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Background: A central issue hindering the development of effective anti-fibrosis

drugs for heart failure is the unclear interrelationship between fibrosis and the

immune cells. This study aims at providing precise subtyping of heart failure based

on immune cell fractions, elaborating their differences in fibrotic mechanisms, and

proposing a biomarker panel for evaluating intrinsic features of patients’

physiological statuses through subtype classification, thereby promoting the

precision medicine for cardiac fibrosis.

Methods:We inferred immune cell type abundance of the ventricular samples by a

computational method (CIBERSORTx) based on ventricular tissue samples from

103 patients with heart failure, and applied K-means clustering to divide patients

into two subtypes based on their immune cell type abundance. We also designed a

novel analytic strategy: Large-Scale Functional Score and Association Analysis

(LAFSAA), to study fibrotic mechanisms in the two subtypes.

Results: Two subtypes of immune cell fractions: pro-inflammatory and pro-

remodeling subtypes, were identified. LAFSAA identified 11 subtype-specific pro-

fibrotic functional gene sets as the basis for personalised targeted treatments. Based

on feature selection, a 30-gene biomarker panel (ImmunCard30) established for

diagnosing patient subtypes achieved high classification performance, with the area

under the receiver operator characteristic curve corresponding to 0.954 and 0.803

for the discovery and validation sets, respectively.

Conclusion: Patients with the two subtypes of cardiac immune cell fractions were

likely having different fibrotic mechanisms. Patients’ subtypes can be predicted

based on the ImmunCard30 biomarker panel. We envision that our unique

stratification strategy revealed in this study will unravel advance diagnostic

techniques for personalised anti-fibrotic therapy.
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Introduction

Heart failure results from the progression of cardiovascular

diseases, such as coronary artery diseases and cardiomyopathy (1).

There are two types of heart failure: ischemic heart failure and non-

ischemic heart failure. Ischemic heart failure is typically caused by

blood vessel diseases that result in myocardial infarction and

cardiomyocyte death (1), whereas non-ischemic heart failure is

caused by genetic mutations, infections, or exposure to stimuli that

result in myocardium dysfunction (2). Early-stage heart failure is

typically accompanied by loss of functional cardiomyocytes,

hypertension, and increased ventricular wall stress, all of which

contribute to inflammation and pro-fibrotic signaling (3). As a

result, fibrosis is a common pathological process in the progression

of heart failure caused by both etiologies (2, 3), and it is commonly

regarded as a biomarker for poor prognosis (4–6) as well as the

hallmark of end-stage heart failure (7).

Although fibrosis was initiated as a means of healing, it would

eventually lead to decreased ventricular compliance, abnormal cardiac

rhythm, and cardiomyocyte death, worsening the symptoms of heart

failure (8). Conventional heart failure therapies, which focuses on

symptom relief rather than maladaptive remodeling processes such as

cardiac fibrosis (9, 10), would lead to varied outcomes among patients

(11). Current clinical research on anti-fibrosis treatments has focused

on directly reversing the activated cardiac fibroblast phenotype (11, 12).

However, most of these treatments remain unsatisfactory.

Previous research has shown that, while activation of immune

responses and immune cells is required for cardiac repair, excessive

activation is a major cause of fibrosis (3, 13). Nonetheless, the lack of

understanding of the interplay between cardiac fibroblasts and the

immune cell fractions prevents therapeutic agents from targeting the

pro-fibrotic regulatory networks underlying fibroblast activation (12,

14–18). For example, endothelin inhibitors, anti-TGFb, and anti-

inflammatory drugs target fibrotic pathways but had a high degree of

inconsistency in treatment efficacy within patients (19, 20), and were

even reported to increase the risk of adverse immune responses (21).

These unsatisfactory results can partially due to our limited

understanding of the complex relationships between cardiac fibrosis

and immune cells. For example, the overlapping impact of M1 and

M2 macrophages on promoting fibrosis through different approaches

is attributed to the dual-pronged roles of immune activation, despite

having opposite regulatory functions on inflammation (13).

Neutrophils, monocytes, T cells, and B cells were thought to

regulate fibrosis, but crosstalk and fibrosis regulation (promoting or

suppressing) are related to pathological statuses and immune cell

populations (13, 22). CD4+ T cells mainly promote fibrosis through

secreting cytokines like IFN-g, IL-4, IL-13, and IL-17 (23). B cells can

secret immunoglobulins to directly induce fibrosis (24). Monocyte

promotes inflammation and immune cell infiltration (13). M2

Macrophage reduce inflammation, but promotes fibrosis through

the process of tissue healing and cardiac remodeling (13). These

evidences in former reports indicates that immune cell fraction is an

important causal factor for fibrotic mechanisms in heart failure.

As a result, finding a therapy targeting immune response that can

achieve consistent results in all patients would be difficult without
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considering their local conditions of immunity on a more

systematic scale.

Understanding the interrelationship between cardiac fibroblasts

and their immune cell fractions holds promise for breakthroughs in

effective anti-fibrosis therapy (11). Furthermore, heart failure and

cardiac fibrosis are also present with complex symptoms and multiple

etiologies, which brings a tremendous amount of challenge to

achieving individualised treatment strategies (25, 26). There is an

urgent need for a better understanding of the heterogeneity in

immune cell fractions and its relationship to fibrosis as an

important prerequisite for effective anti-fibrosis strategies.

Here, we report for the first time the establishment of a matrix of

cardiac immune cell fractions for heart failure patients and validated

the subtyping analysis based on that. Based on cardiac immune cell

fractions, two distinct patient subtypes were identified: [1] pro-

inflammatory (with elevated levels of biomarkers related to adaptive

immune responses) and [2] pro-remodeling (with high M2

macrophage). We demonstrated that epithelial-mesenchymal

transition (EMT) was highly correlated with fibrosis in both

subtypes. A novel analytical method based on Large-Scale

Functional Score and Association Analysis (LAFSAA) identified

functional gene sets related to subtype-specific mechanisms of EMT

and fibrosis. Fibrosis of the pro-inflammatory subtype was specifically

correlated with chronic inflammatory responses, JAK activities, and

hemidesmosome. In contrast, fibrosis of the pro-remodeling subtype

was specifically correlated with IL-6 receptor binding, glycoside

metabolic process, leukocyte aggregation, and blood vessel

development. We then present a unique biomarker panel, termed

ImmunCard30, based on 30 genes encoding secretory proteins for

patient stratification. The signature score of ImmunCard30 achieved

high subtype classification efficiency, with the area under the receiver

operator characteristic curve (AUC) equal to 0.958 in the discovery

set (n = 103) and 0.79 in the validating set (n = 177). ImmunCard30

could potentially serve as the biomarker panel for diagnosing patients’

