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The skin is the body’s largest organ. It serves as a barrier to pathogen entry and

the first site of immune defense. In the event of a skin injury, a cascade of events

including inflammation, new tissue formation and tissue remodeling contributes

to wound repair. Skin-resident and recruited immune cells work together with

non-immune cells to clear invading pathogens and debris, and guide the

regeneration of damaged host tissues. Disruption to the wound repair process

can lead to chronic inflammation and non-healing wounds. This, in turn, can

promote skin tumorigenesis. Tumors appropriate the wound healing response as

a way of enhancing their survival and growth. Here we review the role of resident

and skin-infiltrating immune cells in wound repair and discuss their functions in

regulating both inflammation and development of skin cancers.
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1 Overview

The skin is not only a physical barrier protecting us from infection but also an

important immunological site, which in humans contains an estimated 20 billion T cells as

well as a range of cells with innate and innate-like roles. Among them are Langerhans cells,

dermal dendritic cells (DCs), macrophages, neutrophils, mast cells and innate lymphoid

cells. These immune cells, together with keratinocytes and neurons, interact with the skin

microbiota, to maintain skin homeostasis while protecting against pathogen invasion.

Several recent reviews (1–3) explain how immune subsets and specialized immunological

sites (such as hair follicles and sweat glands) interact with the skin microbiome. This review

will focus specifically on how skin immune cells mediate wound repair and how this

process can be co-opted by tumors.
2 Cutaneous tissue injury and wound
repair cascade

Wound healing is a natural physiological reaction to tissue injury designed to prevent

the onset of infection and restore tissue integrity (4). It follows a finely coordinated
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multistep process that includes hemostasis, inflammation,

proliferation (new tissue formation), and tissue remodeling

(5) (Figure 1).
2.1 One to three days after injury

2.1.1 Hemostasis and humoral inflammation
Vascular damage with resultant local hemorrhage is a universal

characteristic of tissue injury (6). A few minutes after injury,

platelets in the circulation begin to stick to the injured site and

promote formation of blood clots (7), made up predominantly of

crosslinked fibrin, plasma fibronectin and other extracellular matrix

(ECM) proteins, such as vitronectin and thrombospondins (8).

2.1.2 Cellular inflammation
Inflammatory cells enter damaged tissues through diapedesis by

way of venules within minutes after injury (9, 10). Neutrophils are

the first immune subset to respond to cutaneous damage (11). They

deploy their antimicrobial arsenal to phagocytose and kill

contaminating microorganisms and secrete an array of cytokines

that recruit macrophages, T cells and additional neutrophils (12).

Mast cells are abundant in the skin and orchestrate the early

stages of wound healing (13). They recognize interleukin (IL)-33

released by necrotic cells via ST2 receptor and secrete histamine and

other cytokines that stimulate the immune response (13, 14). This is

critical for attracting other immune cells to the wound and

promoting inflammation (15).

Monocytes and macrophages follow neutrophils in wounds to

remove dead cells and cellular debris and recruit T cells and natural
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killer (NK) cells to stimulate the proinflammatory response (16).

Removal of dead neutrophils by macrophages heralds the end of the

inflammatory period and the transition of macrophages to an M2

(anti-inflammatory) phenotype (17) [section 3.2]. This conversion

from an M1 pro-inflammatory to M2 anti-inflammatory phenotype

is a crucial step in the initiation of the proliferative and resolution

phase (18). At the end of this stage, these macrophages either die at

the wound or migrate to draining lymph nodes. These events

promote subsequent wound healing phases (16) [section 2.2].
2.2 One to ten days after injury

2.2.1 New tissue formation
This stage includes angiogenesis, fibroplasia, and re-

epithelialization which stimulate the closure of the lesion.

