
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Apostolos Zaravinos,
European University Cyprus, Cyprus

REVIEWED BY

Jun Li,
The University of Sydney, Australia
Xianhuo Wang,
Tianjin Medical University Cancer Institute
and Hospital, China

*CORRESPONDENCE

Min Yang

minyang@imm.ac.cn

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 27 September 2022
ACCEPTED 09 February 2023

PUBLISHED 22 February 2023

CITATION

Zhang R, Gan W, Zong J, Hou Y, Zhou M,
Yan Z, Li T, Lv S, Zeng Z, Wang W, Zhang F
and Yang M (2023) Developing an m5C
regulator–mediated RNA methylation
modification signature to predict
prognosis and immunotherapy
efficacy in rectal cancer.
Front. Immunol. 14:1054700.
doi: 10.3389/fimmu.2023.1054700

COPYRIGHT

© 2023 Zhang, Gan, Zong, Hou, Zhou, Yan,
Li, Lv, Zeng, Wang, Zhang and Yang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 22 February 2023

DOI 10.3389/fimmu.2023.1054700
Developing an m5C regulator–
mediated RNA methylation
modification signature to predict
prognosis and immunotherapy
efficacy in rectal cancer
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Weiqi Wang1, Fang Zhang1 and Min Yang1*

1State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia
Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
2Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China, 3Qingdao Hospital
of Traditional Chinese Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University,
Qingdao, China
Background: Currently, a very small number of patients with colorectal cancer

(CRC) respond to immune checkpoint inhibitor (ICI) treatment. Therefore, there

is an urgent need to investigate effective biomarkers to determine the

responsiveness to ICI treatment. Recently, aberrant 5-methylcytosine (m5C)

RNA modification has emerged as a key player in the pathogenesis of cancer.

Thus, we aimed to explore the predictive signature based on m5C regulator–

related genes for characterizing the immune landscapes and predicting the

prognosis and response to therapies.

Methods: The Cancer Genome Atlas (TCGA) cohort was used as the training set,

while GEO data sets, real-time quantitative PCR (RT-qPCR) analysis from paired

frozen tissues, and immunohistochemistry (IHC) data from tissue microarray

(TMA) were used for validation. We constructed a novel signature based on three

m5C regulator–related genes in patients with rectal adenocarcinoma (READ)

using a least absolute shrinkage and selection operator (LASSO)-Cox regression

and unsupervised consensus clustering analyses. Additionally, we correlated the

three-gene signature risk model with the tumor immune microenvironment,

immunotherapy efficiency, and potential applicable drugs.

Results: The m5C methylation–based signature was an independent prognostic

factor, where low-risk patients showed a stronger immunoreactivity phenotype

and a superior response to ICI therapy. Conversely, the high-risk patients had

enriched pathways of cancer hallmarks and presented immune-suppressive

state, which demonstrated that they are more insensitive to immunotherapy.

Additionally, the signature markedly correlated with drug susceptibility.

Conclusions: We developed a reliable m5C regulator–based risk model to

predict the prognosis, clarify the molecular and tumor microenvironment
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status, and identify patients who would benefit from immunotherapy or

chemotherapy. Our study could provide vital guidance to improve prognostic

stratification and optimize personalized therapeutic strategies for patients with

rectal cancer.
KEYWORDS

rectal cancer, prognosis, tumor immunemicroenvironment, immunotherapy, m5C RNA
methylation regulator
Introduction

By blocking programmed cell death 1/programmed cell death

ligand 1 (PD1/PDL1) axis, immune checkpoint inhibitors (ICIs)

have introduced a new era of antitumor therapy that could elicit

durable responses and significantly improve survival in several

tumors (1, 2). However, the contexture and organization of the

immune environment can be highly heterogeneous among tumors,

even within the same cancer type, leading to a complex crosstalk

within the tumor immune microenvironment (TIME) (3). The

overall status of tumor-infiltrating lymphocytes (TILs) in TIME

closely correlates with the efficacy of immunotherapy. According to

the immune cell status in TIME, tumor immune infiltration pattern

could be broadly classified into “hot tumor” (indicating presence of

CD8+ and CD4+ T cells accompanied by high expression of

immune checkpoint molecules) and “cold tumor” (representing

the deficiency of immune cells within the tumor parenchyma) (4, 5).

The former has a potential antitumor efficacy, while the latter barely

benefits from the ICI therapy (6). At present, patients with deficient

mismatch repair (dMMR)/microsatellite instability-high (MSI-H)

have more immune cell infiltration accompanied by high tumor

mutational burden (TMB), while microsatellite stable (MSS)/

microsatellite instability-low (MSI-L) patients have low

abundance of TILs and low TMB (7, 8). Moreover, according to

the KEYNOTE-016 study, 62% of colorectal cancer (CRC) patients

with MSI-H phenotype achieve an objective response, while

patients with MSS/MSS-L tumors cannot achieve objective

response, indicating a better efficacy of immunotherapy in

patients with dMMR/MSI-H tumors (9). Nonetheless, dMMR/

MSI-H tumors account for only 15% of all patients with CRC (7,

10). Therefore, establishing effective predictive biomarkers is

essential for the improvement of immunotherapeutic strategy.

RNA modification plays an important role in the regulation of

gene expression. More than 150 RNAmodifications containing N6-

methyladenosine (m6A), 5-methylcytosine (m5C), and N1-

methiadenosine (m1A) have been investigated (11, 12). Among

these modifications, m5C is one of the most intensively researched

epigenetic modifications, and overall, 95391 m5C sites in the human

genome have been identified (13). The m5C methylation landscape

is regulated by a dynamic process that integrates methyltransferases

(“writer”), binding proteins (“readers”), and demethylases

(“erasers”) (14, 15). Although m5C is widely recognized for its
02
essential function as an epigenetic marker for DNA, research into its

functional roles in RNA is beginning to emerge. It has been shown

that a vast majority of azactidine (5-AZA), widely used to treat

hematologic malignancies, is incorporated into RNA instead of

DNA of treated tumor cells (16). Therefore, the potential use of

m5C RNA modification as a novel therapeutic target for various

types of cancers is a current topic of research.

RNA methylation impacts the efficacy of tumor immunotherapy

by modulating immune activity in a range of tumors (17). Recently,

several studies have uncovered the close relationship between TIME-

infiltrating immune cells and m5C RNAmethylation. Pan et al. found

that NOP2/Sun RNA methyltransferase 4 (NSUN4) and NOP2/Sun

RNA methyltransferase 3 (NSUN3) were closely related to the

infiltration by six major immune cells that could regulate TIME in

lung squamous cell carcinoma (18). Gao et al. showed that m5C RNA

modification patterns could predict and affect TIME in oral

squamous cell carcinoma (19). Despite these facts, the relationship

between RNA methylation and tumor immunotherapy is still in its

infancy. In the current study, we integrated multiple data sets and

developed a novel signature based on the expression of m5C RNA

methylation regulators, which could be used to evaluate risk status

and predict prognosis of patients with rectal adenocarcinoma.

Furthermore, we comprehensively explored the correlations

between the m5C RNA methylation regulator–based signature

having immune characteristics, mutational burden, and

immunotherapeutic and chemotherapeutic sensitivity in READ

(rectal adenocarcinoma) patients. Our results suggested that the

established signature based on m5c RNA methylation regulators

could be used as a robust biomarker to predict the clinical

prognosis and therapeutic effect among patients with rectal cancer.
Materials and methods

Acquisition and processing of data sets

The RNA-sequencing transcriptome data (TPM value) and

corresponding clinical annotation were retrieved from The

Cancer Genome Atlas (TCGA) database (http : / /gdc-

portal.nci.nih.gov/). After patients without survival information

were excluded, a total of 434 colon adenocarcinoma (COAD) and

157 READ samples were integrated for further analysis. The
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validation data set was retrieved from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

under the accession number GSE87211 (n=190) (20) and

GSE133057 (n=17) (21). The copy number variations (CNV) of

READ used in our research were retrieved from the UCSC Xena

browser (http://xena.ucsc.edu/), where genes with CNV values

smaller than −0.3 were categorized as a “loss,” while CNV values

larger than 0.3 were categorized as a “gain.” The messages of simple

nucleotide variations (SNV) were retrieved from the TCGA

database, R package maftools was used to analyze the level 4

mutation data, and the mafCompare function of maftools was

used to identify the differentially mutated genes (DMGs) (22).