subtypes and guide therapeutic treatments targeting the subtype-

specific pro-fibrotic mechanisms. Overall, this study provides new

insights into the heterogeneous cardiac immune cell fractions and its

interactions with fibrosis, thereby providing an important basis for

anti-fibrotic drug screening and disease management strategies. The

novel patient stratifying strategy and the ImmunCard30 biomarker

panel provide the basis for an important step towards precise anti-

fibrotic therapies that surpass the current treatments.
Materials and methods

Data installation and preparation

The transcriptomic datasets were obtained from the Gene

Expression Omnibus (GEO) database. Five datasets of ventricular

tissue samples were involved, among which three of them were used

to form the discovery set: GSE116250 (27), GSE135055 (28), and

GSE46224 (29). Independent dataset GSE57338 (30) was used as the

validating set. In total, 103 samples were included in the discovery set,

and 177 samples were included in the validating sets. Two datasets
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from lung tissues were involved in validating signature scores of

fibrosis: GSE124685 (31) and GSE184316. Raw data of RNA-

sequencing was transformed into reading counts using Genome

Reference Consortium Human Build 38 as the reference genome.

The read counts of RNA-sequencing were further normalised to

Reads Per Kilobase of transcript per Million reads mapped (RPKM)

by R package edgeR (R 4.1.0) (32).

Apart from the transcriptomic datasets, this study also involved

information from public biomedical databases. Annotated gene sets of

EMT and angiogenesis were retrieved from hallmark gene sets of

MSigDB collections (33, 34). The list of secretory proteins was

obtained from The Human Protein Atlas (https://www.proteinatlas.

org/) (35).
Quantification and clustering of the immune
cell fractions

CIBERSORTx calculated the matrix of samples’ immune cell

fractions based on the 22-leukocyte signature matrix (LM22) (36,

37). The calculated matrix of immune cell fractions serves as the input

of clustering to identify subtypes of the immune cell fractions. The

average silhouette width was applied to evaluate optimal numbers of

clusters (38), while k-means clustering was conducted based on R

package factoextra (R 4.1.0) (39). Visualisation of k-means clustering

was achieved by dimensional reduction based on t-distributed

stochastic neighbor embedding (tSNE) implemented by R package

RtSNE (R 4.1.0) (40). Recursive feature elimination for ranking

immune cell types on their importance in determining subtype

affiliations was achieved by R package caret (41).
Transcriptomic analysis and
statistical analysis

Differential gene expression analysis was conducted based on R

package DESeq2 (R 4.1.0) based on read counts of RNA-sequencing

normalised by datasets (to remove potential batch effects) (42).

Functional enrichment analysis was conducted by the online tool

Metascape (https://metascape.org/) to study enriched gene sets in

Gene Ontology Biological Process, Kyoto Encyclopedia of Genes and

Genomes, and Hallmark gene sets (43). Correlations between

variables were evaluated by Pearson correlation with R scripts

(4.1.0). Signature scores were calculated based on R package

singscore (R 4.1.0) (44). Scores of fibrosis, scores of EMT, and

scores of functional gene sets were calculated by singscore using a

uni-directional mode.

In contrast, the score of the predictive gene panel for subtype

classification was calculated based on the bi-directional singscore

method (“bi-directional” means considering both positively- and

negatively-correlated genes in the scoring). Feature extraction based

on least absolute shrinkage and selection operator (LASSO)

regression was performed by R package glmnet (R 4.1.0), using the

variables corresponding to the highest ln (l) value that resulted in a

misclassification error within 1 standard error of the minimum cross-

validated error as the optimal variable combination (45). ROC curves
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and AUC were plotted and calculated by R package pROC (R

4.1.0) (46).
Implementation of LAFSAA

By applying singscore (44) method, we calculated signature scores

of the 10402 ontology gene sets and 50 HALLMARK gene sets

retrieved from MSigDB (33) based on the expression matrix of the

103 samples from the discovery set. The matrix containing samples

on the rows, functional gene sets on the columns, and signature scores

as values was named the quantitative functional matrix. Spearman

correlation analysis was applied to screen the gene sets in the

quantitative functional matrix. Those gene sets that were

significantly and specifically correlated with the target gene set

(TGS, which was the HALLMARK gene set of EMT in this study)

in samples from one subtype would be identified as pro-inflammatory

or pro-remodeling subtype-specific gene sets. The identified gene sets

would be further screened based on their correlations with EMT in

their corresponding subtypes in the validating set GSE57338.

In the meantime, to make the screening more stringent, we

applied concept signature enrichment analysis (CSEA) (47) based

on the genes that were differentially expressed between the high and

low fibrosis groups in each subtype. Only gene sets with p-value< 0.05

in CSEA analysis of their corresponding subtypes were regarded as

subtype-specific EMT-related gene sets.
Calculation of intra-cluster
correlation scores

Intra-cluster correlation scores were used to select representative gene

sets for clusters identified based on the correlation matrix. It denotes the

average coefficients of a gene set’s correlations with other gene sets in its

corresponding cluster. This score was calculated by the equation below:

ICS(GSi) =
o
n

j=1
SpearmanCor(GSi,GSj)

n
(1)

Where ICS(GSi) is the intra-cluster correlation score of the i
th gene set.

The n denotes the number of gene sets in a cluster. SpearmanCor(GSi,

GSj) denotes the spearman correlation of the ith and the jth gene set.
Results

Clustering of immune cell fractions
for subtyping

Samples from patients with end-stage heart failure (n = 103) and

healthy samples (n = 31) from three datasets were retrieved (Table 1).

Since infiltrated immune cells are the major components and central

regulators of cardiac immune responses, we applied CIBERSORTx to

calculate immune cell fractions for all the involved patient samples

(36) (Supplementary Table 1), and conducted subtyping based on the

matrix of immune cell fractions.
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We identified two potential clusters based on the matrix of immune

cell fractions, which was the average silhouette width method

(Supplementary Figure 1). We demonstrated that k-means clustering

classified the tissue samples (n = 103) into two subtypes, termed

Subtype 1 and 2 (Figure 1A). Samples were assigned to Subtype 1

(n = 34) and Subtype 2 (n = 69), respectively (Figure 1A). Checking on

samples’ etiologies and source datasets indicated that clustering results

were not influenced by dataset attribution or underlying diagnosis

(Figure 1A; Supplementary Table 2).

Based on boxplots showing comparisons of immune cell

proportions, type 2 subtypes were higher in neutrophils and M2

macrophages, whereas type 1 was higher in B cells, T cells,

and monocytes (Figure 1B). Figure 1C shows a heat map
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showing significantly different immune cell levels between the

two subtypes.

