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Into the multi-omics era:
Progress of T cells profiling
in the context of solid
organ transplantation

Yao Zhi, Mingqian Li* and Guoyue Lv*

Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University,
Changchun, China
T cells are the common type of lymphocyte to mediate allograft rejection,

remaining long-term allograft survival impeditive. However, the heterogeneity of

T cells, in terms of differentiation and activation status, the effector function, and

highly diverse T cell receptors (TCRs) have thus precluded us from tracking these T

cells and thereby comprehending their fate in recipients due to the limitations of

traditional detection approaches. Recently, with the widespread development of

single-cell techniques, the identification and characterization of T cells have been

performed at single-cell resolution, which has contributed to a deeper

comprehension of T cell heterogeneity by relevant detections in a single cell –

such as gene expression, DNA methylation, chromatin accessibility, surface

proteins, and TCR. Although these approaches can provide valuable insights into

an individual cell independently, a comprehensive understanding can be obtained

when applied joint analysis. Multi-omics techniques have been implemented in

characterizing T cells in health and disease, including transplantation. This review

focuses on the thesis, challenges, and advances in these technologies and

highlights their application to the study of alloreactive T cells to improve the

understanding of T cell heterogeneity in solid organ transplantation.

KEYWORDS
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Introduction

Transplantation is the most effective treatment for various types of end-stage organ

failure (1–5). The primary barrier to successful transplantation is rejection. Alloreactive T

cells are key mediators of allograft rejection (6–10). T cells possess high heterogeneity, which

leads to distinct function and migration features, making it difficult to further dissect T cells’

cellular and molecular features in depth.

The heterogeneity of T cells stems from multiple molecular layers including DNA, RNA,

and protein. Thus, the heterogeneity can be interpreted with epigenomic, transcriptomic, and

proteomic data. And highly polymorphic TCRs represent a diverse antigen specificity of the T
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cell repertoire. Previous studies devoted to investigating these

heterogenous T cells through traditional assays like flow cytometry

but had limited success. Recently, with the advance of single-cell RNA

sequencing (scRNA-seq), it is easy to measure the genes’ expression

levels of each cell and unbiasedly characterize T cell types at the

transcriptional level (11, 12). Based on transcriptome analyses, multi-

omics methods have been extended from single-cell techniques, such

as the combination of the transcriptome with epigenome, paring

transcriptome with the proteome, and linking transcriptome with

TCR. Besides, the advanced bioinformatics analysis algorithm for

multi-omics datasets (13) enables the profiling of T cells’

heterogeneity from integrative data (14–18). Therefore, this review

focuses on the high heterogeneity and diverse TCR of T cells and

summarizes the advances of omics techniques in solid organ

transplantation (SOT), and their combined application to dissect

the heterogeneity of T cells. Furthermore, it discusses the promising

future of multi-omics integration analysis and computational tools for

complex omics data integration and analysis.
T cells are heterogeneous

T cells possess phenotypic and functional heterogeneity. T cells

expressing distinct surface markers indicate distinct subtypes and

functions. The CD45RA, CD45RO, CD28, CD27, CD95 along with

the homing and adhesion molecules CD62L, CCR7, CD69, CD103,

CXCR5, CXCR3, CCR4, CCR6 expressions are well-established

markers for T cell distinction. For example, CD45RA+CCR7+ cells,

referred to naive T cells, representing not encounter any antigens.

CD45RA+CCR7+CD27+CD95+ cells were termed TSCM, they have the

potential to reconstitute the memory and effector subtypes as well as

sustain longevity through self-renewal (19). The main function of

central memory T (TCM) cells with a signature of CD45RA-CCR7+ is

proliferation instead of the effector, they exhibit lymphoid homing

profiles. CCR7- cells represent effector memory T (TEM) cells,

exhibiting rapid effector functions. Tissue-resident memory T

(TRM) cells express CD69, CD103, or CXCR6, parking within tissue

instead of circulating. CD4+CXCR5+ T cells are termed T follicular

helper (Tfh) cells, which are adept at providing help to the

differentiation of B cells. The Th1 cells (CD4+CXCR3+) are

considered the main driver of acute rejection. Th1 secrets IL-2 and

IFN-g to activate the CD8 cytotoxic T cell or B cells (20), or directly

damage the graft through the Fas-FasL pathway (21). The Th1 and

Th2 (CD4+CCR4+) are antagonistic, the cytokine IL-4 and IL-10

produced by the Th2 inhibit the Th1 differentiation. Enhance, Th2

cell has long been thought to have a prevention role on rejection, but

recent studies evident a promotion role of the cell in the rejection (22–

24). A large body of evidence demonstrates the Th17 cells

(CD4+CCR4+CCR6+CXCR3-) are important in transplant rejection

by secreting the IL-1 7 to recruit the neutrophils to cause graft damage

(25–27). Intracellular genetic markers can also be utilized to dissect T

cells’ heterogeneity and function. For transcriptome, resting cells have

a signature of SELL, TCF7, and CCR7, which corresponds to TCM or

naive T cells. The activated cells express cytotoxicity-associated genes,

such as GZMB, GZMK, and CCL5, referred to as TEM or effector T

cells (Teff). TRM cells express adhesion molecules like CXCR6 and

ITGA, contributing to residence (28). RNA detections reveal the T
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cells’ current state, but epigenetic features demonstrate the T cells’

progenitor and potential to drive the expression of specific genes (29).

