus provides an

effective strategy to enhance the anti-tumor function of TCR-T cells.

Several previous studies have demonstrated that IL-12 is involved in

regulating not only T cells, but also a wide range of other immune cells,

such as DCs and macrophages (13, 15, 24, 26). However, the severe

immune-compromised state of NSG mice and a lack of cross-reactivity

between human IL-12 and mouse IL-12 receptor proteins precluded us

from investigating this axis in our study. The humanized mice model, in

which human CD34+ HSCs are engrafted into NSG mice, may allow us

to study the effects of IL-12 released by DPD-1-IL-12-edited T cells on

other immune cell types in a more comprehensive manner.

In summary, we herein demonstrate that the inducible genetic

circuit of PD-1 expression could be reprogrammed to secrete IL-12 in

NY-ESO-1 TCR-T cells using CRISPR knock-in technology. The

modest and tight expression of IL-12 from the PDCD1 locus was

sufficient to enhance the anti-tumor activity of NY-ESO-1 TCR-T

cells. Our strategy could be extended to the controlled expression of

other proteins of interest, such as antibodies, cytokines, chemokines,

receptors, and transcription factors that may enhance or synergize

with the function of T cells. Other genetic loci in addition to the

PDCD1 locus could also be explored in future studies. Lastly, our

approach may provide a novel engineering approach for other

adoptive T cell therapies, such as CAR-T, TIL, and virus-specific T

cell therapies, against solid tumors.
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