The neoantigens and mutation loads for READ were accessed

from The Cancer Immunome Atlas (https://tcia.at/) database

(23). Information on CMS subtyping calls and sample

annotations were retrieved from the Colorectal Cancer Subtyping

Consortium Synapse (24). The STRING database can predict the

functional links between proteins based on a variety of algorithms.

The genes with the highest confidence scores were identified

as the functional partners of specific genes (25). The Gene_DE

module of Tumor Immune Estimation Resource (TIMER,

cistrome.shinyapps.io/timer) can be utilized to examine the

mRNA expression profiles between the tumor tissues and the

normal tissues (26). We used the Human Protein Atlas (HPA)

database to analyze the protein expression levels of candidate genes

in tumor tissues and corresponding normal tissues (27).
Construction of gene signature and
survival analysis

The least absolute shrinkage and selection operator (LASSO)

model is a linear regression method applying L1-regularization,

which could accurately contract some regression coefficients to zero

to achieve sparseness and feature selection (28). The LASSO model

was generated through R package glmnet. At the penalty coefficient

(lmin = 0.036), the optimal risk model was established based on

three m5C regulatory genes. Next, the R package survival was used

to calculate the risk scores for rectal cancer samples. The following

formula was used:

Risk score = e∧(constant +oi coefficient(mRNAi)

� expression(mRNAi))

Patients from the TCGA training cohort were separated into a high-

risk and a low-risk group according to the median value of the

calculated risk score. Patients from the GEO validation data set were

grouped based on the optimal cutoff decided by cutp function of the

R package survMisc. The Kaplan–Meier method was employed to

compare the survival probability between the two risk subgroups.
Functional enrichment analysis

Differentially expressed genes (DEGs) between the subgroups

were identified by R package limma. Metascape (http://
Frontiers in Immunology 03
metascape.org), a web tool comprising Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (29),

was used to identify the terms across different ontology sources

enriched based on the screened DEGs. A GOCircle plot was depicted

to show the enriched terms by R package Goplot (30). To further

investigate pathways enriched in specific subgroups, we performed

Gene Set Variation Analysis (GSVA) by R package GSVA. GSVA is a

gene set enrichment method that estimates variation of pathway

activity over a sample population in an unsupervised manner (31).

The gene set of “c5.go.v7.4.symbols” was downloaded from MSigDB

database, and gene markers of epithelial–mesenchymal transition

(EMT) including EMT1, EMT2, and EMT3; angiogenesis; pan-

fibroblast TGFb; and type I IFN response were obtained from

previous studies for GSVA analysis (32, 33).
Immune cell infiltration analysis

A total of 28 immune cell types were collected for GSVA

analysis (23). A web server TIMER, integrating multiple

algorithms (TIMER, Cell-type Identification By Estimating

Relative Subsets Of RNA Transcripts [CIBERSORT], European

Prospective Investigation into Cancer and Nutrition [EPIC]) was

used to estimate the abundances of immune cell types based on the

gene expression profiles (26, 34, 35). The ratios between immune-

stimulatory signatures and immune-inhibitory signatures (CD8

+/CD4+ regulatory T cells, pro-/anti-inflammatory cytokines, and

M1/M2 macrophages) were also compared between the subgroups

based on the average expression levels of the marker genes (36). The

immune system–related genes were obtained from previous studies

(23, 37–39). The Pearson correlation was calculated and then

depicted by R package corrplot.
Prediction of the efficacy of
immunotherapy and chemotherapy

A web platform named Tumor Immune Dysfunction and

Exclusion (TIDE, http://tide.dfci.harvard.edu) was used to evaluate

the anti-PD1 and anti-CTLA4 immunotherapeutic response based on

the gene expression profiles of the TCGA-READ cohort (40). To

validate the correlation between immunotherapeutic efficacy and

three genes–based risk model, another data set was retrieved, which

included 348 patients with metastatic urothelial cancer who were

treated with an anti-PD-L1 agent (32). The R package oncoPredict

can be used to discover drug sensitivity in vitro and in vivo contexts

(41). The half-maximal inhibitory concentration (IC50) was calculated

to predict the chemotherapeutic response in READ patients. The

Cancer Therapeutics Response Portal (CTRP, https://portals.

broadinstitute.org/ctrp/) (42) and Profiling Relative Inhibition

Simultaneously in Mixtures (PRISM, https://depmap.org/portal/

prism/) (43) were both developed to access the associations between

drug sensitivity and gene expression. The calcPhenotype function of R

package oncoPredict was used to calculate the AUC (Area Under

Curve) value of each drug based on the CTRP and PRISM databases.

Lower AUC value indicates higher sensitivity to therapeutic drugs.
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Consensus clustering analysis

To further validate the reliability of discriminating patients with

rectal cancer into two subgroups based on the three m5C regulatory

genes, DEGs were identified through R package limma between the

low- and high-risk groups. Furthermore, univariate Cox regression

analysis was carried out by R package survival to filter prognostic

genes on the basis of DEGs. Ultimately, unsupervised clustering

analysis was conducted by using R package ConsensuClusterPlus,

which was repeated 1,000 times to identify different risk gene

clusters (44).
Tissue microarray–based
immunohistochemistry validation

From Superbiotek in Shanghai, China (#REC1601), we acquired

a TMA of 80 paired rectal cancers and corresponding normal

tissues. Surgical samples from the patients were taken between

May 2008 and December 2012 through operations. The patients’

median survival duration was 81.5 months, ranging from 14 to 130

months. For every case, clinicopathological information including

overall survival time, survival status, age, gender, tumor size,

pathological T, N, and M stage, and grade was accessible. Based

on this commercial TMA, we conducted a retrospective analysis.

For immunohistochemistry (IHC) process, the TMA slides were

deparaffinized, rehydrated, and incubated by 3% hydrogen peroxide

to block the endogenous peroxidase activity for 10 min at room

temperature. Antigens were restored by boiling in a pressure cooker

containing sodium citrate buffer for 90 s. The slides were incubated

in bovine serum albumin (BSA) for 30 min to reduce nonspecific

background. Then, they were incubated with rabbit monoclonal

NSUN4 antibody (HPA028489, Sigma), NSUN7 antibody

(HPA020653, Sigma), and DNMT1 antibody (HPA002694,

Sigma) at 4°C overnight. Next, secondary antibody was incubated

with the slides for 1 h at 37°C. Finally, the slides were developed in

3, 3’-diaminobenzidine (DAB) and stained with hematoxylin.

The slides were assessed digitally with the APERIO ScanScope

(Leica Biosystems, Germany) and the APERIO ImageScope (Leica

Biosystems, Germany) using the positive pixel counting algorithm.