At the initial stage of activation, naive T cells possess plasticity,

which means the capacity to produce different phenotypes initiated

from an individual genome (30). In alloresponse, the plasticity of a

naive T cell, mainly regulated by epigenetics, refers to the ability to

differentiate to other T cell subsets in response to the alloantigen. This

means naive T cells present unique chromatin landscape and gene

expression patterns before alloantigen recognition, which can alter

with activation. Upon interacting with external factors like dose and

properties of alloantigen, effects of immunosuppressive regimens, and

local microenvironment, activated naive T cells differentiate into

multiple lineages and display distinct properties of longevity,

proliferative ability, properties of tissue residency or migratory (31,

32) (Figure 1A). In the setting of alloresponse, a naive T cell activated

by an alloantigen would differentiate into short-lived effectors and

long-term survival of memory cells. The memory cells are located in

the lymph node (TCM), in the peripheral (TEM), and in the peripheral

non-lymphoid tissues (TRM). In kidney and liver transplantation, the

memory T cell proportion increased in the blood, graft, and lymph

node of the rejected recipient (33, 34). And the donor-reactive TRM

clones dominated in the transplanted intestine correlated with graft

rejection, and they re-express high levels of CD28 upon rejection (35),

implying that a likely intermediate state between TRM and Teff cells is

associated with rejection. A naive CD4 T cell differentiates into many

lineages of T helper cells upon the TCR stimulation controlled by the

respective transcription factors under unique cytokine-polarized

milieus: IL-12 and IFN-g promote the Th1 differentiation with the

activation of the master regulator transcription factor T-bet through

STAT4; the IL-4 and IL-33 promote the activation of STAT6 and

GATA3, which induce Th2 cell differentiation; TGF-b and

proinflammatory cytokines IL-6 and IL-23 drive the differentiation

of Th17 cells through the activation of STAT3 and RORgt; TGF-b
promotes the induction of Tregs, which are controlled by the

transcription factor Foxp3 (20, 36, 37). The plasticity of the CD4

helper cell usually refers to the fate alterations between the Th1 and

Th2, and the Th17 and Treg, which stems from the epigenetic

modification of histones and DNA regulated by the lineage-

restricted transcription factors (38).

Another ingredient of heterogeneity within T cells is TCR

diversity, which is yielded in different ways, including somatic

rearrangements of V, (D), and J gene segments, random addition or

deletion of nucleotides, and pairing of a and b TCR chains (39). In ab
T cells, both TCR a and TCR b chain contain a hypervariable

complementary determining region 3 (CDR3) formed by somatic

recombination and nucleotide insertions, leading to highly diverse

TCR. Approximately 2 × 1019 unique TCR pairs can be generated

theoretically (40–43), while only 2 × 1011 T cells exist in an individual

because of the positive and negative selection processes (44–46). A

large repertoire of T cells with diverse antigen-specificity in organisms

allows the immune defense to deal with pathogen infection through

non-self-antigen recognition (47, 48). When stimulated by antigens,

each T cell clone can expand into multiple progeny cells carrying the

identical TCR but may with distinct differentiation states and

functions (49, 50). Alloreactive T cells comprise about 10% of the

blood-circulating T cell pool in healthy adults (51, 52). After

transplantation, the recognition of alloantigen leads to the
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activation and clonal expansion of alloreactive T cells. Thus, the TCR

is a meaningful proxy for tracking the T cells in alloresponse, and

profiling the heterogeneity of T cell-mediated alloresponse (53–

58) (Figure 1B).
Insights into T cell heterogeneity with
single-cell approaches in SOT

Characterize the T cell heterogeneity in SOT
at the transcriptome level by scRNA-seq

T cells coordinate with each other exhibiting a complex effect in

graft rejection. Alloantigen-specific T cells exhibited different effector

mechanisms, including direct cytotoxicity to the allograft and indirect

recruitment of graft-damaging inflammatory cells, and production of

inflammatory cytokine (59). Resolving the complex process involving

T cells with heterogeneity is not possible with the traditional bulk-seq

approach, but the recently emerged scRNA-seq technique might be

even better (60, 61). By profiling the cell with scRNA-seq technology,

specific T cell clusters or genes related to the rejection in liver, kidney,

lung, and intestinal transplantation have been reported (62, 63).

Heterogenous T cells with different functions in graft can be

dissected by scRNA-seq. In chronic kidney transplantation, Zhao

et al. (60). used scRNA-seq to study T cells from biopsy samples and
Frontiers in Immunology 03
four clusters were identified, including CD4+ T cells, CD8+ T cells,

cytotoxic T lymphocytes (CTLs), and regulatory T cells (Tregs).