Angiogenesis (formation of new microvasculature) enables

transport of fluid, oxygen, nutrients, and immune-competent cells

into the stroma (19). Fibroplasia commences with the formation of

granulation tissue (20) and is characterized by the proliferation of

fibroblasts, which deposit the collagen matrix required for adhesion

and migration (21). Myofibroblasts, specialized fibroblasts with

contractile properties, are responsible for the production of the

ECM components that replace the temporary matrix in the wound

within the granulation tissue (22). These cells have contractile

abilities due to the presence of a-smooth muscle actin (a-SMA)

in their microfilament bundles, making them a significant

contributor to the contraction and maturation of the granulation

tissue (23). The transition from the inflammatory to the

proliferative phase occurs two to four weeks after injury as
A B C

FIGURE 1

The phases of skin wound healing. (A) The inflammatory phase: one to three days after injury the wound is filled with a clot. Inflammatory cells have
been recruited to the wound site. Neutrophils release reactive oxygen species (ROS), nitric oxide (NO), antimicrobial proteins (AMPs), TNFa, IL-1B, IL-
6, CXCL2/8 and monocyte attracting protein-1 (MCP-1). (B) The proliferative phase: macrophages are recruited to clear dead tissue and debris. They
secrete IL-1, TNFa, PDGF, VEGF and TGF-b1. New blood vessels form in the wound bed. Fibroblasts are activated in the wound and begin to deposit
collagen. (C) The remodeling phase: wound contraction occurs, collagen III is replaced by collagen I, and the extracellular matrix is remodeled by
proteases and other enzymes. Created with BioRender.com.
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epithelial cells start the process of re-epithelialization that involves

their proliferation and migration from the borders of the wound.
2.3 One to two weeks after injury

2.3.1 Tissue remodeling
This phase marks the transition from granulation tissue to scar.

It starts one to two weeks after wounding and continues for up to

two years (24). At this stage, wound tissue is mainly dominated by

collagen type I, which has replaced collagen type III (19). This

results in the formation of a scar that contains dense connective

tissue of reduced tensile strength and elasticity compared with

normal skin (25). Granulation tissue is replaced by acellular scar

after the completion of wound repair and myofibroblast

apoptosis (26).
3 The role of immune cells in skin
wound healing and cancer

Acute wound healing is a highly regulated process that leads to

the restoration of tissue integrity and resolution of inflammation.

However, chronic wounds (like diabetic ulcers) can develop if the

inflammatory process is not succeeded by the repair phase (27, 28).

Many inflammatory skin conditions (such as atopic dermatitis,

psoriasis, discoid lupus erythematosus) involve disruptions in

immune function and signaling (29). This can result in persistent

activation and increased production of pro-inflammatory molecules

such as chemokines and cytokines, which exacerbate inflammation

and cause abnormal cell growth (30). Diseases such as rheumatoid

arthritis and psoriasis also show characteristics of aberrant wound

healing (31, 32). Notably, chronic wound state is a risk factor for
Frontiers in Immunology 03
cancer development (33) and can promote malignant

transformation (29, 34).

The granulation tissue of healing skin wounds contains a

mixture of cells, including fibroblasts, blood vessels, and

inflammatory cells. This strongly resembles the tumor stroma

suggesting that epithelial tumors promote the formation of their

stroma by activating the wound healing response of the host, which

leads to the formation of new blood vessels and fibroblasts. This

suggests that tumors hijack the proliferative program of wound

repair to support their proliferation. The tumor microenvironment

(TME) also shapes immune cell function to enhance an

immunosuppressive and pro-angiogenic state, aiding tumor

immune evasion and promoting metastasis (Figure 2). Unlike a

wound, the tumor continues to grow uncontrollably, without the

resolution of inflammation and proper tissue repair. This evidence

has led to the suggestion that tumors represent ‘wounds that never

heal’ (35). This idea is supported by the fact that many of the same

signaling pathways and cellular players involved in wound healing

are also activated in tumor development (36). But while wound

healing involves the migration and proliferation of healthy cells to

repair the damaged tissue, tumor cells acquire genetic changes that

allow them to invade the surrounding tissues and metastasize (36).