To quantify the fibrotic status of the samples, we need to select

marker genes that can represent fibrosis. POSTN, COL1A1, TIMP1,

MMP2, and ACTA2. POSTN and COL1A1 are genes that express the

extracellular matrix proteins periostin and type 1 collagen, both of

which are significantly up-regulated in heart failure with cardiac

fibrosis (48). TIMP1 and MMP2 are enzymes that aid in the

progression of cardiac fibrosis (49). ACTA2 is a fibroblast activation

biomarker (50). In previous studies, these direct fibrosis marker genes

were used to assess pro-fibrotic activity (51). The same five-marker

combination has been used to indicate fibrotic levels in patients (50).

Fibrosis signature scores based on these five biomarkers were

validated on multiple organ fibrosis datasets corresponding to heart

and lung tissue, showing significant differences between normal and

fibrotic samples (Supplementary Figure 2). We applied signature

scoring to the 103 tissue samples and divided the samples into high

and low fibrosis groups based on the median of fibrotic signature

scores. Overall, Subtype 1 (n = 34) had a slightly higher fibrosis score

than Subtype 2 (n = 69) (Figure 1D), but both high and low fibrosis

samples were seen in both subtypes (Figure 1B).

To further evaluate the differences in fibrosis-related factors between

the two subtypes at the molecular level, we explored the differentially

expressed genes (DEG) separately in the two subtypes relative to healthy

controls. DEGs in both subtypes had similar fold changes to healthy

controls (Figure 1E). However, 286 genes showed enhanced heart failure-

related up-regulation in Subtype 1 (2 times higher in log2 fold change)

than Subtype 2 (Supplementary Table 3; Figure 1E).

Among the genes with the highest levels of upregulation in

subtype 1: The functional enrichment analysis ranked the Gene

Ontology gene set “adaptive immune response” first, with multiple

other gene sets related to adaptive immune responses (for example,

regulation of lymphocyte activation, T cell selection, T cell receptor

signaling, and regulation of B cell proliferation) identified

as significantly enriched as well (Figure 1F). Other inflammatory

signaling pathways involved in adaptive immune responses, including

those related to IL-2, JAK-STAT signaling, and IL-17 signaling, were

also more activated in the subtype 1 (Figure 1F).

As a further demonstration, we selected a list of genes as typical

biomarkers of adaptive immune response, which included multiple

surface antigens of T cells (such as CD8A, CD8B, CD3G), NK cells

(such as CXCR3, CD7), or B cells (such as CXCR5, CD79A), and

genes involved in signaling of chemokines and cytokines that

regulates adaptive immune responses. According to the differential

gene expression analysis, these genes showed higher up-regulation

compared to healthy controls in the subtype 1 than in the subtype 2

(Supplementary Figure 3A).

In the meantime, the subtype 1 was higher in proportion of CD4+

T cells, regulatory T cells, memory B cells, and plasma cells

(Figure 1B). The high percentage of T and B cells indicated an

active adaptive immune response. Furthermore, to directly compare

the differences in activation of T cells and B cells between the two

subtypes, we calculated signature scores of multiple functional gene

sets related to B cell activation, T cell proliferation, and T cell

extravasation (all of which are crucial processes in adaptive

immune responses), and demonstrated that subtype 1 was higher in

all of these gene sets (Supplementary Figure 3B). Meanwhile, so as to
TABLE 1 Clinical characteristics of samples from discovery set.

Characteristics NICM (n = 74) ICM (n = 29)

Age (years) 46.26 ± 13.29 59.6 ± 4.55

Gender
53 males; 21

females
26 males; 3 females

Race

White/Caucasian, n (%) 43 (58.11) 25 (86.21)

Black/African, n (%) 7 (9.46) 4 (13.79)

Yellow/Asian, n (%) 21 (28.38) –

Unknown, n (%) 3 (4.05) –

NYHA functional score or class

GSE116250 3.3 ± 0.6 (n = 37) 3.3 ± 1 (n = 13)

GSE46224
stage III or above

(n = 16)
stage III or above

(n = 16)

GSE135055
stage II (n = 2);
stage III (n = 7);
stage IV (n = 12)

–

LVEF (%)* 20.62 ± 8.36 16.16 ± 6.05

Comorbidities

Coronary artery disease, n (%) 4 (5.41) 29 (100)

Smoking history, n (%) 30 (40.54) 20 (68.97)

Diabetes mellitus, n (%) 14 (18.92) 16 (55.17)

Medications and treatments

Beta Blockers, n (%) 47 (63.51) 20 (68.97)

Inotropes, n (%) 17 (22.97) 7 (24.14)

Aspirin, n (%) 31 (41.89) 24 (82.76)

Amiodarone, n (%) 27 (36.49) 13 (44.83)

ACE inhibitor/Angiotensin receptor
blocker, n (%)

34 (45.95) 14 (48.28)

Statins, n (%) 18 (24.32) 28 (96.55)

LVAD/BiVAD, n (%) 24 (32.43) 12 (41.38)
*LVEF data from GSE46224 was not precise. Therefore, the LVEF data shown in this table only
serves as a reference. The samples were retrieved from three datasets on the Gene Expression
Omnibus database: GSE116250, GSE135055, and GSE46224. Plus-minus values are means ± one
standard deviation. NYHA New York Heart Association. GSE Gene Expression
Omnibus series. LVEF left ventricular ejection fraction. ACE Angiotensin-Converting
Enzyme. LVAD/BiVAD left/biventricular assist device.
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FIGURE 1