Furthermore, they demonstrated that CD8+ T cells and cytotoxic T

lymphocytes (CTLs), usually as a signature of immune activation,

were more enriched in the chronic kidney transplant rejection biopsy

samples. By ssGSEA analysis of the single cell transcriptomes, they

revealed CD8+ and CTLs exhibited higher cytotoxic activities by

enhanced interferon (IFN) secreting, antigen presentation, and

producing cytokines and chemokine, while IFN was downregulated

in Tregs. In this study, the memory T cell was not characterized

separately from other T cells, and the cell origin from the donor or

recipient was undefined.

Single-cell transcriptome profiling enables determining the

function of T cells from the recipient and donor accurately. It is

common knowledge that multilineage blood chimerism often

develops and hematopoietic chimerism can serve as an approach to

achieve immunological tolerance across HLA barriers in patients after

transplantation (64–66). Previously, due to a lack of accessible

approaches to distinguish recipient and donor cells at the individual

level, the persistence of chimerism within recipients after

transplantation and its role in allograft were investigated in limited

depth. In kidney transplantation Malone et al. (67). accurately

determined the cell origin based on expressed single nucleotide

polymorphisms sequenced by whole exome sequence from the

biopsy sample derived from the recipient and donor. Based on
A

B

FIGURE 1

The heterogeneity of T cells. (A) T-cell differentiation states are regulated by epigenetics upon interacting with external factors (B) Trace the T cell clones
with different differentiation states and functions after transplantation. Differentiation state1, 2 represents different differentiation states, and Function1, 2
represents T cells with a different function. The dashed line represents the potential differentiation pathway.
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these results, they furtherly described the results of scRNA-seq

analysis and revealed that donor T cells are predominantly

quiescent, determined by a high correlation between donor-origin T

cells in rejecting biopsies and non-rejecting T cell transcripts.

Conversely, the T cell of recipient origin takes an effector role,

especially those with acute cellular rejection.

A human lung TRM generation study employed scRNA-seq to

analyze serial airway samples obtained longitudinally from human

leukocyte antigen (HLA)–disparate lung transplant recipients. They

distinguish the origin of T cells from donor and recipient, and found

the donor-origin TRM replaced by recipient circulating T cell in lung-

graft, the bronchoalveolar lavage T cells from the transplant lung

revealed three different subsets: A) a donor mature TRM subset

expressing CD69 and CD103 expressed high levels of TRM

differentiation genes including ITGA1, CXCR6, ZNF683, and

RUNX3, these cells exhibited effector function via expressing

GZMA, NKG7, CCL5, KLRD1, PFN1, CD27, and IL32; B) a TRM-

like subset comprising of mixed cells originating from donor and

recipient retained expression of TRM signatures, the subpopulation

was fewer in number compared with TRM subset, and expressed

differentiation-associated genes SOX11 and CDH6 (68, 69); C) a non-

TRM subpopulation absent of CD69 and CD103 expression

constituted by recipient T cells reduced the expression of tissue

resident and effector-associated genes, and increased the expression

of regulation-associated with genes such as RPL13, PABPC1 and

MLLT3, cell cycle (BTG1), and cytokine signaling (IL7R and JAK3)

(70). It suggested that TRM in the lung is heterogeneous in phenotype,

circulating ability, and effector function. Analysis of the longitudinal

samples suggested that the TRM pool in the graft was supplied by the

recipient circulating T cells over months, while the persistence of

donor TRM is associated with fewer primary graft dysfunction and

acute cellular rejection. But the exact role of TRM in alloresponse is

unrevealed in this study.

As an important part of the memory T cell populations in organs,

TRM participation in the alloresponse was elegantly described in

intestine transplantation. Zuber et al. demonstrated a slow

replacement of donor-derived graft-versus-host (GVH) TRM by

recipient host-versus-graft (HVG) T cell correlated with the absence

of rejection and the long-term presence of macrochimerism in the

recipient’s blood by bulk RNA-seq (35). The result proposed that a

balance between GVH and HVG reactivities is associated with

tolerance induction, but the GVH TRM function in the graft was

unable to be revealed by the method simply comparing the frequency

of both clones. Later, by using scRNAseq, Fu et al. found the GVH T

cell clones, originating from TRM in the transplanted intestine,

displayed cytotoxic Teff transcriptional profile in the recipient’s

bone marrow, indicating they mediated lymphohematopoietic GVH

responses to promoted engraftment of graft-derived hematopoietic

stem progenitor cells that maintain macrochimerism to facilitate

tolerance (71).
Epigenome sequencing is a potential tool
for interpreting T cells in SOT

T cells can acquire specialized functions after interacting with

alloantigens despite emerging from the same genetic background,
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which is believed to be driven by epigenetic alterations. Thus,

interpreting the epigenome specific to alloreactive T cells is crucial

to comprehend the activation and differentiation of these T cells in

SOT. The epigenome regulates gene transcription mainly by DNA

methylation and modification of chromatin status.