In both wound healing and cancer, the initial inflammatory

response is necessary to recruit immune cells to the site of injury or

to the TME (36). But in chronic wounds or cancer, the

inflammatory response becomes dysregulated and promotes

further tissue damage, leading to impaired healing or tumor

progression (37). Moreover, several studies have demonstrated an

association between chronic wounds and skin cancer (38). The

specific functions of immune cells can vary depending on the type

of cancer and the stage of the disease, and more research is needed

to fully understand the role of immune cells in skin repair and skin

cancer. Next, we will review in detail the functions of immune cell
A B C

FIGURE 2

Schematic representation of an epithelial tumor. (A) When neoplasia is first initiated, fibroblasts are recruited to the tumor site and activated. (B) As
the tumor grows, inflammatory cells are recruited to the tumor and release cytokines. VEGF and other signaling molecules induce
neovascularization. (C) The abnormal extracellular matrix is pro-tumorigenic, pro-angiogenic and increases the invasiveness of the tumor. Created
with BioRender.com.
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subsets and inflammatory mediators in cutaneous wound healing

and cancers.
3.1 Neutrophils

Several molecules attract neutrophils to wounded skin: damage-

associated molecular patterns (DAMPs); proinflammatory

cytokines, including TNF-a; chemoattractants, such as CXCL1–3

and CXCL8(IL-8); anaphylatoxins C3a and C5a and macrophage

inflammatory protein-1a (39, 40). In addition, damaged

mitochondria from necrotic cells release other early signals, such

as fMet-Leu-Phe (fMLP), derived either from translocated

commensal organisms or from necrotic host cell mitochondria

(41). At the injury site, neutrophils destroy pathogens via

phagocytosis and degranulation, release of highly concentrated

reactive oxygen species (ROS), antimicrobial proteins (AMPs)

and neutrophil extracellular traps (NETs) (42). They amplify

inflammation by secreting cytokines and chemokines, such as

TNF-a, IL-1b, IL-6, CXCL8 and CXCL2 (43). Neutrophils also

recruit macrophages and T cells via monocyte attracting protein-1

(MCP-1) (44) and play an important role in modulating adaptive

immunity in response to infectious wounds (45–47).

LTB4 released from early recruited neutrophils acts as a

chemoattractant and mediates an effect known as “neutrophil

swarming” (48, 49), a dynamic response to inflammation first

observed in neutrophils using two-photon microscopy. Intravital

imaging has provided important insight into neutrophil function in

skin infection and injury (47, 50, 51). For instance, Lammerman

et al. used it to show that the lipid leukotriene B4 was a critical

mediator of intercellular signaling among swarming neutrophils

after cutaneous thermal injury (48). As neutrophils rearranged the

collagen fiber network to create a collagen-free zone at the center of

the wound, their clusters were maintained via integrin receptors

(48). Real time observation of neutrophil dynamics in zebrafish

demonstrated that neutrophil migration to the wound was due to

the production of hydrogen peroxide (52).

Neutrophils are not only essential for eradicating pathogens and

inhibiting their propagation when the skin barrier is compromised,

but also play a beneficial role in the restoration of epithelial tissues.

After sterilizing the wound, neutrophils initiate an apoptotic cell-

death pathway which leads to efferocytosis by macrophages (53).

However, if this process is impaired, neutrophils persist in the wound

microenvironment and their associated inflammatory mediators

contribute to the formation of chronic wounds (54). Once activated,

neutrophils then initiate wound closure, re-epithelialization and

formation of new vessels by expressing cytokines and growth

factors, including TNF-a and VEGF (40, 55, 56). Neutrophil-

derived VEGF plays an important role, for example, in

neovascularization of injured murine cornea (57), highlighting

neutrophil contributions to restoring tissue architecture.

The importance of neutrophils in tissue repair has been

demonstrated in several studies. For instance, mice lacking fMLP

receptors 1 and 2 show delays in neutrophil accumulation during
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the acute stage of injury, resulting in delayed wound closure (58).

Likewise, mice deficient in CXCR2, a chemokine receptor important

for neutrophil recruitment to the wound site, exhibit delayed re-

epithelialization of skin wounds and delayed wound healing (59). In

addition, neutropenic patients and mice deficient in the neutrophil

protease matrix metalloproteinase 8 (MMP-8) display reduced skin

wound repair (60, 61). Interestingly, a new role for neutrophils in

wound repair has recently been demonstrated in an internal injury

model where neutrophils were shown to carry pre-existing matrix

into wounds, promoting fibroblast activation and scar formation

(62). Whether such a mechanism also exists in skin injuries is of

considerable interest.