Clustering of heart failure samples for subtyping stratification. (A) Left panel: clustering of the two subtypes was visualized by t-distributed stochastic
neighbor embedding (t-SNE). Red dots represented subtype 1 samples, while turquoise dots represented subtype 2 samples. Right panel: distribution of
heart failure samples from different datasets (upper panel) and with different diagnoses (lower panel) in the two subtypes. Datasets were displayed with
their respective Gene Expression Omnibus Series (GSE) identities. The samples’ diagnosis was categorized into ischemic cardiomyopathy (ICM) and non-
ischemic cardiomyopathy (NICM). (B) Boxplot showing the immune cell fractions of the 22 cell types in the two subtypes. Red and cyan boxes,
respectively, represented subtypes 1 and 2. The significance of the difference in immune cell fractions between the two subtypes calculated by the two-
tailed Student’s t-test was shown on the top of each cell type’s column. (C) Heatmap showing the matrix of significantly different immune cell fractions
between the two subtypes. Rows represented the immune cell types annotated on the right side of the heatmap. Each column represented one sample,
while column annotations on the top of the heatmap described the corresponding samples’ subtype belongings and fibrotic status. (D) Boxplot showing
the signature score of fibrosis in the two subtypes. Red and cyan boxes, respectively, represented subtypes 1 and 2. Each black point represented one
sample in its corresponding subtype. The significance of the difference in score between the subtype 1 (n = 34) and the subtype 2 (n = 69) calculated by
the two-tailed Student’s t-test (t = 2.187, df = 101) was shown at the top of the plot. For each boxplot: the center line represents the median, the box
represents the interquartile range, and the whisker displays minimum to maximum. (P-value< 0.05: *< 0.01: **< 0.001: ***< 0.0001: ****). (E) Scatter
plots showing log2(fold-change) of genes in the two subtypes compared with healthy controls. Each dot represented one gene. In the upper panel,
genes with log2(fold-change) higher than 1 or lower than -1 in one of the subtypes were highlighted in red or blue, respectively. In the lower
panel, genes with log2(fold-change) in subtype 1 that were two times higher than in subtype 2 were highlighted in red. (F) Functional enrichment analysis
of the genes highlighted in red in (E) lower panel. The bar plots were -log10 (P-value) of enrichments of genes in signatures of Gene Ontology (GO)
Biological Process and Kyoto Encyclopedia of Genes and Genomes (KEGG) of the Molecular Signatures Database.
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evaluate the activity of B cells, we have also calculated the expressional

score of immunoglobulins based on expression level of 188 genes that

express immunoglobulins (calculated by “singscore” method). The

obtained expressional score of immunoglobulins was significantly

higher in the subtype 1, indicating a higher activity of antibodies in

the subtype 1 (Supplementary Figure 3B).

In conclusion, biomarker and functional gene set analyses

revealed that the two immune cell subtypes were associated with

different levels of biomarkers related to adaptive immune responses.

Further research on patient samples using comprehensive clinical

recordings or rationally designed disease models is expected to

provide more evidence to validate this correlation in the future.
Distinct immune cell types related to
subtype stratification and fibrosis

We scored and ranked 22 leukocyte cell types based on recursive

feature elimination according to their importance in determining

subtype affiliations (Figure 2A). To validate the ranking, we applied

CIBERSORTx to an independent dataset with a large sample size (n =

177): GSE57338 (30) and assigned samples to two subtypes by

calculating their distance from the centroids of the two subtypes in

the discovery set (Supplementary Figure 4).

According to the result of recursive feature elimination, the

proportion of M2 macrophages, which was significantly higher in the

subtype 2, was robustly the most important feature that discriminated the

two subtypes (Figure 2A). The proportion of resting CD4+ T cells was

identified as the most important feature for the subtype 1 (Figure 2A).

With the distinct phenotype of elevation in resting CD4+ T cell

proportions, leading to high immune response activation, Subtype 1

was subsequently referred to as the pro-inflammatory subtype. The high

level of M2macrophages, which plays a pivotal role in anti-inflammation

and pro-remodeling in fibrotic tissues (52), is the distinct phenotype of

Subtype 2, termed the pro-remodeling subtype.

Figure 2B depicts a broad overview of immune cell type

correlations. CD4+ T cell levels were found to be positively

correlated with monocytes, M0 macrophages, and memory B cells,

indicating that these cell types have close regulatory relationships in

the pro-inflammatory subtype. M2 macrophage levels, on the other

hand, were significantly inversely correlated with the proportions of

monocytes, T cells, and B cells (Figure 2B), confirming the role of

macrophage M2 in inflammation suppression (53) and its potentially

key role in determining the immunity of the pro-remodeling subtype,

which was distinct from the pro-inflammatory subtype.

We calculated the Pearson correlation coefficient between the

fractions of various immune cells and fibrosis to assess the potential

contribution of immune cells to fibrosis (Figure 2C). The immune cells

chosen were either important for classifying the two subtypes (for

example, M2 macrophages, CD4+ resting T cells, memory B cells, and

M0 macrophages) or had high proportions in the immune cell

population (such as NK cells, mast cells). The proportion of

monocytes was found to be positively correlated with fibrosis. The

proportion of neutrophils, on the other hand, was negatively correlated.

Despite being the most distinguishing features of the two subtypes, the

proportions of M2 macrophages and CD4+ T cells were not

significantly associated with fibrosis in our discovery set (Figure 2C).
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EMT was potentially a major contributor to
fibrosis in both subtypes

In the previous analyses, we demonstrated that the major features

of the two subtypes: the proportion of M2 macrophages and CD4+ T

cells, were not significantly related to fibrosis (Figure 2C). As a result,

subtype affiliation may not be a direct predictor of fibrotic levels. To

better understand the fibrotic mechanisms in these two subtypes, we

evaluated if there was a universal hub pro-fibrotic process induced in

both subtypes.

By dividing the tissue samples (n = 103) using the median fibrosis

score as a cutoff, we obtained high and low fibrosis groups in both the

pro-inflammatory subtype (High: n = 20, 19.42%; Low: n = 14,

13.59%) and the pro-remodeling subtype (High: n = 31, 30.10%;

Low: n = 38; 36.89%). The distribution of high and low fibrosis

samples in the two subtypes can be seen in the column annotation of

the heatmap Figure 1C. Differential gene expression analysis between

the high and low fibrosis groups identified 166 commonly up-

regulated genes in the high-fibrosis group of both subtypes

(Supplementary Table 4; Figure 3A).

Functional enrichment analysis identified that a large number of

commonly up-regulated genes in the high fibrosis group were

associated with EMT (Figure 3B). Signature scores calculated based

on the HALLMARK gene set of EMT demonstrated that EMT was

highly up-regulated in heart failure patients, and the high fibrosis

groups had significantly higher scores than low fibrosis groups

(Supplementary Figure 5). There are normally two types of EMT in

adult ventricular tissues: epicardial EMT and endothelial-

mesenchymal transition (EndMT) (54). EndMT is commonly

regarded as a subset of EMT due to shared pathways and

transcriptional factors (55). The signature scores of EMT and

angiogenic hallmark signatures were highly correlated with each

other (coefficient = 0.73), as was the signature score of

fibrosis (coefficient equals 0.86 for correlation between EMT and

fibrosis, and equals 0.62 for correlation between angiogenesis and

fibrosis) (Figure 3C), indicating potential relationships between

vascular endothelial cell activities and EMT in the discovery set.

We studied the correlations of cytokeratin (expressional score

calculated by “singscore” method based on 55 genes expressing

cytokeratin) and PECAM1 (CD31) with EMT and fibrosis to

determine which type of EMT was the major contributor to

fibrosis. Previously, cytokeratin was thought to be an epithelial cell

feature, while PECAM1 was thought to be an endothelial cell feature

(56, 57). The correlation coefficient between PECAM1 and EMT was

0.42, with a high significance (P 0.001), while the correlation between

cytokeratin and EMT was much lower (coefficient = 0.24, P 0.05)

(Figure 3C). These results showed that EMT in the discovery set was

closely related to endothelial cells.