The IHC staining results were interpreted by both the intensity of

staining and the staining positive area. Each sample was assigned a score

according to the intensity of the staining (0 = no staining; 1 = weak

staining; 2 = moderate staining; and 3 = strong staining) and the

proportion of stained cells (0 = 0%; 1 = 1%–25%; 2 = 25%–50%; 3 =

50%–75%; 4 = 75%–100%). The final score was calculated as the staining

intensity multiplying positive area score, ranging from 0 to 12. The IHC

results of TMA-rectal cancer were independently reviewed by two

experienced pathologists who were blinded to the clinical parameters.
Real-time quantitative PCR validation

For the RT-qPCR experiment, tissue samples from 26 rectal

cancer patients and matched nearby normal tissue samples

(proximity to the cancer larger than 5 cm) were collected at the
Frontiers in Immunology 04
Affiliated Hospital of Qingdao University. The inclusion

requirements were as follows (1): a pathological analysis and

imaging-based diagnosis of rectal cancer; (2) radical resection; (3)

available information on clinicopathological indexes, such as tumor

size, pathological stage, and pathological TNM; (4) pathological

TNM in accordance with the 8th edition of the American Joint

Committee on Cancer; and (5) lack of a prior history of other

malignancies. Patients with recurrent rectal cancer and nonprimary

malignancies as well as those who had had neoadjuvant

chemotherapy and/or radiation prior to surgery were disqualified.

All of the included patients gave their informed permission. The

Affiliated Hospital of Qingdao University’s Research Ethics

Committee approved the study, and it was completed in

conformity with the 1964 Helsinki Declaration and its

later amendments.

Total RNA was extracted using RNeasy kit (Beyotime,

Shanghai, China, R0027) in accordance with the manufacturer´s

instructions. Then, total RNA (1 μg) was quantified, followed by

reverse-transcription by the SuperScript II reverse transcriptase

(Takara, Japan, RR047). Quantitative PCR analysis was operated

using SYBR Green Mix (Takara, Japan, RR820) with ABI 7900 HT

Real-Time PCR system. The primer sequences are listed below:

NSUN4, 5’-CCAAACCCTGGCAAAAGGTG-3’, 5’- GCGTGCCG

GTCATAGAAGAA-3’; NSUN7, 5’-CCAGATCATTTGAGCAGT

CTTATT-3’, 5’- GGTTCTCTACTTCTTGAACTTCTGA-3’;

DNMT1, 5’-ATCCGAGGAGGGCTACCTG-3’, 5’- ACTTCTT

GCTTGGTTCCCGT-3 ’ ; GAPDH, 5 ’-CTGACTTCAACAG

CGACACC-3’, 5’-TGAGCTTGACAAAGTGGTCGT-3’. mRNA

levels were determined relatively according to the expression

of GAPDH.
Statistical analysis

The t-test or Wilcoxon test was adopted for comparisons of two

groups, and one-way ANOVA or Kruskal–Wallis test was adopted for

comparisons of three or more groups. The choice of t-test vs. Wilcoxon

test, or one-way ANOVA vs. Kruskal–Wallis test, was based on the

normality of the variables. Chi-squared tests were used to analyze the

distribution of variables among different subgroups. Multivariate Cox

regression analysis was carried out by R package survival. Receiver

operating characteristic (ROC) analysis was used to evaluate the

predictive power of the established model. We constructed

nomograms to predict survival probability using R package rms. P

value less than 0.05 was recognized as significant in this research.
Results

Construction of m5C RNA methylation
regulator–based signature for
READ patients

The schematic diagram summarizes the study design

of the current research (Figure 1). m5C RNA modification

regulators (NOP2 nucleolar protein [NOP2], NOP2/Sun RNA
frontiersin.org
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methyltransferase [NSUN]2, NSUN3, NSUN4, NSUN5, NSUN7,

DNA methyltransferase [DNMT]1, DNMT3A, DNMT3B, tRNA

aspartic acid methyltransferase 1 [TRDMT1], Aly/REF export

factor [ALYREF], and tet methylcytosine dioxygenase 2 [TET2])

were integrated in this research based on the previously published

articles (40, 45). To explore the function of these regulators,

univariate Cox analyses were conducted for COAD and READ

separately. Interestingly, we found that the m5C modification

regulators mainly played their roles in READ contrasting with

COAD; specifically, NOP2, NSUN4, NSUN7, DNMT1, and

TRDMT1 functioned as protective factors for patients of READ

(Figure 2A). Therefore, in the following research, we focused mainly

on the functions of the m5C RNA modification regulators related to

READ. Owing to the observation of the prognostic value of the m5C

regulators, we explored the overall prognostic impact of these

regulators on READ. We built a prognostic model based on the

mRNA expression value of total m5C regulators multiplying hazard

coefficients to predict the survival events of READ patients. Next,

the patients were classified into two groups (Figure 2B). As

expected, the high-risk group presented a worse survival rate than

the low-risk group, which was observed both in TCGA and in

GSE87211 data sets (Figure 2C). Correlations among the mRNA

expression levels of the m5C modification regulators were analyzed

by Pearson correlation analysis. The results exhibited a whole trend

of positive correlation among m5C regulatory genes (Figure 2D),

and protein–protein interactions were calculated using String data

sets (Figure 2F), which demonstrated that the m5C regulators could

play an integrated role in impacting the prognosis of patients with

READ. The CNV events were also examined by retrieving the
Frontiers in Immunology 05
mutation data from the TCGA-READ cohort. NSUN4, NSUN7,

and TET2 had a tendency to a loss of copy number, while the

remaining regulators often showed copy number gain events.

Specifically, DNMT3B showed the most frequent CNV events,

followed by NSUN5 (Figure 2E), implying that m5C regulators

play an important role in the process of m5Cmodification in READ.

These results indicated the potential potency of the m5C regulators

as prognostic biomarkers for READ patients.

To promote the clinical application, LASSO-penalized Cox

analysis was performed to enhance the forecast accuracy and

explainability of the statistical model. In the current model, the

optimal penalty coefficient (l = 0.036, log l = −3.33) was identified

with the minimum criterion (Figure 3A). In Figure 3B, each curve

indicates the track of a single gene, and the red dot represents the

target lambda. We can see that three genes (DNMT1, NSUN4, and

NSUN7) were retained after the shrinking process. Then, the

produced three prognostic indicators were employed to predict

clinical results.
Prognostic significance of the m5C
methylation–based signature in
READ patients

To confirm the effectiveness of the established model, we carried

out Kaplan–Meier survival analyses. We found a superior survival

status in the low-risk group compared with the corresponding high-

risk group in both the TCGA dataset and two GEO cohorts,

illustrating that the built model could significantly predict the
FIGURE 1

Schematic diagram of the study design.
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prognosis of READ patients (Figure 3C). Similar processes were

applied to the samples of COAD patients, and no factor was

retained after LASSO analysis (Figure S1A). The three factors

identified in the READ patients were repurposed for COAD

samples; as expected, the survival curves of the two groups were

highly crossed (Figure S1B). To further explore the relationship of

the prognostic risk model of the three m5C regulators and clinical

features in READ, univariate and multivariate Cox regression

analyses were conducted. To facilitate the understanding of the

patients’ clinical and genetic background, a table including basic

information about the low- and high-risk groups is displayed in

Table S1. The results of Cox regression analysis revealed that the

risk score was an independent prognostic factor for READ,

unrelating to clinicopathological parameters, such as pathologic N

and age (Figure 3D). We further investigated whether the risk score

could further subdivide the pathological N and age parameters. The

results showed that the established risk score further distinguished

the risk pattern in subgroups differentiated by age, successfully

stratified the patients in the N0 pathological stage, and exhibited a

tendency to differentiate patients in the N1 pathological stage due to

small sample size (Figure 3E). To visualize the expression pattern of
Frontiers in Immunology 06
m5C regulators, a heat map was depicted. To our expectation, the

majority of the methylation regulators displayed a significant high

expression module in the low-risk group (Figure S2), which is

reasonable due to their protective ability in READ. Thus, this

powerful and accurate model symbolized a potential clinical

parameter for patients with READ.
Construction and validation of a
nomogram combined with
clinical parameters