In cancer, the release of DAMPS caused by hypoxia, nutrient

starvation, cellular proliferation, and necrosis in the TME can

recruit and activate neutrophils (63). Tumor and stromal cells can

also secrete CXCR2 ligands, such as CXCL1, CXCL2 and CXCL5 to

attract neutrophils (64, 65). Within tumors, neutrophils can be

located in either the peripheral region or within the tumor core (66).

Neutrophils infiltrating the tumor core are less motile compared to

the peritumoral neutrophils. The reduction in motility may allow

neutrophils to accumulate and promote inflammation (66).

Neutrophil anti-microbial and wound repair functions can be

coopted by tumors to mediate immunosuppression and metastasis

(67). Neutrophil-derived ROS can suppress T and NK cell responses

in tumors (68–70) and activate cellular proliferation or survival

signaling pathways, such as the NF-kB pathway and the synthesis of

transcription factors like STAT3 (71), which are constitutively

activated in skin cancer (72). Oxidative stress regulates the

expression of intercellular adhesion protein-1 (ICAM-1), which

together with IL-8, controls the transendothelial migration of

neutrophils and may contribute to tumor metastasis (73).

Consistent with an important role for neutrophils in metastasis,

intravital imaging showed that neutrophils are among the first

immune cells to arrive at metastatic tumor sites (74), where

neutrophil derived NETs act as an adhesion substrate for cancer

cells and degrade the extracellular matrix (75–77). Other

neutrophil-derived factors, such as granules containing neutrophil

elastase (NE), neutrophil collagenase (or MMP8), and gelatinase B

(or MMP9) can remodel the ECM in the TME or act directly on

tumor cells themselves to boost tumor proliferation and invasion

(78). Consistent with this, MMP9 stimulates keratinocyte

proliferation and invasion in skin cancer models (79, 80). Tumor

neutrophils can release cytokines like oncostatin M, which induces

VEGF and increases angiogenesis and tumor cell invasion (81).

Notably, neutrophil-derived mediators of wound repair and

pathogen control can also act to eradicate cancerous cells and

restrict metastatic dissemination (82, 83). For instance,

neutrophils can mediate direct tumor killing by releasing ROS

and cytotoxic enzymes, or by recruiting and activating other

immune cells, such as cytotoxic T cells (84, 85). This points to a

complex role for neutrophils in tumor immunity, where wound

repair and pathogen killing mechanisms are applied within the

TME in a context and co-stimulation dependent manner which is

not yet fully understood.
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3.2 Macrophages

Skin has two distinct macrophage populations: tissue resident,

which derive from the extraembryonic yolk sack, and monocyte-

derived, which originate from the bone marrow-derived monocytes

recruited to the skin (86). Tissue resident macrophages monitor the

skin microenvironment for signals that indicate cell stress, tissue

injury or infection (87, 88). After acute injury they recognize

DAMPs and release hydrogen peroxide (89), recruiting

neutrophils and monocytes from the blood to further amplify the

inflammatory response (90). Tissue resident macrophages are

particularly important for the immediate response to injury, while

the long-term response is dependent on the bone marrow-derived

monocytes which differentiate into macrophages in situ (54).

At least three functional subsets of macrophages contribute to

the different stages of wound healing and tissue repair: (i) pro‐

inflammatory (traditionally referred to as “M1”), (ii) tissue repair or

pro-wound healing, and (iii) anti‐inflammatory or pro-resolving

macrophages (91, 92). Subsets (ii) and (iii) are collectively referred

to as “M2” macrophages. Pro-inflammatory macrophages infiltrate

the injury site shortly after the wound is formed to phagocytose and

kill bacteria, remove cell debris, toxic metabolites and dead cells

(93). They produce inflammatory mediators, such as nitric oxide,

ROS, IL-1, IL-6 and TNF-a and secrete MMP-2 and MMP-9 to

break down the ECM (94, 95). Macrophage-derived cytokines IL-

12/23 and IFN-g recruit T cells and natural killer cells to amplify the

proinflammatory response (16). Pro-wound healing macrophages

then release elevated levels of PDGF, insulin-like growth factor 1

(IGF-1), VEGF and TGF-b1 to promote cellular growth and

proliferation (96). The function of pro-resolving macrophages is

to restore homeostasis, minimize fibrosis via apoptosis of

myofibroblasts, and to suppress further T cell proliferation (94).