DNA methylation, involved in establishing and sustaining

chromatin structure and regulating gene transcription, is a covalent

alteration of the DNA molecule which is stable and heritable. Many

studies have emphasized the significance of DNA methylation in

regulating intricate gene expression patterns in immune response (72,

73). Two methods have been achieved to explore intercellular

heterogeneity of DNA methylation at single-cell resolution. One is

single-cell bisulfite sequencing (scBS-seq) (74) which detects genome-

wide DNA methylation. Another is single-cell reduced representation

bisulfite sequencing (scRRBS-seq) (75) which enriches sites

containing high CpG content. Based on the genome and

transcriptome sequencing (G&T-seq) approach (76) allowing for

physical isolation of DNA and RNA from single-cell lysates, Single-

cell methylome and transcriptome sequencing (scM&T-seq) (77)

enables joint analysis of the intricate relationship between DNA

methylation and transcription in heterogenous cell subtypes.

Recently, a tumor study observed that DNA methylation

participates in shaping tumor-reactive and bystander CD8+ tumor-

infiltrating lymphocytes which refers to a subpopulation of T cells

recognizing and destroying tumor cells specifically and recognizing a

wide range of epitopes unrelated to the tumor, respectively (78).

For the assessment of chromatin status, assays for transposase-

accessible chromatin sequencing (ATAC-seq) could be used to

measure the genomic sequences’ accessibility, which represents

particular genes’ expression or sequences’ openness, such as the

binding regions for transcription factors or enhancers, and is

considered a hallmark of genomic activity. In the ATAC-seq, the

open chromatin region can be labeled with sequencing adaptors via

the Tn5 transposase, amplified via PCR, and then sequenced (79–81)

(Figure 2A). Single-cell ATAC-seq (scATAC-seq) can be performed

on several single-cell platforms, such as C1 and Chromium systems.

The C1 platform is based on the microfluidic plate system and thus all

library preparation steps including cell lysis and PCR amplification is

automatic (80). However, the Chromium system is based on the

microfluidic droplet, in which the isolation of nuclei and the

tagmentation of Tn5 must be prepared manually before separation

in droplets. ATAC-seq has higher throughput compatibility than

other DNA methylation measurement approaches. Generally, high-

throughput ATAC-seq approaches are dependent on the label of

accessible chromatin when preparing nuclei in bulk before linking the

labeled DNA and RNA with identical barcodes from the same cell,

either by droplet-based or combinatorial indexing techniques which is

a method to increase throughput by serial barcoding pools loaded

with cells. For instance, single-cell combinatorial indexing-chromatin

accessibility and RNA sequencing (sci-CAR) (Figure 2B) (82) used

combinatorial indexing to measure > 11000 nuclei in each test. Lower

throughput approaches, processing complete cells instead of nuclei,

have been illustrated, such as scCAT-seq (83) and ASTAR-seq (84)).

They have the potential to be more feasible for assays in which scarce

cells are to be sequenced compared to high throughput assays.

Paired sequencing (Paired-seq) has promoted throughput by

adopting a combinatorial indexing protocol based on ligation,
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which measures one million nuclei in each test. Based on paired-seq,

the combinatorial indexing technique sensitivity was enhanced

considerably with split-pool ligation-based transcriptome

sequencing (SPLiT-seq) (85) and simultaneous high-throughput

ATAC and RNA expression with sequencing (SHARE-seq) (86),

designed to detect the chromatin potential from a single cell and

investigate the predictive effect of chromatin accessibility on mRNA

expression levels and lineage determination in a cell. Based on the

microfluidic drop-sequencing technique, single-nucleus chromatin

accessibility and mRNA-expression sequencing (SNARE-seq) can

execute the parallel measurement of chromatin accessibility and

gene expression from identical nuclei (Figure 2C) (87). 10X

Genomics Chromium platform has adopted this technique using

hydrogel beads carrying divided oligonucleotides capturing the

labeled genome and mRNA. Recently, based on the sequencing

HEteRO RNA-DNA-hYbrid (SHERRY) (88) technique and a

similar technique, in situ sequencing hetero RNA-DNA-hybrid after

assay for transposase-accessible chromatin-sequencing (ISSAAC-seq)

(89), as an optional approach for multi-omics sequencing of a single
Frontiers in Immunology 05
nucleus, tags the accessible chromatin at the first round followed by

reverse transcription and tags DNA-RNA hybrids at the second

round. For this approach, single nuclei are separated by

microfluidic apparatus, and DNA and RNA libraries are built

s epa ra t e l y th rough the d i ff e r ence be tween two- s t ep

adaptor configurations.