To make the m5C regulator–based risk signature more clinically

adapted and available, a prognostic nomogram was depicted

integrating the risk factors and independent identified parameters of

READ. The aim was to establish a quantitative analytic algorithm that

could be put into practice for survival prediction. In the current case,

the pathologic N, age, and risk score were integrated to calculate the

corresponding score, which could be used as an index for matching the

one-, three-, and five-year death probabilities (Figure 4A). To reinforce

the superior capability of the established nomogram, the ROC analyses
A B

D E F

C

FIGURE 2

The prognostic value of m5C RNA methylation regulators. (A) Forest plot of the prognostic ability of the m5C regulator genes in COAD and READ
separately. (B) The risk score distribution and patient survival status are shown in ranked dot and scattered plots based on the expression of m5C
regulator genes. (C) The Kaplan–Meier curves for OS, PFS, and DFS between the high-risk and the low-risk groups in READ from the TCGA and
GSE87211 cohorts. (D) Pearson correlation among the m5C regulators in READ patients. (E) The CNV variation frequency of the m5C regulators in
the TCGA cohort. The orange rectangle = the amplification frequency; the blue rectangle = the deletion frequency. (F) The PPI network depicted for
m5C regulators. CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; OS, overall survival; PFS, progression-free survival. *P < 0.05.
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were used to compare the prognostic accuracy and specificity. The

results indicated that the nomogramwas superior to other independent

clinical factors for predicting the overall survival (OS) of READ

patients in the TCGA cohort (AUC of one-year OS = 0.803; AUC of

three-year OS = 0.855; AUC of five-year OS = 0.838; AUC of overall

survival = 0.834; Figure 4B). The calibration curve was drawn to

confirm the consistency between the nomogram-predicted and the

actual probability. The calibration curves were close to the optimal

performance in the one-, three-, and five-year nomogram (Figure 4C),

indicating the accuracy of the constructed nomogram. These results

implied that the three-gene signature was capable and reliable to make

prediction for READ patients.
Functional enrichment analysis of m5C
methylation–based signature between
low- and high-risk READ patients

To explore the underlying molecular mechanisms of the m5C-

based signature, GO, GSEA, and GSVA analyses were performed.
Frontiers in Immunology 07
DEGs were identified using the limma algorithm, and the result is

displayed as a volcano plot (Figure S3). Next, the screened DEGs

were put into the GO analysis. The GO pathway enrichment

analysis revealed that the most significantly changed pathways in

the high-risk subgroup were mainly related to cancer and immune-

targeted processes, such as epithelial–mesenchymal transition,

angiogenesis, hypoxia, regulation of leukocyte migration, and

regulation of macrophage activation; however, cell cycle–related

pathways, including G2M checkpoints, sister chromatid

segregation, and signal transduction in response to DNA damage,

were mainly converged in the low-risk group (Figure 5A). The

GSEA analysis confirmed these findings and showed some extent of

overlap with the GO analysis results (Figure 5B). In order to clarify

the specific roles of these pathways according to the risk categories,

a series of related gene sets were collected to further carry out the

GSVA analysis. Importantly, the GSVA results revealed that the

process of angiogenesis, EMT, and pan-fibroblast TGFb were

consistently upregulated in the high-risk category (Figure 5C).

Meanwhile, the GSVA analysis indicated that many biological

functions in the high-risk group primarily correlated with
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FIGURE 3

Prognostic significance of the m5C methylation-based signature in READ patients. (A) The process of LASSO regression based on the TCGA cohort
and the identification of “lambda” for best selection of gene signature. (B) The curves indicate the tracks of single genes; the red dot line represents
the target lambda. The blue track refers to NSUN4, pink track refers to NSUN7, and black line is DNMT1. (C) The Kaplan–Meier curves for OS and
DSS between two categories in READ from the TCGA data set; the Kaplan–Meier curves for OS, 5-year survival based on the GSE87211 data set; the
Kaplan–Meier curves for 7-year survival based on the GSE133057 data set. (D) The univariate and multivariate Cox analysis integrating risk score and
clinicopathological indexes based on the TCGA cohort. (E) The prognostic ability of the risk score in distinguishing the overall survival status for
READ patients with or without lymph node metastasis. The prognostic ability of the risk score in differentiating the overall survival status in patients
with age less than 65 years or those with 65 years or more. CI, confidence interval; DFS, disease-free survival; DSS, disease-specific survival; HR,
hazard ratio; OS, overall survival. *P < 0.05.
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inflammatory responses and carcinogenic reactions, while in the

low-risk group, RNA methylation process and drug response were

significantly enriched (Figure 5D). These features gave the hint that

cancer–immunity interaction is the potential mechanism of the

m5C-based risk signature, and the efficacy of the established model

was further validated by the above results.
The immune characteristics of the m5C
regulator–based signature in READ

Due to the close relationship between the built model and

immune process, the detailed connection between the risk signature

and immune cell abundance was studied. The GSVA and

deconvolution algorithms including CYBERSORT, TIMER, and

EPIC were used to evaluate the extent of infiltrating immune

cells. CD4+ T cells, B cells, CD8+ T cells, dendritic cells, and T

helper cells exhibited higher expression in the low-risk category;

meanwhile, the abundance of myeloid-derived suppressor cells

(MDSC) and regulatory T cells (Tregs) was elevated in the high-

risk category compared with the low-risk group (Figures 6A–C, E).

Furthermore, additional investigations were conducted to

substantiate the above findings. The ratio between the immune

stimulatory signatures (including CD8+ T cells, proinflammatory

cytokines, and M1 macrophages) and the immune inhibitory

signatures (integrating CD4+ regulatory T cells, anti-

inflammatory cytokines, and M2 macrophages) was significantly
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increased in the low-risk category (Figure 6D), which was consistent

with the above results, indicating an immune-inhibiting

environment in the high-risk group and a proinflammatory status

in the low-risk group. We collected the signatures of cancer–

immunity cycle and immune stimulators. The heat maps showed

that the majority of genes exhibited higher expression in the low-

risk group (Figure 6F) and the established risk score correlated

negatively with the expression of most of the immune stimulators

(Figure 6G). According to the obtained evidence, the low-risk group

belongs to activated immune microenvironment, while the high-

risk group shows a suppressed immune phenotype.
The mutational landscape for the m5C
regulator–based signature in READ

Considering the evidence that hot tumor is more sensitive to

immune therapy, we hypothesized that the low-risk group of our

established model might be more readily responsive to immune

therapies than the high-risk group. Previous studies have revealed

that high somatic mutation and neoantigens represent a higher

possibility to response. Thus, we investigated the differences in

mutation status between the two groups. First, we identified the top

10 mutated genes in rectal cancer using the maftools R package

(Figure S4A), and these genes were subsequently compared between

the two subgroups. A significantly higher mutational rate of RYR2

was observed in the low-risk group, while the other genes showed
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FIGURE 4

Construction and validation of a risk model based on m5C methylation regulators. (A) The predictive nomogram integrating the risk score and
clinicopathological parameters for 1-, 3-, and 5-year OS in READ patients from the TCGA cohorts. (B) The ROC for nomogram and independent
clinical parameters for 1-, 3-, and 5-year OS based on the TCGA cohort in READ patients. (C) The calibration curve depicted for 1-, 3-, and 5-year
nomogram in TCGA. OS, overall survival.
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no statistical differences (Figure S4B). Then, we used the

mafCompare function to identify the DMGs. Interestingly, we

found overall higher mutational rates in the low-risk group

(Figure 7A), indicating that the built model did not affect the

frequently mutated genes but exerted a cumulative effect of low-

frequency mutations. We also found that the low-risk group was

accompanied by more neoantigens. However, TMB only exhibited

an elevated tendency (Figure 7B). Moreover, we combined the

m5C-based model with neoantigens and TMB and found that

neoantigens and TMB cannot effectively distinguish the survival

status in patients with rectal cancer (riskscore-L + NEO-L vs.

riskscore-L + NEO-H, P = 0.655; riskscore-L + TMB-L vs.

riskscore-L + TMB-H, P = 0.748), although possessing high

neoantigen levels showed a tendency of better overall survival

compared with possessing low neoantigen levels (riskscore-H +

NEO-L vs. riskscore-H + NEO-H, P = 0.083). The constructed risk

score showed significant efficacy in stratifying patients with a same

status of neoantigens and TMB (riskscore-L + NEO-L vs. riskscore-

H + NEO-L, P = 0.012; riskscore-L + NEO-H vs. riskscore-H +

NEO-H, P = 0.050; riskscore-L + TMB-L vs. riskscore-H + TMB-L,

p = 0.005), confirming the superiority of this model over current

biomarkers. In addition, riskscore-L + TMB-H vs. riskscore-H +

TMB-H (P = 0.064) showed a strong tendency without significant

difference. We also found that combining risk score with

neoantigens (riskscore-L + NEO-H vs. riskscore-H + NEO-L, P =
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0.002) could achieve a higher efficiency for predicting the prognosis

of patients with rectal cancer (Figure 7C).
Prediction of immunotherapeutic response
for distinct subgroups in READ

The obtained findings promoted us to further examine the

relationship between the m5C-based signature and immunotherapy.