In acute wounds, these macrophages are responsible for tissue

repair and neovascularization (97, 98). They also suppress the

inflammatory response via secretion of IL-10, arginase 1, resistin-

like molecule-a (RELMa) programmed death ligand 2 (PDL2) and

TGF-b1, while promoting collagen reorganization and maturation

(96, 99, 100). However, macrophages activated through RELMa can

also orchestrate pro-fibrotic collagen crosslinking, which is essential

for the formation of granulation tissue and progression to a

persistent scar (101).

Macrophages are also prominent in the TME, where tumor cells

can exploit the macrophage wound repair response (102). In cancer,

M1 macrophages inhibit tumor growth, while the M2 phenotype

(also known as tumor‐associated macrophages or TAMs) promotes

tumor progression (94). TAMs can contribute to different stages of

carcinogenesis: initiation, growth, invasion, and metastasis through

production of cytokines, growth factors, pro-angiogenic factors, and

MMPs (103, 104). For example, the presence of TAMs correlates

with increased invasion, micro-vessel density, and COX-2

expression, which are characteristic of more aggressive cancers

(105). In squamous cell carcinoma, TAMs have both pro-tumor

and anti-tumor activities and appear to be responsible for VEGF-C-

induced lymphangiogenesis (106, 107). The macrophage

chemoattractant CCL2 is expressed on melanoma cells and
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regulates macrophage function in melanoma in a concentration-

dependent manner (108). Like neutrophils, macrophages can also

play a role in preventing skin cancer as intermittent deletion of

macrophages can lead to the development of basal cell

carcinomas (109).
3.3 Langerhans cells and DCs

Langerhans Cells (LCs) are epidermal immune cells of

embryonic origin responsible for antigen presentation and the

maintenance of tolerance in the skin (110). In severe injuries,

which lead to LC loss in the epidermis, cytokines such as MCP1

can facilitate the recruitment of monocytes from the bone marrow

which can then differentiate into LCs in the skin (111, 112). In

response to trauma, LCs extend their dendrites through epidermal

tight junctions and engulf foreign antigens via dendrite tips (113).

The presence of antigens can trigger LC activation and migration to

the lymph nodes (114), where they can shape T cell responses (115).

A subset of skin LCs has been shown to induce the proliferation of

resident memory T cells with a regulatory phenotype and their

ability to suppress autologous skin resident Tem cell responses

(116). This study suggests that the interaction between epidermal

LCs and skin resident memory T regulatory cells is important for

tolerance to self-antigens and memory response (116).

Dermal DCs are composed of conventional and non-

conventional (plasmacytoid) DCs that differ in ontology and

functions (117). Conventional DCs are derived from myeloid

progenitor cells and are responsible for presenting antigens to T

cells, while plasmacytoid DCs which are derived from lymphoid

progenitor cells, produce type I interferons (IFNs) in response to

viral infections (117). Following skin injury, dermal DCs rapidly

migrate toward the site of the injury and surround it (118). Once

close to the wound site, these cells can capture cutaneous antigens

and deliver them via lymphatic vessels to naive T cells in the

draining lymph nodes (119).