We discovered that endothelial biomarkers were highly correlated

with EMT and fibrosis in patients with end-stage heart failure.

Previous research has suggested that EndMT may contribute to

cardiac fibrosis (58). As a result, more clinical cohort studies may

be needed to confirm whether the identified EMT in end-stage heart

failure patients, which was highly correlated with fibrosis, was related

to EndMT.

At the level of transcriptional regulation, we screened 46 essential

transcriptional factors associated with EMT based on previously
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reported regulatory landscapes (Supplementary Table 5) (59), of

which 29 were significantly associated with fibrosis scores in the

discovery set (all significant correlation coefficients were positive)

(Figure 3D). These significant correlations served as strong evidences

to prove the associations between EMT-related transcription factors

and fibrosis, validating the pivotal role of EMT as a central process

in fibrosis.
Mechanistic study of EMT in the two
subtypes based on LAFSAA

The stratification of heart failure patients into pro-inflammatory

and pro-remodeling subtypes would unravel unique biomarkers

related to their fibrotic mechanisms. Here we designed a novel

approach based on LAFSAA to identify the functional gene sets

that may be associated with distinct EMT mechanisms in the two
Frontiers in Immunology 07
subtypes (Supplementary Figure 6). We identified 17 gene sets

specifically associated with EMT in the pro-inflammatory subtype

and 87 gene sets specifically associated with EMT in the pro-

remodeling subtype.

To study the potential functional relationships between these 104

gene sets, we calculated their correlation matrix based on Spearman

correlation coefficients in the discovery set. According to the

correlation matrix, hierarchical clustering divided the 104 gene sets

into 8 clusters with high intra-cluster correlations (Figure 4A). Gene

sets assigned to the same cluster were expected to be functionally

relevant. Gene sets with intra-cluster correlation scores (Calculated by

Eq. 1) ranked in the top 30% of their corresponding clusters were

especially noted to interpret functions of their corresponding

clusters (Figure 4A).

Among the LAFSAA-identified functional clusters, clusters 1

(related to glycoside metabolic process), 3 (related to the immune

response to environmental stresses), 4 (related to rhythmic process
A

B C

FIGURE 2

Immune cell types related to subtype stratification and fibrosis. (A) Rank of immune cell types based on their scores calculated by recursive feature
elimination. (B) Pearson correlations between immune cell types. The colored square in each rectangular cell displayed the correlation coefficient
between immune cell types on its corresponding row and column. Red squares indicated negative coefficients, while blue squares indicated positive
coefficients. Darker shades and larger square sizes indicated a higher absolute value of coefficients. Only correlations with P-value less than 0.05 were
displayed with correlation coefficients. (C) Scatter plots with Pearson correlation coefficients between fractions of each immune cell type and the
signature score of fibrosis. Blue light in each subgraph represented the linear regression line. Each black dot represented a heart failure sample. The light
gray area surrounding each blue regression line represented a level 0.95 confidence interval.
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and neural development), 5 (hyaluronan biosynthesis and

metabolism), and 7 (related to cell adhesion, cytoskeletal

organisation, and vasculature development) were specifically

correlated with EMT in the pro-remodeling subtype. In contrast,

cluster 2 (related to translational regulation, neural system

development, and cell adhesion) and 6 (related to JAK activities,

inflammation and adaptive immune response) were specifically

correlated with EMT in the pro-inflammatory subtype (Figure 4A).

Among the subtype-specific EMT-correlated gene sets from these

8 clusters, 11 of them (from clusters 1, 2, 3, 6, and 7 of LAFSAA-

identified functional clusters) were also subtype-specific fibrosis-

correlated gene sets, as shown in Figure 4B. Meanwhile, these 11

functional gene sets were mainly having similar signature scores
Frontiers in Immunology 08
between the two subtypes (Supplementary Figure 7). These results

indicated that the 11 functional gene sets were likely represented the

heterogeneous fibrotic mechanisms in different subtypes of immune

cell fractions.

Among these 11 gene sets, 7 were specifically correlated with

fibrosis in the pro-inflammatory subtype (Figure 4B). These 7 gene

sets were mainly related to immune responses, including “GOBP:

regulation of chronic inflammatory response” and “GOBP: activation

of Janus kinase activity”. This result demonstrated that in the pro-

inflammatory subtype, fibrosis was potentially promoted by EMT

induced by inflammatory responses. Meanwhile, hemidesmosome,

regulation of protein localization to synapse, and limb bud formation

(related to cell morphogenesis) were also specifically correlated with
A

B

D

C

FIGURE 3

Identification of epithelial-mesenchymal transition (EMT) as the potentially pivotal pro-fibrotic process. (A) Expression of 166 common genes that were
up-regulated in high fibrosis samples in both subtypes. The expression level was displayed by z-score. Each yellow line represented the line plot of a
gene’s expression level across the 103 heart failure samples and 31 healthy samples. The black line represented the average of z-scores of the 166 genes
among the samples. Vertical dash lines separated the samples from different groups, with their belongings shown below x-axis. (B) Bubble plot for
functional analysis of the 166 up-regulated genes in high fibrosis samples. The deeper red color of the bubbles represented a higher -log10(P-value),
while the larger circles indicated the higher number of genes identified in the corresponding gene set. (C) Pearson correlation coefficients between
signature scores of fibrosis, EMT, and angiogenesis. Numbers and asterisks in rectangular cells represented correlation coefficients and P-values (ns,
nonsignificance; Pvalue >0.05: *> 0.01: **> 0.001: ***> 0.0001: ****). (D) Pearson correlation coefficients (left panel) and -log10(P-value) of the
correlations (right panel) between expression levels of the 46 key EMT-related transcription factors and score of fibrosis. Levels of correlation
coefficients and -log10(P-value) were displayed with colors according to the legends on the right side of their respective panel. Only those genes with
-log10 (P-value) > 1.30103 (P-value< 0.05) were displayed with color in the right panel.
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EMT and fibrosis in the pro-inflammatory subtype, which might

reflect the reorganization of extracellular matrix and morphological

changes of cardiac cells.