The ab TCR interacting with intrathymic MHC determines the

fate of double positive (DP) thymocytes which express both CD4 and

CD8 molecules (90, 91). DP cells moderately affinitive for self-MHC

peptides can survive positive selection and differentiate into CD4+

and CD8+ single positive (SP) cells (92, 93). On the contrary, DP cells

highly affinitive for intrathymic ligands die of negative selection or

part of them become “agonist-selected” cells, such as regulatory T

cells (Treg) or precursors of CD8a+CD8b–(CD8aa) gut intra-

epithelial lymphocytes (94–96). These heterogenous thymocyte

populations are poorly characterized, in part because of an

incomplete understanding of underlying differentiation programs.

Combining scATAC-seq with scRNA-seq enables analyzing T cell

transcriptional heterogeneity from the perspective of differentiation
A

B C

FIGURE 2

Techniques for capturing chromatin accessibility from an individual cell. (A) The schematic of ATAC-seq. Open chromatin regions can be inserted by
transposome and generate fragments that can be amplified by PCR (B) The schematic of sci-CAR seq. All nuclei are extracted and distributed by
Fluorescence-activated Cell Sorting (FACS) to each pool. A first cDNA sequence can be introduced by reverse transcription with a pool-specific Barcode
and a unique molecular identifier (UMI). After barcoding cDNA, a first transposed dsDNA sequence is introduced by Tn5 transposase in situ tagmentation
assay, bearing a pool-specific barcode. Then redistributed nuclei, each of them is lysed, and the lysate is split into two parts, one half prepares for the
library of 3’ cDNA, another half prepares for the library of ATAC-seq (C). The schematic of SNARE-seq. A microfluidic system has been applied in SNARE-
seq and enabled parallel capture of transcriptome and chromatin accessibility from a single cell.
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and development. Compared with traditional RNA-seq analysis (97,

98), single-cell analysis of transcriptional and chromatin accessibility

delineates trajectories with minimal bias. Recently, a study focused on

human and mouse ab T cells in the thymus by examining their

transcriptional expression and chromatin accessibility at the single-

cell level. It depicted the transcriptomic and epigenomic landscape of

ab thymocytes in mouse and human thymus and delineated

developmental trajectories of CD4+, CD8+ lineage, and “agonist-

selected” thymocytes, which interprets the heterogeneity of

thymocytes by integrating scRNA-seq and scATAC-seq (99).

In SOT, how epigenetics regulates the differentiation of

alloreactive T cells remains unclear. A complete understanding of

the development trajectory helps interpret T cells’ history and

potential to express the specific gene. Thus, combining scATAC-seq

with scRNA-seq is a potential way to help decode the heterogeneity of

development and function dynamics of the alloreactive T cells

after transplantation.
Proteomic sequencing as an auxiliary tool
for T cell characterization in SOT

Determining the phenotype profile of T cells by measuring

protein expression replenishes the scRNA-seq technique and

defines T cell subpopulations more specifically because certain T

cell type signatures are hardly measured with the transcriptome

method. For example, solely with scRNA-seq, it is difficult to detect

the surface proteins without an RNA analog (41), like CD45RO and

CD45RA (the PTPRC gene’s isoforms) that distinguish T cell subsets

with naive and memory T cells. It also provides little insight into

markers that has high dropout at the RNA level by scRNA-seq alone,

such as CD4 (100). Identifying CD4 T cells and distinguishing

memory cells from naive cells by CD45RA and CD45RO are

critical steps in cell subset determination. Thus, combining scRNA-

seq with protein expression compensates for the transcriptomic

shortcoming in immune cell phenotyping.

One approach termed proximity extension assay (PEA) (101)

measures protein expression through antibodies tagged with

oligonucleotides, which hybridize when in sufficient proximity. And

unique sequence can be generated and can be further amplified and

measured by qPCR. Hence, the measurement of protein in an

individual cell is converted into the detection of nucleotide signals.
Frontiers in Immunology 06
In this approach, cell lysates were divided into two parts, one half is

utilized to detect transcripts of interest by qPCR, and the other half is

used to perform PEA (Figure 3). Furthermore, PEA is compatible

with the current scRNA-seq platform and thus can be applied to

produce proteomic and transcriptomic data even though the

throughput is low. Proximity ligation assays (PLA) adopt a similar

approach but are dependent on the ligation in which two antibody-

conjugated oligonucleotides get into proximity on the same protein

target, instead of hybridization. PLA enables simultaneous

measurement of a single protein and corresponding transcript on a

droplet digital PCR platform (102–104). The throughput of PLA has

been increased by proximity ligation assay for RNA (PLAYR) by

measuring transcripts and proteins using mass cytometry,

capacitating the detection of > 40 distinct protein epitopes and

transcripts from many cells simultaneously (105). Recently, a

method named single-cell protein and RNA co-profiling (SPARC)

can physically separate mRNA and protein solute (106), capacitating

the parallel measurement of whole transcriptome and extracellular

and intracellular proteins through PEA (107). The combination of

oligonucleotides-conjugated antibodies with microfluidic platforms

and micro-well systems, such as 10X Genomics and BD Rhapsody

respectively, dramatically increased the throughput. Based on this

approach, RNA expression and protein sequencing (REAP-seq) (100)

and cellular indexing of transcriptomes and epitopes by sequencing

(CITE-seq) (108) have emerged, in which cells are bonded with

antibodies panel, each tagged with different barcode oligos enabling

being simultaneously captured with mRNA from a single cell

after lysis.