First, we compared the expression of the immune checkpoints in

the two subgroups. No significant differences were found, as shown

in Figure S5. Next, we investigated the relationship between model

factors and immune infiltration cells. Interestingly, we found that

DNMT1 and NSUN4 were moderately positively correlated with

CD4+ T cells, natural killer cells, dendritic cells, and T helper cells;

meanwhile, NSUN7 was weakly negatively correlated with MDSC

and Tregs (Figure 8A), substantiating the close connection between

the risk model based on the above three m5C regulatory genes and

the tumor immune microenvironment. Next, we investigated the

relationship between model factors and immune checkpoints.

Higher expression of NSUN4 was accompanied by a higher

expression of immune checkpoints, and patients with high

DNMT1 expression showed a trend of elevated expression of

immune checkpoints. However, low expression of NSUN7 was

associated with only weakly elevated immune checkpoint
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FIGURE 5

Functional enrichment analysis of the m5C methylation-based signature between low- and high-risk READ patients. (A) The enriched pathways
including GO and HALLMARK terms are displayed by GOcircle plots. The red and blue dots represent the genes upregulated in the low-risk and
high-risk categories separately. (B) GSEA enrichment plots for the two subgroups in the TCGA cohort. (C) The GSVA analysis for hallmarks of
cancer in the TCGA cohort. (D) The heat map drawn for GSVA analysis based on GO terms. DEGs, differentially expressed genes. ****P < 0.0001;
***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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expression (Figure 8B). A mature predicted method called TIDE

was applied to anticipate the immunotherapeutic effect of PD1

administration. We found a higher proportion of responders in the

low-risk group (Figure 8D), and the lower TIDE score, indicating a

higher response rate, verified the obtained finding. Moreover, the T-

cell dysfunction score and cancer-associated fibroblasts were

elevated in the high-risk group. According to previous reports,

tumors with MSI tend to more easily respond to immunotherapy.

The finding of a higher MSI score in the low-risk group supports the

expectation (Figure 8C). We further compared the low-risk patients

with rectal patients with MSI-H phenotype to investigate which

group would achieve a better objective response from ICI treatment.

Due to a small proportion of MSI-H patients in the TCGA dataset

(4/157), we evaluated the MSI score for each patient with READ by

the TIDE algorithm. The patients with MSI score higher than the

median value were characterized as the MSI-H group, the others

were classified as the MSI-L group. The result showed that there was

no significant difference between the low-risk group and MSI-H

group (P = 0.354, Supplementary Figure S6), indicating that the

m5C regulator–based signature could be utilized as an addition to

the current MSI classification, the combining of two methods to

evaluate the responsiveness of ICI treatment will provide a novel

perspective for precision medicine. We then performed a direct
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investigation by adopting an additional data set with the therapeutic

information. We compared the survival rates of two subgroups by

conducting Kaplan-Meier analysis, and found that the low-risk

group had prolonged survival compared with the high-risk group

despite an insignificant P value (P = 0.121, Supplementary Figure

S7). The expression of immune checkpoints was higher in the low-

risk group, which represents higher sensitivity toward ICI treatment

(Figure 8E). Accordingly, the proportion of complete response/

partial response (CR/PR) was remarkably higher in the low-risk

group (Figure 8F), and the risk score was lower in the CR/PR

subgroup (Figure 8G). Interestingly, compared with the immune-

excluded high-risk group, the low-risk group revealed an immune

inflammation phenotype (Figure 8H). These results solidly certified

that the established signature had the ability to efficiently predict

the immunotherapeutic efficacy for READ patients.
The transcriptomic characteristics of the
m5C methylation–based gene clusters

To further investigate the heterogeneity of different m5C

RNA methylation regulator patterns, we identified 950 DEGs

between the high-risk and low-risk groups. Subsequently,
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FIGURE 6

The immune characteristics of the m5C regulator–based signature in READ. The deconvolution algorithms of TIMER (A), EPIC (B), and CIBERSORT
(C), which were applied to estimate the immune infiltration status between the high- and low-risk groups. (D) The ratios of CD8+ T cells to CD4+
regulatory T cells, pro- to anti-inflammatory cytokines, and M1 to M2 macrophages in the TCGA dataset. (E) GSVA analysis based on GO terms for
the high- and low-risk groups. (F) The heat map depicts the expression of positive genes collected from cancer–immunity cycle based on the TCGA
cohort. (G) Pearson correlation among immune stimulators was conducted and is shown in a correlation heat map. Correlations with P value > 0.05
are blank. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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univariate Cox regression analysis was conducted to certify the

genes with prognostic value, and finally, a total of 173 m5C RNA

methylation regulator risk model–related genes were identified

(Figure 9A). Unsupervised clustering analysis based on the

expression of these 173 genes separated READ patients into

two clusters, which we referred to as m5C RNA methylation gene

clusters (Figure 9B). Survival analysis indicated that cluster 2

had a better prognosis (Figure 9C). Moreover, we found that

cluster 1 had a higher risk score than that in cluster 2

(Figure 9D), and chi-squared tests also revealed a significant

difference between the two clusters (Figure 9E). CMS

stratification is considered a robust classification system and is

currently used for CRC with distinguished features; among the

four CMS subtypes, CMS4 mesenchymal tumors display worse

overall survival and relapse-free survival (24). To evaluate the

CMS status in different m5C regulator–based subgroups, we

further compared the proportion of the CMS phenotypes by

chi-squared tests. The high-risk group and cluster 1 category

displayed a higher proportion of CMS4 compared with other

categories (Figures 9F, G).
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In line with the previous findings, cluster 1 was enriched mainly

in cancer and immune system–related pathways, while process

related to the functions of RNA methylation played an important

role in cluster 2 (Figure 9I). Patients of cluster 2 had higher

abundance of CD4+ T cells and helper T cells, while cluster 1

exhibited higher amount of immune-inhibiting cells, such as Tregs

and macrophages (Figure 9J). The relationship of the survival

status, m5C regulator–based risk model, m5C regulator gene

clusters, and CMS phenotypes is summarized in a Sankey

diagram (Figure 9H). The TIDE algorithm was carried out to

predict the immunotherapeutic response relating with the

clustering system. Accordingly, there were more responders in

cluster 2 (Figure 9K), and the index integrating the lower TIDE

score, higher MSI score, lower extent of T-cell dysfunction and

exclusion, and lower abundance of cancer-associated fibroblast

(CAF) consistently indicated a better responsive rate for patients

of cluster 2 (Figures 9L–P). To make the outline clear, a Sankey

diagram connecting with both the risk classification and clustering

system was depicted (Figure 9Q). Above all, these results reinforced

the notion that there were indeed two different m5C regulator–
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FIGURE 7

The mutational landscape for the m5C regulator–based signature in READ. (A) The waterfall plot of differentiated somatic mutation features between
the high- and low-risk groups using the TCGA-READ data set. (B) The neoantigens and mutation loads between the two subgroups are displayed.
(C) Survival analyses for READ patients stratified by both the risk score and neoantigen burden or mutation loads using Kaplan–Meier curves. NEO,
neoantigen burden; H, high; L, low. **P < 0.01; *P < 0.05.
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based groups in READ, which represented different clinical and

immune features.
Validation of the m5C methylation–based
signature by TMA in patients with
rectal cancer

To demonstrate the robustness and repeatability of the

prognostic value of the established model, different laboratory

assays were adopted. RT-qPCR was conducted to detect the

mRNA expression of the signature’s factors in 26 pairs of rectal

cancer tissues and corresponding normal tissues. The results

showed that NSUN4 was highly expressed in normal tissue

(Figure S8A). Examination of the correlation between the risk

score and clinical parameters revealed a higher proportion of

patients with no lymph node metastasis in the low-risk group

compared with the high-risk group (Figure S8B).