The precise contribution of LCs and DCs to skin wound healing

is still under investigation. A recent study showed that depletion of

langerin+ cells (LCs and a small sub-population of dermal DCs) led

to faster wound closure in mice (120). The accelerated wound repair

was due to enhanced keratinocyte proliferation in the epidermis and

granulation tissue formation, suggesting that langerin+ cells inhibit

keratinocyte proliferation during wound healing (120). On the

other hand, in another study, loss of CD11c+ cells (LCs and DCs)

resulted in failure of wound closure (121). In particular, re-

epithelization did not occur, and the wounds remained

completely open. Since depletion of langerin+ cells removes LCs,

as well as a small sub-population of langerin-expressing dermal

DCs, while leaving the majority of dermal DCs unaffected, these

studies suggest that dermal DCs may have a pro-reparative role,

whereas LCs may hinder tissue repair. This is supported by a study

showing that LCs can produce TNF which can contribute to tissue

damage (122). It is worth noting that mice lacking TNF exhibit

improved wound healing (123). These studies point to the

important roles of LCs and DCs in wound healing, but the
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precise contribution of each subset may depend on the type of

injury and other cells in the microenvironment.

LCs and dermal DCs are often the first immune cells to

encounter antigens from cutaneous cancers (124). The

effectiveness of the immune response against tumors may depend

on the ability of LCs and DCs to present antigens and activate anti-

tumor T cells (125). For example, in squamous cell carcinoma

(SCC), there is a reduction in the number of LCs and dermal DCs,

which can disrupt the generation of adaptive immunity. In SCC,

DCs are poor stimulators of T cell proliferation compared to their

peritumoral or healthy skin counterparts (125). In contrast, LCs

harvested from SCC lesions have been found to have an increased

ability to stimulate CD4+ and CD8+ T cells in vitro, compared to

LCs from healthy skin (126). LCs are potent stimulators of T cell

responses making them optimal targets for immunization strategies

against melanoma (127), especially since the spontaneous

regression of melanoma in humans is often linked to a T cell

predominant infiltrate into the lesion (128). LCs may also play a

role in the epithelial–mesenchymal transition (EMT) in cutaneous

cancers, due to the involvement of molecules that regulate LC

migration and EMT (129).
3.4 Lymphocytes

Chemokines produced in the wound including CCL3, CCL4

and CCL5 (130) attract conventional T cells to the wound site.

Recruited T cells can be found in murine wounds within 24 hours of

injury and persist for 30 days (131). This long timeframe suggests

that they may have important roles not only during inflammation

but during the proliferative and remodeling phases. For example,

cytotoxic T cells release substances that kill microorganisms and

clear the infection (20). T cells can also participate in the later stages

of wound healing, where they exert several functions: clearance of

damaged cells and debris, regulation of immune response and

prevention of excessive inflammation, promotion of angiogenesis

and ECM remodeling (131).

Lymphocytes differentiate into various subsets to create

specialized immune responses, such as helper T cells (Th1, Th2,

Th17), innate lymphoid cells (ILC1, ILC2, ILC3), and

unconventional T cells (gd T cells, iNKT cells, MAIT cells) (132).

These responses can be classified by the cytokines they produce e.g.,

IFN−g for type 1 immunity, IL-4, IL-5, and IL-13 for type 2, and IL-

17 and IL-22 for type 3 (133). Type 2 responses play an important

role in maintaining homeostasis and repairing tissue damage, and

are coordinated by tissue-resident cells like ILC2s, which expand

after injury (134). For instance, healthy skin of naïve C57BL/6 mice

contains a population of resident ILC2s that expand after wounding

(135). The importance of ILC2s has been demonstrated in mice

lacking IL-33 (which contributes to the expansion of ILC2s in both

humans and mice) (136). Impaired re-epithelialization in these

mice is associated with diminished numbers of activated ILC2s at

the site of injury (135).
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In addition, mouse epidermis is enriched for gd T cells and

CD8+ resident memory T (TRM) cells. CD8 TRM cells are sessile

non-circulating cells and can appear after the resolution of skin

inflammation caused by infection (137). gd T cells have a T cell

receptor (TCR) composed of g and d subunits and demonstrate

characteristics normally associated with both innate and adaptive

lymphoid cells. They are abundant in mouse but not in human

epidermis and play a major role in wound healing. For instance, the

lack of skin gd T cells is associated with decreased inflammation and

delayed wound resolution (138).