The limitation of antibody-based approaches is the feasibility of

reagents specific to the antigen. Consequently, the number of

detectable epitopes is extremely decreased as many antibodies

specific to the antigen are required for its measurement. Thus, it is

imperative to develop an antibody-independent approach to cover the

cellular proteome extensively. Such an approach includes single-cell

proteomics by mass spectrometry (SCoPE-MS) (109) and SCoPE2

(110), which can analyze several proteins and modify post-translation

in an individual cell. However, they have not been integrated into the

multi-omics technique. Most recently, antibodies used in those

approaches discussed above have been replaced by the nanobody

phage-display libraries in an optional method termed PHAGE-ATAC

assay (111). It may provide a promising approach for measuring

protein without needing antibodies.
FIGURE 3

PEA approaches for transcriptome and proteome at single-cell resolution. The whole-cell lysis including RNA and protein can be separated into two
parts: one is incubated with PEA antibodies for the measurement of specific proteins via qPCR and one is for quantification of cDNA by qPCR.
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Decoding allogeneic T cell response
with single-cell TCR-seq in SOT

Profiling the allogeneic T cell response by
TCR-seq

By implementing high-throughput TCR sequencing (TCR-seq)

techniques, the clonal frequencies and the diversity of alloresponse T

cells’ repertoire were characterized and the alloresponse T cells’

repertoire is highly specific for a donor-recipient pair (51), and

both the naïve and memory T cell clones lead to alloreactivity and

can be detected in vitro (112, 113). Some pathogen-specific memory T

cells possess the allogeneic function in a cross-react manner (114). In

SOT cases, owing to the private property of the alloreactive clone

repertoire in each donor-recipient pair, mixed lymphocyte reaction

(MLR) assay, served as an approach to study donor-reactive T cells,

giving an accessible way to identify and purify proliferating against

alloantigen T cells labeled by CFSE, which can be sequenced by TCR-

seq technique to identify the alloreactive clones (115). Combining

MLR assay with the TCRb-seq technique has been adopted to

estimate alloresponse in various types of organ transplantation

(116), including kidney transplantation (117), liver transplantation

(118, 119), and intestinal transplantation (35, 71). The TCR-seq

application in SOT has been recently reviewed (120).

Through TCR repertoire overlap analysis between pre-

transplantation donor lymphoid tissue and post-transplantation

peripheral blood monocular cells (PBMCs), circulating naive donor

T cells derived from progenitors presented in the allograft could be

proved to develop in the recipient thymus. Naive T cells’ repertoire is

highly diverse, hindering the assessment of clonal overlap among

various tissues within the same recipient (121); however, it is

accessible to detect the clonal overlap of memory T cells. Based on

this theory, in recipients receiving intestinal transplantation, Fu et al.

(122) detected high enrichment of recent thymic emigrant (RTE)

phenotypes and T cell receptor excision circles (TRECs) in donor-

derived circulating CD45RA+CCR7+ T cells, which represents de novo

generation of donor-derived T cells. Subsequently, they sorted

donors’ naive and memory T-cells by Fluorescence-activated Cell

Sorting (FACS) from the recipient following transplantation and

donor lymphoid tissue from pre-transplantation and performed a

high throughput CDR3 sequencing for these donor-derived T cells.

They compared the TCR repertoire overlap of naive and memory T

cells between pre- and post-transplantation and found post-

transplantation T cell clones overlapping with those in pre-

transplantation only among memory T cells. Thus, combing the

lack of repertoire overlap with pre-transplantation naive T cells

with the abundance of naive T cells’ RTEs and TRECs suggests that

donor naive T cells originate from precursor cells in the allograft that

develops de novo in the recipient after transplantation.

TCR repertoire analysis between the intragraft and the periphery

reflects T cell migration and local expansion status. Intragraft and

circulating T cell clonotypes differ substantially (123–125). In a liver

graft and blood sample TCR comparison study, Elmar and his

colleagues demonstrated that the TCR repertoires between the graft

and the peripheral blood are different in non-rejected patients, while

the correlation between rejected graft and blood was higher (126). A
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similar result was reported in cardiac transplantation, that a high