Next, we detected the protein expression levels of NSUN4,

NSUN7, and DNMT1 via IHC staining in a tissue microarray

containing 80 paired normal and tumor tissues. The clinical features

of tissue microarray as the validation cohort are displayed in Table
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S2. The protein expression levels of the three m5C regulatory genes

were analyzed using IHC staining, substantiating the findings

obtained using the TCGA-READ dataset. The following analyses

were based on the protein expression levels detected via IHC. The

results revealed significant elevation of NSUN7 and DNMT1 in

normal tissues compared with tumor tissues, while NSUN4 showed

no obvious difference between the two groups (Figure 10A). Next,

we investigated the relationship between the three genes using the

Pearson correlation analysis. High correlation coefficients (> 0.7)

shown in the correlation plot indicate that the protein expression

levels of the three genes were closely associated (Figure 10B).

Importantly, the KM survival curves demonstrated that the

survival probability was significantly increased in the high

expression group compared to the low expression group,

according to the protein expression of an individual gene in the

risk model (Figure 10D). We constructed a signature based on the

protein expression of the three genes, in which the low-risk group

showed prolonged survival compared with the high-risk group

(Figure 11A). Remarkably, based on the IHC protein expression

data, the risk score was correlated with clinical characteristics

including pathologic TNM, gender, grade, and clinical stage

(Figure 10C); this was further confirmed by a Wilcoxon test
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FIGURE 8

Prediction of immunotherapeutic response for distinct subgroups in READ. (A) Pearson correlation between three signature factors and 28 types of
immune cells is illustrated by a correlation heat map. Correlations with P value > 0.05 are marked by a cross. (B) The differences in the three
signature factors between distinct subgroups classified by the expression level of three immune checkpoints, including CTLA4, PD1, and PDL1.
(C) The distribution of TIDE score, MSI score, T-cell dysfunction score, and abundance of CAF between the low- and high-risk categories. (D) The
proportion of READ patients with response to ICI therapy in the high- and low-risk groups based on TIDE prediction. (E) The differential analysis for
immune checkpoints between the two categories in IMvigor210 cohort. (F) The proportion of patients with response to PD-L1 treatment in the
high- and low-risk groups based on IMvigor210 cohort. (G) Distribution of the risk score between CR/PR and SD/PD groups. (H) The proportion of
immune phenotype in the high- and low-risk groups. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.
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between the two subgroups (Figure 11D). To examine the

significance of the established risk score, univariate and

multivariate Cox regression analyses were conducted. Risk score,

grade, and pathologic M remained independent factors after the

above tests (Figure 11C). ROC analysis was exploited to inspect the

superiority of the built risk score over other indexes (AUC of risk

score = 0.954; AUC of grade = 0.744; AUC of pathologic N = 0.764;

AUC of pathologic M = 0.639; AUC of pathologic T = 0.749;

Figure 11B). To validate the efficiency of the nomogram generated

based on the TCGA-READ dataset, we integrated the model factors,

including risk score, age, and pathological N, to construct a

nomogram based on the IHC independent cohort (Figure 11E).

The C-index of the nomogram was 0.840, indicating a stable and

robust predictive power. The subsequent calibration plots also

revealed high concordance between the predicted probability of

three-, five-, and seven-year OS and actual OS (Figure 11F). These

results reinforced that our classification based on the m5C

methylation regulators was potent and reliable in terms of

prognostic significance for patients with rectal cancer.

In addition, the regulated genes associated with NSUN4,

NSUN7 and DNMT1 using the STRING database were analyzed.

Mitochondrial transcription termination factor 4 [MTERFD2],
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NOP14 nucleolar protein [NOP14] and RB transcriptional

corepressor 1 [RB1] were identified to be closely related to

NSUN4, NSUN7 and DNMT1 respectively with the highest

predicted scores. As shown in Supplementary Figure S9A, NOP14

was significantly upregulated in rectal cancer tissues compared with

normal tissues, while both MTERFD2 and RB1 showed no

differences. Consistent with our results in TCGA, the

immunohistochemistry results of the HPA database presented

that the protein expression level of NOP14 was elevated in the

tumor cells compared with the corresponding glandular cells, and

mainly localized to the cytoplasmic and membranous nuclear

(Supplementary Figure S9B). However, the protein expression of

MTERFD2 or RB1 exhibited no difference between cancer tissues

and normal tissues (Supplementary Figure S9B).
Estimation of drug sensitivity for the m5C
methylation–based signature

Based on the potential role played by the established m5C

regulator signature in modulating the immunotherapies, we

further investigated its clinical usefulness by measuring the IC50
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FIGURE 9

The transcriptomic characteristics of the m5C methylation–based gene clusters. (A) The intersection of DEGs and prognostic genes. (B) The
unsupervised consensus cluster of the identified 173 genes. (C) The Kaplan–Meier survival curve for two clusters in the TCGA cohort. (D) The m5C
signature–based risk score distribution between two clusters. (E) The proportion of READ patients with different risk status in cluster 1 and cluster 2
from the TCGA cohort. The CMS distribution among the risk groups (F) and clusters (G) separately. (H) Sankey diagram depicting the relationship of
survival status, risk groups, clusters, and CMS classification. (I) The functional enrichment analysis on GO terms of the two clusters. (J) The immune
cells infiltration between different clusters. (K) The proportion of responsive patients in the two clusters based on TIDE prediction. The distribution of
TIDE score (L), MSI score (M), T-cell dysfunction score (N), T-cell exclusion score (O), and abundance of CAF (P) in cluster 1 and cluster 2.
(Q) Sankey diagram connecting the two classification systems with the immune response. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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value of different oncology drugs. According to the predictive

model, we found that the effects of 10 commonly used

drugs for READ were different between the two subgroups.

Chemotherapeutic drugs, including camptothecin, 5-fluorouracil,

cisplatin, oxaliplatin, and irinotecan, had a lower IC50 in the low-

risk group.

Similarly, cediranib, sorafenib, and axitinib, which belong to

VEGFR-targeted angiogenesis drugs, exhibited a lower IC50 in

the low-risk group. EGFR/HER2 inhibitor lapatinib and BRAF

inhibitor dabrafenib also followed that pattern (Figure 12A). To

benefit high-risk patients, we further excavated both the CTRP

and PRISM databases; two drugs specific to high-risk patients

were found effective by intersect ing the two sources

(Figures 12B–D) and include chlorambucil and SKI.II. These

results implied that our model could predict certain drug

sensitivity that would be beneficial to different groups of

READ patients.
Discussion

Accumulating studies have revealed that colon and rectal cancer

have distinct metastatic patterns, spread ratio, and drug response in

patients (46). In multiple trials, individuals with rectal or colon
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cancer who received bevacizumab-containing regimens have shown

different survival rates (47–49). In order to systematically

distinguish colon and rectal cancer, Liang et al. even profiled

specific biomarker and identified a key factor to tailor the medical

treatment of patients with colon and rectal cancer (50). Available

evidence indicates that colon and rectal cancer should be regarded

as two specific cancers when considering clinical treatment.