T cells are also a crucial component of the immune system’s

response to cancer. They recognize cancer cell antigens to generate an

anti-tumor immune response and can control certain infections and

cancers including those located in the skin. The presence of CD8+ T

cells in melanomas as well as in other cancers is associated with better

clinical outcomes (139, 140). However, the TME can impair CD8+ T

cell ability to respond to tumor antigens as a result of activation of

checkpoint proteins, such as PD-1 and CTLA-4 (141, 142). The

combination of immune checkpoint inhibitors, specifically anti-

CTLA-4 and anti-PD-1 antibodies, is now providing an effective

therapeutic strategy in many cancers, including advanced melanoma,

for which tumor regression and long-term durable cancer control is

possible in nearly 50% of patients (143, 144). Multiple studies have

demonstrated that NK cells can also exert significant anti-tumor

effects (145, 146). In particular, they have been shown to recognize

and destroy melanoma cells in vitro and in vivo (147).

The regulatory T cell subset (Tregs) plays a balancing role in

inflammation by suppressing the underlying immune response.

However, increased number of Tregs in sites of chronic skin

inflammation did not resolve the injury, but actively delayed

wound healing (148). In tumors, e.g., melanoma, Treg infiltration

is a poor prognostic indicator (149, 150). Intravital analysis of Treg

behavior in vivo revealed that Tregs in the TEM are migratory, in

contrast to the surrounding CD8 T cells, and form unstable contacts

with CD11c+ APCs. This leads to a reduction in the levels of

costimulatory molecules and the activation of inhibitory receptors,

such as PD-1 and TIM-3, on CD8+ T cells (151).
4 Concluding remarks

Impaired responses to injury result in the development of

chronic wounds, which have a major impact on the quality of life

(152, 153). Yet there are few treatments available once the processes

leading to non-healing chronic wounds, aberrant scarring and

fibrosis have begun. This makes regulation of inflammatory

pathways, and especially the switches between acute and chronic

inflammation, attractive targets for intervention with treatments

that could be relevant to non-healing wounds. One potential new

approach to achieve resolution of inflammation in non-healing

wounds or cancer is to target specific inflammatory pathways (18,

30). There are a number of therapies under investigation, such as

immunomodulatory agents, which may reduce inflammation and
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promote healing (154). For instance, animal studies have shown

that cytokines, such as IL-10, which dampen inflammation, can

enhance wound healing (155, 156). Furthermore, a recent study

demonstrated the efficacy of IL-10 in reducing inflammation,

accelerating wound healing and reducing scarring in two

preclinical murine models (157). In the same study, a phase II

randomized controlled trial demonstrated the translation of this

therapeutic effect from animals into humans (157). Stem cells or

regenerative therapies can also be used to promote tissue repair

(158, 159). Several clinical trials have utilized various types of adult

stem cells to improve wound healing (160, 161). Although none of

these treatments have been officially approved as of yet due to major

limitations such as stem cell immunogenicity and their reduced

survival in vivo (162), this research highlights how understanding of

the mechanisms of wound repair can lead to the development of

novel therapies for large or non-healing wounds.

Since the cellular and molecular players involved in generating

wound stroma can be co-opted in cancer to build tumor stroma,

understanding the mechanisms of stroma generation in wounds

may suggest approaches that prevent tumor stroma generation. For

example, the use of anti-angiogenic therapies, which target the

formation of new blood vessels, has proven successful in cancer

treatment, with anti-VEGFA antibodies currently being used to

treat patients with metastatic colorectal cancer (163, 164). Likewise,

analysis of how inflammation is subdued once the wound is

repaired may aid the development of immunotherapeutic

strategies for cancer treatment.

The growth and spread of cancer cells depend on the

establishment of a microenvironment, which shares a lot of

commonalities with the wound healing processes. Nuanced

understanding of the immune system’s role in wound repair over

the whole process, including not only angiogenesis and

immunosuppression, but also its potential contributions to

rebuilding structural integrity of the wound and re-establishing

immune networks, is essential for the development of better

approaches for promoting wound healing, and the advancement

of novel antitumour therapies.
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