In contrast, gene sets specifically correlated with fibrosis and EMT

in the pro-remodeling subtype were related to IL-6 receptor binding,

glycoside metabolism, leukocyte aggregation, and varicosity. IL-6 was

identified as a key factor regulating vascular remodeling in former

studies (60). In this study, IL-6 receptor binding and varicosity were

assigned to the same cluster in the similarity matrix of LAFSAA

(Figure 4A), which indicated that IL-6 and vascular remodeling were

at least statistically relevant in the samples of the discovery set, and

potentially being functionally relevant in the process of EMT and

progression of fibrosis. In former studies, M2 macrophage was

believed to strongly promote vascular development (61). By
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combining the analytical results in this study and the physiological

relationships between M2 macrophage and vascular development

revealed in former studies, the high correlation between vascular

remodeling and fibrosis in the pro-remodeling subtype is potentially

due to the high proportion of M2 macrophage in immune

cell population.

We proposed functional gene sets with subtype-specific

correlations with EMT and fibrosis via LAFSAA. These findings

suggested that the two subtypes had distinct fibrotic mechanisms.

More research using larger clinical datasets or disease models

representing the two subtypes of immune cell fractions are needed

for further validating these correlations. More importantly, the

different fibrotic mechanisms of the two subtypes heralds that

patient stratification based on subtypes of immune cell fractions
A

B

FIGURE 4

LAFSAA-identified subtype-specific pro-EMT and pro-fibrotic gene sets. (A) Heatmap on the top left shows the correlation matrix of LAFSAA-identified
subtype-specific pro-EMT gene sets. Column annotation of the heatmap indicates the subtype-specificity of these pro-EMT gene sets. The gene sets
were grouped into 8 clusters based on hierarchical clustering. Intra-cluster correlations were displayed in the form of a correlation network, with edges
denoting the correlation coefficients between each pair of functional gene sets. Gene sets that were represent the functions of their corresponding
clusters were marked in magenta, with their intra-cluster correlation scores displayed in their corresponding bar charts. (B) Subtype-specific pro-fibrotic
gene sets and their Spearman correlation coefficients with fibrosis in the two subtypes in the discovery set and the validating set GSE57338. The gene
sets were marked with their belonged LAFSAA-identified clusters.
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could potentially benefit anti-fibrotic therapies. Inhibiting the

activities of subtype-specific fibrosis-related functional gene sets

based on patients’ subtype affiliations could be a promising

approach to improving therapeutic outcomes compared to standard

therapeutic strategies, which should be investigated further with in-

vivo and in-vitro tests.
Patient stratification using immune
subtyping for personalised therapy

The key benefit of precise stratification of patients is the ability to

target fibrotic mechanisms associated with the immune cell fractions

for effective treatment. The design of a strategy to predict subtypes of

cardiac immune cell fractions in patients and assist in the

development of treatment strategies is pivotal. However, current

subtyping based on RNA profiling data from ventricular tissue

samples cannot be directly applied in clinical settings. Therefore, we

aimed to identify a panel of biomarkers correlated with subtypes of

cardiac immune cell fractions that could be broadly applied for

practical applications in personalized medical diagnosis.

We selected genes encoding secretory proteins for subtyping as

potential biomarkers for assay-based screening. The Student’s t-test

identified genes encoding secretory proteins that were expressed

significantly different between the two subtypes (Supplementary

Figure 8). The differentially expressed genes were screened with the

LASSO regression (Supplementary Figure 9). We identified a unique

panel of 32 genes with high performance in predicting patients’ subtypes

of cardiac immune cell fractions using LASSO screening (Supplementary

Figure 10A). To improve the robustness of the biomarker panel, we

applied receiver operating characteristic (ROC) analysis to evaluate the

classifying efficiency of genes that were not highly significantly different

between the two subtypes according to the heatmap shown in

Supplementary Figure 10A. We demonstrated that excluding HLA-

DPA1 or KRT9 from the panel led to an increase in classifying

efficiency in the validating set GSE57338, but not to a significant

decrease in AUC in the discovery set, by successively excluding the

selected genes from the panel and recording the changes in classifying

efficiency quantified by AUC (Supplementary Figure 10B).

After excluding HLA-DPA1 and KRT9, the AUC of the

biomarker panel in validating set GSE57338 subtype classification

increased from 0.79 to 0.802, while the AUC in the discovery set

decreased from 0.958 to 0.954. (Supplementary Figure 10B). As a

result of this finding, HLA-DPA1 and KRT9 were removed from the

biomarker panel. Therefore, the optimal combination of biomarker

panel consisted of 30 genes, termed ImmunCard30. In the

ImmunCard30 panel, 17 genes were expressed significantly higher

in the pro-inflammatory subtype (hereafter termed as 17G-subtype1),

and 13 genes were expressed significantly higher in the pro-

remodeling subtype (hereafter termed as 13G-subtype2) (Figure 5A)

To validate the performance of ImmunCard30, we applied the bi-

directional singscore method to calculate signature scores for the

clinical samples, where samples with a higher expression level of the

17G-subtype1 would be given higher scores, and a higher expression
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level of the 13G-subtype2 would lead to lower scores. We

demonstrated that the samples from the pro-inflammatory subtype

had significantly higher signature scores of the ImmunCard30

predictive panel than those from the pro-remodeling subtype, as

confirmed in both the discovery and the validating set GSE57338

(Figures 5B, C). Signature scores calculated by the ImmunCard30

predictive panel achieved a high AUC of 0.954 in the discovery set

(n = 103) and a relatively good predicting result in the validating set’s

177 samples (AUC = 0.803) (Figures 5D, E).

The functional correlations between ImmunCard30 and fibrotic

mechanisms could possibly be an approach to better understand the

different fibrotic mechanisms in the two subtypes. MSigDB database

contains over 10000 functional gene sets, with clear recordings of their

functional annotations and gene lists. We screened the functional gene

sets in the MSigDB database and identified those fibrosis-correlated

functional gene sets (with signature scores significantly correlated with

fibrosis, with a p-value of Spearman’s correlation< 0.05) that contained

genes within the ImmunCard30. Functional annotations of these

fibrosis-correlated functional gene sets from MSigDB were used to

interpret the functions of genes from the ImmunCard30. According to

the results, we found that genes within the ImmunCard30 panel were

related to multiple pro-fibrosis processes or molecular components,

such as adaptive immune response, cell migration and adhesion, neural

system development, and vasculature development (Figure 6). In

general, biomarkers in the 17G-subtype1 (ImmunCard30 genes that

expressed significantly higher in the pro-inflammatory subtype) were

more related to adaptive immune response, inflammation, and neural

system development. In contrast, biomarkers in the 13G-subtype2

(ImmunCard30 genes that expressed significantly higher in the pro-

remodeling subtype) were specifically related to vasculature

development (Figure 6). Biomarkers from both subtypes were related

to immune responses, cell migration, and cell adhesion (Figure 6).