degree of TCR repertoire overlap was found between cardiac allograft

and the periphery in patients experiencing acute cellular graft

rejection (112), these overlapped T cells were considered infiltrating

T cells without apparent clonal expansion. Thus, the peripheral T cells

massively infiltrating the graft cause rejection. As profiling, the entire

peripheral blood TCR repertoire in patients with rejection or GVHD

after liver transplant, the diversity and the N-addition length

distribution of the CDR3 are associated with the diseases (118,

127, 128).
Understanding allogeneic T-cell response
with single-cell TCR-seq

Defining a clone solely by the beta chain sequence with TCR-seq

limits the accuracy of a clone definition. A study on cellular rejection

after cardiac transplantation showed that a subset of T cell clones

shared TCR repertoire between blood and tissues containing several

public (present in unrelated healthy donors) clones suggesting their

bystander status, and the study also showed that the shared TCR

repertoire constituted by a subset of cross-reactive sequences (129),

offering reasonable evidence for intragraft bystander T cell local

response. However, the study just has the TCR beta chain

sequenced and limit the capacity to track authentic clonality,

discover antigen and determine the true alloreactivity. Thus,

confirmation of appropriate TCR alpha and beta chain pairs at the

single-cell level enables the confirmation of aiming peptides, either

allo- or viral-reactive, or both.

The adoption of TCR sequencing in the context of scRNA-seq

facilitates tracking the function of the alloreactive T cell at a single

clone level among the total T cell pool. Indeed, approaches, including

those sponsored by 10X Genomics and BD Biosciences, generate data

on authentic clonality via pairing scRNA-seq with single-cell TCR-

seq (scTCR-seq). The challenges of employing these techniques in

distinguishing alloreactive TCR clones are the diversity of antigens

and epitopes of the donor-recipient pairs. Using MLR to establish an

alloreactive TCR library to distinguish the alloreactive clones and

describe their function was performed in intestinal transplantation as

mentioned in the above section (35, 71).

Additionally, to pair scTCR-seq with ATAC-seq, the method used

is transcript-indexed ATAC-seq (T-ATAC-seq) (130). It accurately

identifies TCR ligands and is a complementary approach to

integrating the T cell epigenomic state with the TCR sequence (131,

132). Furthermore, it isolated single cells by the microfluidic approach

after tagmentation of genomic DNA with Tn5. Next, it reverses

transcribed the TCR mRNAs by exploiting primers aiming at the C

region and underwent multiplex PCR amplification by inner primers

specific for C and V sites. Simultaneously, it fragmented the ATAC-

seq experience 5’ extension and amplified them through PCR.

Furthermore, the T-ATAC-seq technique is capacitated to estimate

the specificity mechanism and expanded T cells regulated by

epigenetic elements, such as cis- and trans-acting factors. This joint

analysis contributes to the discovery of alloantigens that drive T cell

differentiation, or cis- and trans- regulators which regulate the

expansion of a T cell clone. For instance, the epigenetic features of
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clonal T cells in malignant lymphoma were researched by this

approach and it revealed that the epigenetic features have a

potential to distinguish malignant T cell clonal expansion from

benign (47, 130). This combined approach has not been employed

in the SOT field. While simultaneous measurement of single-cell TCR

sequence and epigenetic signatures is useful to interpret the

alloreactive T cells’ differentiation and expansion kinetics regulated

by epigenetics.
The prospective application of multi-omics
in SOT

Multi-omics technologies at single-cell resolution were

constructed to separate multiple molecules such as DNA, TCR,

RNA, or protein in a single cell (133), and then sequence them in

parallel. Because of the vast cellular heterogeneity of immune cells, a

majority of multi-omics technologies with the single-cell resolution

are supposed to be utilized to systematically analyze genome,

transcriptome, proteome, epigenome, and ultimately, spatial

transcriptome to measure the heterogeneity, thus offering more

systematic and definite knowledge than mono-omics approaches

(134). As an early example, ATAC with select antigen profiling by

sequencing (ASAP-seq) (135) provides a method for performing

ATAC- and CITE-seq in parallel on the microfluidic platforms.

Additionally, a method referred to as DOGMA-seq was further

expanded by incorporating RNA-seq measurements (135). A

parallel method, TEA-seq (136), also has been demonstrated

recently. From these studies, the data generated by different omics

achieves high precision because they can validate mutually. Pairing

different omics data, such as the data of scRNA-seq, scTCR-seq, and

scATAC-seq can promote the interpretation of complicated

regulatory mechanisms of diseases (137). Although few of these

integration analyses have been used in the transplant immunology

field, given the widespread use of these approaches in other realms

such as cancer immunology, and biological development, multi-layers

of omics will be a highly efficient tool in the study of

organ transplantation.

The histologic information is missing in scRNA-seq. The

emergence of spatial transcriptomics (ST) has made a breakthrough

and it generates transcriptomic data on histological tissue sections.

The greatest strength of the ST technique is that the spatial

information of target cells can be acquired, such as T cells, and

their cellular interactions can be investigated in their native location.