Therefore, we evaluated the prognostic significance of m5C

regulators in COAD and READ separately. The results indicate

that m5C might exert more impact on the prognosis of READ

patients than COAD patients, which could be explained by the fact

that colon and rectal cancer exhibit remarkably different genetic

and epigenetic characteristics. A study enrolling 1,443 stage I–IV

CRC patients revealed that the prevalence of MSI-high, BRAF

mutations, and CIMP-high tumors rapidly decreased from the

proximal colon to the rectum (51). Moreover, proximal tumors

were more frequently MSI, hypermutated, BRAF mutant, and

densely infiltrated by TIL, whereas distal tumors were CIN,

HER1, and HER2 amplified, with active EGFR signaling and

mostly non-BRAF-like characteristics according to an analysis of

molecular features along anatomical sites in colon carcinomas of

patients enrolled in the Pan European Trial Adjuvant Colon

Cancer-3 (PETACC3) chemotherapy trial (52), indicating a great

heterogeneity within CRC. Overall, the observation of significant
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FIGURE 10

Validation of the m5C methylation– based signature by rectal cancer tissue microarray (TMA). (A) The differential expression of NSUN4, NSUN7, and
DNMT1 between normal and tumor tissue; the representative micrographs show NSUN4, NSUN7, and DNMT1 IHC staining of 80 pairs of rectal
cancer and corresponding normal rectal tissue samples in the rectal cancer TMA. (B) The correlation among the expression levels of NSUN4,
NSUN7, and DNMT1. (C) The heat map depicting the association of the risk score, gene expression, and clinicopathological parameters.
(D) Kaplan–Meier curves of differential NSUN4, NSUN7, and DNMT1 expression in the TMA cohort of rectal cancer. ****P < 0.0001; **P < 0.01;
*P < 0.05; ns, not significant.
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difference between two types of cancer led us to focus our research

on patients with rectal cancer.

RNA epigenetic modification is a crucial biological process.

There is increasing evidence that the malfunction of RNA

epigenetic modification leads to the deterioration of cancers. For

example, NUSN4 has been found to affect the expression of

mitochondrial DNA, which leads to a cascade of changes relating

with the regulation of mammalian oxidative phosphorylation,

finally resulting in the progression of cancers (53–55). The

dysfunction of NSUN7 has been reported to result in male

infertility (56), and NSUN7 is downregulated in prostate cancer

compared with normal prostate tissue, acting as a protective factor

in patients with prostate cancer (57). Additionally, DNMT1 is an

important methyltransferase for the stable process of RNA

methylation. It is associated with a series of cancers, including

breast cancer, thyroid cancer, pancreatic cancer, and hepatocellular

carcinoma (58–61). Here, based on the gene expression of m5C

regulators (NSUN4, NSUN7, DNMT1), we established a signature

that could effectively distinguish the prognosis of READ patients. A

weak positive correlation was found between the three genes based

on the TCGA-READ, indicating the independence of the three

genes in the current model, and their cumulative effect can endow
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the model biological significance at the mRNA expression level. The

constructed signature, age, and pathologic N act as independent

prognostic factors in rectal cancer. Moreover, the signature could

predict risk for patients of different age groups and N stages.

Notably, the signature failed to distinguish the survival status of

patients in the N1/N2 stage. At the advanced stage of the disease,

colorectal cancer–associated immune infiltrates can be highly

heterogeneous and can vary their phenotypes in a spatiotemporal

manner (62, 63). Moreover, various factors such as intestinal

obstruction, gastro-intestinal bleeding, malnutrition, liver

metastasis, and other maladies can cause death in advanced

colorectal cancer. All the above uncertainties could account for

the reason that risk score only exhibited a trend (P = 0.089) when

stratifying the overall survival of patients in the pathological N1/N2

stage due to small sample size. Differentiating the survival status of

N0 patients is significant for early intervention. Colorectal cancer

develops asymptomatically, leading to the difficulty in diagnosis and

thus progressing into the advanced stage, which requires

considerable efforts to treat (64). The established risk score could

efficiently evaluate the hazards of patients in the pathological N0

stage and predict patients who are at high risk of developing

advanced stage cancer, and the emphasis placed on these patients
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FIGURE 11

Validation of the m5C methylation–based signature by tissue microarray (TMA). (A) Kaplan–Meier survival curves show overall survival for low- and
high-risk patients based on the rectal cancer TMA cohort. (B) The ROC curves depicted for the risk score and common clinical diagnostic indexes.
(C) The univariate and multivariate Cox analysis of the risk score and clinicopathological indexes in the rectal cancer TMA patients. (D) The
distribution of the risk score among various parameters including pathological TNM, stage, grade, and gender. (E) A nomogram integrated age,
pathological N, and risk score was constructed for 3, 5, and 7 years based on the rectal cancer TMA cohort. (F) The calibration curves show the
discrepancy between actual and nomogram-predicted survival probability in 3-, 5-, and 7-year nomograms. ****P < 0.0001; **P < 0.01; *P < 0.05.
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will benefit them clinically. Since IHC enables a pathologist to

examine gene expression at the protein level within the context of

histologically interpretable tissue sections, it is a reliable method for

confirming expression signatures discovered by RNA sequencing.

Therefore, to further substantiate the results of the bioinformatics

analysis, TMAs from patients with rectal cancer were

immunohistochemically stained for NSUN4, NSUN7, and

DNMT1. The stained slides were evaluated for calculating risk

score. In concordance with the TCGA data mining, the risk score

was able to differentiate the prognosis of patients with rectal cancer

well and determine their survival as an independent prognostic

factor, and the nomogram integrating risk score, age, and

pathological N could serve as a reliable indicator in predicting the

survival probability of patients with rectal cancer. Since IHC is

carried out on commonly processed clinical tissue samples,

validated IHC assays could be easily applied in clinical

diagnostics. To facilitate the clinical use, we developed a

nomogram with high accuracy and robustness. Our findings

together suggest that the built signature based on m5C RNA

regulators is highly involved in the progression of rectal cancer

and could serve for effective risk stratification in patients with

rectal cancer.

There is increasing evidence relating the m5C modification with

innate immunity as well as antitumor effect through a complex

crosstalk among various m5C regulators. We found that the
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established signature could effectively determine the TIME

infiltration patterns. The interplay between tumor and immunity

begins when tumor antigens are presented by dendritic cells and

activate CD8+ T cells and CD4+ T cells to exert cytotoxic effects

(65). Moreover, cancer cells can suppress immune system, leading

to an inhibitory TIME to escape immune surveillance with the

increase of Tregs and MDSC. As revealed in our analysis integrating

CYBERSORT, TIMER, EPIC, and ssGSEA algorithms, the low-risk

group was characterized by the activation of adaptive immunity,

with the increasing abundance of CD4+ T cells, CD8+ T cells, B

cells, and myeloid dendritic cells. The high-risk group was

characterized by the suppression of immunity, accompanied by

upregulation of Tregs and MDSC. The ratio analysis further

explained that compared with the high-risk group, the scales of

CD8+/CD4+ regulatory T cells and pro-/anti-inflammatory

cytokines were higher in the low-risk group. According to

different functions, macrophages could be classified into two

categories: classically activated macrophages (M1), mainly acting

as a tumor-killer role, and alternatively activated macrophages

(M2), which function to promote tumor cells (66). As indicated

in our results, the ratio of M1 to M2 macrophages was elevated in

the low-risk group. m5C RNA methylation regulators have already

demonstrated the efficacy for predicting prognosis and regulating

TIME in various cancers (18, 67, 68), suggesting the potential value

in pan-cancer analysis. Consistent with the current knowledge, our
A

B DC

FIGURE 12

Estimation of drug sensitivity for the m5C methylation-based signature. (A) The evaluation of drug sensitivity including chemotherapeutics and small
molecular drugs targeting VEGFR, EGFR/HER2, and BRAF. (B) Intersection of the identified drugs targeting high-risk patients between CTRP and
PRISM databases. (C, D) The differential drug response analysis of CTRP- and PRISM-derived compounds targeting the high-risk group. IC50: half-
maximal inhibitory concentration. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05.
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model showed a predictive accuracy in prognosis and in TIME cell

infiltration characterization among READ patients.