By doing a literature review on functional records of genes in

ImmunCard30, we found that most of the genes were having clear

promoting or inhibiting effects on heart failure validated by in-vitro,

in-vivo or clinical studies (Supplementary Table 6), and the remaining

were found to statistically correlated with onset or progression of

heart failure (Supplementary Table 6). Literature review also

indicated that functions of 17G-subtype1 and 13G-subtype2 were

related to features of their corresponding subtypes. Most genes from

17G-subtype1 directly participated in [for example, TNFRSF17,

MEP1B, TNFRSF9, CST6, CANT1, IGF2BP1, IL13, LRP8 (62–71)]

or at least were relevant to [for example, PLXNC1, DUOX2,

SLITRK3, ST6GAL2, F11 (72–77)] inflammation and adaptive

immune responses (Supplementary Table 6), which were major

physiological features of the pro-inflammatory subtype. Meanwhile,

genes from 13G-subtype2 were related to down-regulation of

inflammatory responses [for example, LIMD1, VSIG4, ADAMTS5,

VTCN1 (78–81)], blood vessel development [for example, VEGFD,

RLN2, KLK12, and ANGPTL3 (82–86)], and maladaptive responses

to reduced cardiac functions [for example, VEGFD, ANGPTL3,

LIMD1, VSIG4, IDI2 (79, 83–88) (Supplementary Table 6), which

were physiological features related to M2 macrophage (13). These

records from in-vitro, in-vivo and clinical studies provide further
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evidence to prove the close relationship between ImmunCard30 and

subtypes of immune cell fractions.

In order to evaluate the possibility of applying the

ImmunCard30 panel in liquid biopsy, we went through the

former literatures related to detection of ImmunCard30 proteins

or genes’ expression in blood. According to the result, 27 of the

members in ImmunCard30 have clear records indicating

correlations between their levels in plasma/blood cells and

cardiovascular healthy, while the remaining also have proven

correlations with heart failure and being detectable in blood

(Supplementary Table 6). Therefore, liquid biopsy based on blood

samples would be a potential approach for detecting ImmunCard30.

Further studies correlating ventricular immune cell fractions and
Frontiers in Immunology 11
blood levels of ImmunCard30 would be worth doing to validate

the panel.

Overall, we presented a unique perspective based on immune

subtyping using immune cell fractions calculated by CIBERSORTx.

Subtype affiliation of immune cell fractions was potentially linked to

diverse disease progression mechanisms, according to the analyses

performed in this study. The accurate stratification of patient

subtypes will greatly benefit the development and application of

novel personalised therapeutic strategies. The ImmunCard30, which

performed well on our discovery and validating sets (n = 280), is a

promising biomarker panel that merits further investigation to

determine its validity in predicting subtypes for patients and

guiding individualised drug therapies.
A

B

D E

C

FIGURE 5

Performance evaluation for ImmunCard30 in predicting patients’ subtypes. (A) The average expression level of the 30 genes for subtype classification.
The average z-score of each gene in the corresponding subtype was used to represent the expression level. (B) Signature scores of the two subtypes in
the discovery set. (C) Signature scores of the two subtypes in the validating set GSE57338 were compared. (D) Receiver operating characteristic curves of
the 30-gene biomarker panel was used to classify the two subtypes from the discovery set. (E) Receiver operating characteristic curves of the 30-gene
biomarker panel was used to classify the two subtypes from the validating set GSE57338. A two-tailed Student’s t-test was used to determine
significance. AUC, area under the curve.
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Discussion

Heart failure is a significant challenge to longevity with complex

etiologies, and its progression is regulated by a heterogeneous

immune cell fractions and complex feedbacks (1, 18, 26). The

maladaptive structural changes in the heart during the progression

of heart failure are generalized as cardiac remodeling. Cardiovascular

fibrosis is a critical process in cardiac remodeling. Fibrosis was

activated as a response to cardiac stress, such as cardiomyocyte

death, pressure overload, and myocardial inflammation, to heal

dead tissues and improve the physical strength of the myocardium
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(8). However, in chronic heart failure, fibrotic responses are

constantly activated, resulting in excessive extracellular matrix

accumulation and pathological fibrosis. The fibrotic tissues would

stiffen the ventricle, reducing its compliance and diastolic function.

Meanwhile, fibrotic tissues disrupt cardiac electrophysiology and

limit nutrient supplies to cardiomyocytes, resulting in abnormal

cardiac rhythm and cell death (8).

Because of the central role of fibrosis in the progression of cardiac

remodeling, clinical studies have found that fibrosis is strongly

associated with the prognosis of heart failure, regardless of the

etiology of heart failure (4–6). Therefore, for the treatment of heart
FIGURE 6

Functional annotations of the 30 biomarkers for predicting patients’ subtypes. The two circos plots demonstrated how the 30 biomarkers involved in
pro-EMT and pro-fibrotic processes. Genes (bottom half of each circle) were linked to the functional annotations (upper half of each circle) that they
were involved in.
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failure, it is pivotal to focus on central pathological processes such as

cardiac fibrosis (89, 90). However, recent studies of anti-fibrosis

therapies targeting fibrotic pathways yielded inconsistent or even

worsened outcomes (19, 20), in part attributed to the highly

heterogeneous immune cell fractions of fibrotic hearts. Although

significant advancements in anti-fibrosis therapies were achieved,

the heterogeneity of cell fractions in the cardiac tissue often led to

varied treatment responses (13, 91). Precise stratification of patients

and individualising therapies considering patients’ heterogeneous

would be the future direction (91, 92). Numerous studies have

demonstrated that the cardiac immune cell fractions is associated

with the mechanism of fibrosis in patients (93, 94). Here, we

developed a novel patient stratifying method based on the immune

cell fractions and demonstrated the potential of this stratifying

method in predicting patients’ fibrotic mechanisms and assisting

the design of drug treatments.

We identified two subtypes of immune cell fractions for end-stage

heart failure (pro-inflammatory and pro-remodeling subtypes) using

ventricular tissue samples from 103 patients with heart failure, with

significantly different levels of biomarkers related to adaptive immune

responses. In both subtypes, EMT was identified as a potentially

central fibrotic process. Endothelial biomarker analyses revealed

strong correlations between endothelial cells and EMT. EndMT has

been shown in previous studies to be a pro-fibrotic process in disease

models (58). Further research on clinical cohorts could help

determine whether EndMT was occurring and infer the potential

contributions of EndMT to fibrosis in patients with end-stage heart

failure. LAFSAA-based evaluation further identified 104 subtype-

specific pro-EMT gene sets categorised into 8 functional clusters.