Because scTNA-seq requires tissue to dissociate into a single cell

suspension, limiting comprehension of cellular interactions, which is

meaningful for T cells’ research. Combining ST with other omics,

which matches the RNA profile of a cell with its spatial information

within a tissue (138) is an optional way to make up for this

shortcoming. Several approaches developed to integrate spatial

heterogeneity with transcriptional heterogeneity in multicellular

systems (139–142). In addition, the ST technique can match the

transcriptomic data with its pathology report because it allows for the

tissue slice stained by immunofluorescence or hematoxylin and eosin

(H&E), which is before the determination of Banff criteria on the

same slice. However, it has not been used in the transplant
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immunology field. Integrating ST approaches into multi-omics will

locate the allogeneic T cells, and provide an intragraft immune

landscape, to further allow a comprehensive understanding of the

transcriptional and spatial regulation of T cells in the graft.
Insights into the integration of multiple
layers for single-cell datasets

With the generation of various omics data, several methods have

been developed to integrate these datasets. According to a recent

review, these integration approaches can be grouped into three

conceptual types: the first type can be termed “horizontal

integration” (Figure 4A), integrating data generated from the same

techniques across distinct samples. This integration method aims to

remove technical noise, such as batch effects derived from different

sample preparations, which ensures that the remaining variants

originated from biology. For this step, many frequently-used

methods, like Harmony (143), Scanorama (144), ComBat (145),

LIGER (146), limma (147), scourge (148), and so on, have been

developed and validated (149). The limitation in horizontal data

integration is the difficulty to balance noise obliteration and biological

signal retention, such as differential expression of the gene among

cells. Because the extent of true biological signal from sample-to-

sample variability and technical noise is hard to control. Too much

removal of biological variation would result in a loss of information

about cell type, but not enough removal of technical noise would

result in a low biological signal-to-noise ratio.

The second type of integration approach is “vertical integration”

(Figure 4B), which combines multi-omics data simultaneously profiled

from an individual cell. This is exemplified by the abovementioned

techniques such as scM&T-seq, CITE-seq, SNARE-seq, SHARE-seq, and

scTCR-seq. Vertical data integration is to construct connections of

different molecule layers and obtain knowledge from their relationship.

For T cell research, the advantage of this integration method is to identify

cell subtypes that might have one similar molecular layer but others

different, such as cells that have similar transcriptional traits but distinct

features from chromatin accessibility. For example, Buenrostro et al. used

this integration strategy to analyze the alterations of transcriptomes and

chromatin accessibility across stages of hematopoiesis, they identified a

majority of cell subtypes based on transcriptomes but also epigenetic

priming absent from the transcriptional level. Several methods originally

developed for bulk data, can be applied for this integration, like canonical

correlation analysis (CCA) (150), PLS (151), MF (152), MCIA (153),

JIVE (154) andMOFA (152), which are based on the matrix factorization

framework because of its concision, interpretability and low risk

of overfitting.

The third type of integration method, “diagonal integration”

(Figure 4C), is for joint analysis of multi-omics data generated by

experiments where both cells and genomic traits are distinct. This

integration is present in unmatched assays where distinct molecular

layers are sequenced in distinct cell subtypes. Diagonal integration,

from which biological views obtained have difficulty interpreting and

validating, is more challenging compared to horizontal and vertical

integration. Some methods have been developed to perform diagonal
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integration, such as MATCHER (155), MMD-MA (156), SCIM (157),

and UnionCom (158)
Conclusion

At present, multi-omics profiling approaches at single-cell

resolution continue to emerge at a horrendous pace. It generates

different omics data in parallel for thousands of single cells by the

latest approach termed “Omni-seq”, in which omics detections can be

paired with spatial information and lineage-based knowledge to

identify the T cells ’ molecular state, localization in the

microenvironment in a single readout (159). It is an important clue

for studies of T cells’ development and migration biology in the

context of transplantation. the T cell behavior and development and

cell interaction networks will be uncovered to allow for the
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comprehensive understanding of the rejection and tolerance

mechanism through multi-omic profiling technique.

However, several limitations exist in multi-omic profiling. The

first is the imperfect analysis for each omics data due to noise, and

especially, drop-out accompanied by single-cell measurements,

which may lead to the lack of information about mutation,

alteration, or subtle expression. The second is the concomitant

loss of detail within each cell due to the development of methods

by incorporating more than thousands of cells. With newer and

newer omics measurements such as proteomic and metabolic

sequencing being incorporated (160), details of each cell are lost.

Therefore, it is imperative to refine these large number of already

existing multi-omics methods to obtain higher resolution and

accurately measure base-level events in the genome. The ongoing

emergence of multi-omics profiling approaches enables the in-depth

understanding of T cells in SOT.
A

B

C

FIGURE 4

Three conceptual types of integration approaches. (A). The horizontal integration approach is designed for distinct samples detected by the same
technique, here is an example of scRNA-seq (B). Vertical integration is suitable for subpopulations of the same sample detected by distinct techniques,
here is an example of scRNA-seq, scATAC-seq, and scTCR-seq (C). Diagonal integration is designed to integrate different samples measured by different
techniques, here is an example of scRNA-seq, scATAC-seq, and scTCR-seq.
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