The signatures derived from m6A/m5C/m1A RNA

methylation regulators were widely explored in recent studies.

Commonly, the signatures could characterize the immune

landscape of cancer patients and further predict the efficacy of

immunotherapy (69, 70). m6A modification is one of the most

researched RNA methylation patterns. The “writer”, “reader”,

and “eraser” of m6A modification correlated closely with

immune infiltrating cells (71), giving rise to the application of

m6A RNA methylation regulators in predicting immune efficacy.

Two m6A RNA demethylases, FTO and ALKBH5 were targeted

to develop inhibitors (72–74), providing insights into

understanding the roles of m6A RNA methylation involved in

multiple diseases. m5C RNA modification is regarded as a novel

methylated process in eukaryotes. Small-molecular inhibitors

targeting m5C RNA methylation regulators were conceived by

proof-of-concept studies, while, specific m5C inhibitors have yet

to be developed (75). m5C RNA methylation regulators can

impact the process of tumorigenesis by regulating TIME in

cancers, so that inspecting the roles involved in the immune

system will give hints to personalized immunotherapy strategies

making. m1A methylation modification is a new form of

modification of RNA, thus, studies on m1A modification in

tumorigenesis are rarely reported. Although several signatures

based on m1A modification were built to guild effective

immunotherapy strategies (70, 76), controversies remained

when detecting the m1A methylation sites (77, 78). More

efficient and accurate technologies need to be developed to

uncover the m1A modification sites to fully exploit the value

of m1A modification in anti-tumor immunotherapies. More

effort is deserved to understand the complex network regulated

by different kinds of RNA methylations in modulating tumor-

immune interactions. However, in the current study, we focused

on the prospects of m5C methylation regulator as the predictive

biomarker for ICIs treatment.

The quantity of cancer mutations is reflected by TMB. Major

histocompatibility complex proteins turn mutations into

neoantigens and further present them to T cells. More

neoantigens are produced by higher TMB, which in turn boosts

the likelihood that T cells recognition will happen, clinically

corresponding with improved ICI outcomes (79). Several studies

have shown that high TMB and neoantigens correlated with better

prognosis in non-small-cell lung cancer (NSCLC) and melanoma

(80–82). In this study, the low-risk group possessed more mutations

and higher level of neoantigens than the high-risk group, suggesting

a better response to immunotherapy within the low-risk group. We

also identified the stratifying efficiency of the model in patients with

same status of neoantigens and TMB. The prognostic power of the

established model was superior to neoantigens or TMB.

These results indicated that our model had the potential to

combine with or modify existing biomarkers, achieving improved

accuracy in prognostic prediction. In addition to using neoantigens

and TMB, immune checkpoints can be inhibited to enable T cell

functions. By allowing T-cell reactivation, ICIs have revolutionized

cancer treatment (83). The Food and Drug Administration (FDA)
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has approved six inhibitors of the programmed cell death protein

pathway (PD1/PD-L1) and an inhibitor of the CTLA-4 for use in

treating various cancers (84–86). In our study, we observed a weak

correlation between model factors and immune checkpoints except

for NSUN4. In fact, immune checkpoints alone are not sufficient to

predict the efficiency of the immunotherapy due to a highly

complex immune tumor microenvironment, which could be

generalized by a cancer immunity cycle (87). Several studies have

suggested integrating multiple biomarkers to predict the immune

response, including tumor-infiltrating lymphocytes, mutational

b u r d en , immune g en e s i g n a t u r e s , a n d mu l t i p l e x

immunohistochemistry (88, 89). TIDE is a reliable surrogate

biomarker that could accurately predict immune checkpoint

blockade (ICB) response by measuring the tumor immune escape,

and it even performed better than PD-L1 expression in melanoma;

that is, a higher TIDE score is associated with worse ICB response

and worse patient survival under anti-PD1 and anti-CTLA4

therapies (90). According to our previous studies and others, the

immune landscape is crucial in assessing the efficacy of

immunotherapy and chemotherapy targeting CRC patients (91–

94). However, the role of m5C RNA methylation regulators in

patients with rectal cancer is still unclear. In the current research,

we found that responders were proportionally more frequent in the

low-risk group compared with the high-risk group. The lower TIDE

prediction score, T-cell dysfunction score, CAF, and higher MSI

score in the low-risk group indicate a good function of T cells with

high infiltration by cytotoxic T lymphocyte (CTL), further

explaining why the low-risk group was more sensitive to

immunotherapy. In addition, in IMvigor210 cohort with the

determined immune response, these results were well confirmed.

Besides, drug sensitivity was examined between the low- and high-

risk groups by performing the R package “oncoPredict”.

Apparently, the majority of the chemotherapeutic agents achieved

their efficacy among the low-risk group; nonetheless, drugs

targeting specifically the high-risk group were also investigated by

screening drugs of CTRP and PRISM databases. The AUC values

between two risk groups were compared and drugs intended to the

high-risk group were selected. Finally, chlorambucil and SKI.II

were found in both the CTRP and PRISM databases. These

results indicated the built risk model was a trustworthy and

robust approach for a thorough evaluation of each patient’s

therapeutic response, which could benefit the precision treatment

combining immunotherapy and chemotherapy for patients with

rectal cancer.

Furthermore, the mRNA transcriptome differences between the

high- and low-risk groups have been investigated. They were highly

involved in the cancer and immune system–related biological

pathways. The DEGs with prognostic efficacy were considered

m5C-related signature genes. Two genomic subgroups were

discovered based on the m5C signature genes, which could

significantly predict the survival and immune response of READ

patients, and were substantially connected with immunological

activity. These results were similar to the stratification of the risk

model. This once again showed the power of the m5C regulator–

based signature in shaping the landscapes of the READ patients.

Thus, a thorough analysis of m5C alteration patterns will definitely
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improve the precision classification and therapeutic strategy for

patients with READ.

Despite the encouraging findings, the current study included

several limitations. First, the gathered data were analyzed

retrospectively, and multicenter research and large-scale prospective

investigation are required to confirm and rectify ourmodel. Second, the

specific crosstalk between these m5C methylation regulators and

corresponding immune characteristics remains unrevealed. The

regulatory network of the three genes in rectal cancer needs to be

further investigated. As for now, the genes regulated by NSUN4 and

NSUN7 still need to be identified. Research related to the regulatory

role of the three genes could provide novel insights into the

mechanisms of the built signature. Third, the ability of this signature

to predict immunotherapeutic or chemotherapeutic response was

assessed indirectly due to the lack of data from patients with rectal

cancer receiving related treatments. Research focusing on the

therapeutic effect of the current signatures should be done in vitro

and in vivo in the future. Fourth, the sizes of clinical tissue specimens

for TMA and RT-qPCR assay used in our independent validation

cohorts were limited, and more samples are expected to verify the m5C

methylation regulator –based signature in the future.

In conclusion, the established risk model could be used to

comprehensively evaluate the prognosis and the clinical response to

adjuvant chemotherapy and immunotherapy among patients with

rectal cancer. Moreover, the complex characteristic of the TIME cell

infiltration could be effectively illustrated by the built signatures

based on m5C regulators, producing a number of novel insights for

cancer immunotherapy. Our research offers fresh approaches for

predicting survival status, enhancing immunotherapy outcomes,

disclosing various tumor immune phenotypes, and conclusively,

advancing tailored cancer treatment in the future.
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