We demonstrated that the 11 subtype-specific pro-fibrotic gene sets

derived from the 8 functional clusters were related to inflammation,

cell-cell adhesion, vasculature development, and responses to

environmental stresses. A unique 30-gene biomarker panel was

established to accurately stratify patient subtypes in both the

discovery set (AUC = 0.954) and the validating set GSE57338

(AUC = 0.803).

Furthermore, subtype-specific pro-fibrotic mechanisms were

highly correlated with representative immune cells of both

subtypes, indicating casual relationships between the heterogeneous

immune cell fractions and fibrotic mechanisms. We demonstrated

that multiple processes related to regeneration, blood vessel

development, and morphogenesis were correlated with fibrosis in

the pro-remodeling subtype [for example, varicosity, smooth muscle

cell matrix adhesion (Figures 4A, B)], while M2 macrophages (a

distinct phenotype of the pro-remodeling subtype) was highly related

to these processes (13, 61). In contrast, inflammation and adaptive

immune responses, which were primarily modulated by T cells, B

cells, and monocytes, were specifically correlated with fibrosis in the

pro-inflammatory subtype. For example, defense response to virus, a

typical adaptive immune response, was a subtype-specific fibrotic

process in the pro-inflammatory subtype (Figure 4B). IL-13 and IL-4

secreted by CD4+ T cells (a distinct phenotype of the pro-

inflammatory subtype) activate Janus kinase activity (95), and
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activation of Janus kinase was identified as a subtype-specific

fibrotic process in the pro-inflammatory subtype (Figure 4B). These

interplays between fibrosis and immune cells were also observed in

early-stage heart failure (96–98). Therefore, although our current

results were obtained based on end-stage patients, the panel should

also be applicable to early-stage patients.

We envision that the 30-gene biomarker panel derived from

ventricular tissue samples could provide a key reference for patient

stratification, facilitating personalised therapeutic strategies based on

drugs targeting fibrotic pathways (especially those related to subtype-

specific pro-fibrotic gene sets, such as endothelin inhibitors, anti-

TGFb drugs, and anti-inflammation drugs), and reduce the adverse

symptoms caused by drug treatments (such as inflammatory response

(21)). Although ventricular tissue samples can be obtained with

endomyocardial biopsy (99), the procedure increases mortality risk,

cost and inconveniences the patient. Routine screening and

assessment of patient subtypes would be more feasible through

minimally invasive methods such as cardiovascular magnetic

resonance (CMR), which is non-invasive and is the primary

technology for stratifying patients with cardiac fibrosis (19, 100).

However, CMR cannot provide information related to the intrinsic

immunity of fibrotic lesions and is targeted to monitor fibrosis rather

than guide individualised drug treatments targeting the fibrotic

pathways. Here, our novel strategy for assessing subtypes of

immune cell fractions is highly relevant to disease progression

mechanisms. The ImmunCard30 is the first diagnostic biomarker

panel reported to potentially reflect the heart’s immune cell fractions,

assisting in assessing patients’ fibrotic mechanisms in the heart. The

ImmunCard30 biomarker panel’s correlation with patients’

pathological conditions is expected to have significant implications

for personalised medicine and, as such, warrants further clinical

studies to validate, particularly validation using minimally invasive

assessment methods such as liquid biopsy.

Clinical sampling of ventricular tissues is challenging due to the

high risk of sampling operation. Immuncard30 is based on data from

failing heart samples (n = 208) from various sources. However, there

could still be bias in evaluating subtype-association of fibrotic

mechanisms and the ImmunCard30 biomarker panel’s classifying

efficiency. Our study provided new insights into the pathological

correlations of cardiac immune cell fractions, which will be of great

interest in developing personalised medicine. Further studies focusing

on the in vitro and in vivo validation of the biomarker panel to

validate drug responses and diagnostic efficiency are in progress to

promote actual clinical utility. The progress made by this study

support effort for the development of anti-fibrosis precision

medicine for heart failure.
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24. Garcıá-Rivas G, Castillo EC, Gonzalez-Gil AM, Maravillas-Montero JL, Brunck M,
Torres-Quintanilla A, et al. The role of b cells in heart failure and implications for future
immunomodulatory treatment strategies. ESC Heart Fail (2020) 7(4):1387–99.
doi: 10.1002/ehf2.12744

25. Weldy CS, Ashley EA. Towards precision medicine in heart failure. Nat Rev
Cardiol (2021) 18(11):745–62. doi: 10.1038/s41569-021-00566-9

26. Leopold JA, Maron BA, Loscalzo J. The application of big data to cardiovascular
disease: Paths to precision medicine. J Clin Invest (2020) 130(1):29–38. doi: 10.1172/
Jci129203

27. Yamaguchi T, Sumida TS, Nomura S, Satoh M, Higo T, Ito M, et al. Cardiac
dopamine D1 receptor triggers ventricular arrhythmia in chronic heart failure. Nat
Commun (2020) 11(1):4364–. doi: 10.1038/s41467-020-18128-x
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1053793/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1053793/full#supplementary-material
https://doi.org/10.1016/S0735-1097(98)00400-8
https://doi.org/10.1016/S0735-1097(98)00400-8
https://doi.org/10.1038/s41572-019-0084-1
https://doi.org/10.1038/s41572-019-0084-1
https://doi.org/10.1007/s00395-019-0722-5
https://doi.org/10.1016/j.jchf.2013.12.004
https://doi.org/10.1016/j.jcmg.2020.11.006
https://doi.org/10.1016/j.jcmg.2020.11.006
https://doi.org/10.1161/CIRCIMAGING.118.007722
https://doi.org/10.1161/CIRCIMAGING.118.007722
https://doi.org/10.1016/j.yjmcc.2014.08.001
https://doi.org/10.1007/s10741-016-9536-9
https://doi.org/10.1016/S0140-6736(18)31808-7
https://doi.org/10.1016/j.jacc.2017.04.025
https://doi.org/10.1016/j.addr.2021.03.021
https://doi.org/10.1161/Circresaha.121.318005
https://doi.org/10.1038/s41392-020-00455-6
https://doi.org/10.1038/s41392-020-00455-6
https://doi.org/10.1152/ajpheart.00028.2019
https://doi.org/10.1016/j.celrep.2019.06.007
https://doi.org/10.3390/biomedicines9121747
https://doi.org/10.3389/fphys.2020.00301
https://doi.org/10.1016/j.cellsig.2020.109869
https://doi.org/10.1007/s40119-020-00199-y
https://doi.org/10.1016/j.jacc.2020.01.014
https://doi.org/10.1016/j.jacc.2020.01.014
https://doi.org/10.1016/j.yjmcc.2014.08.008
https://doi.org/10.1016/j.yjmcc.2014.08.008
https://doi.org/10.1016/j.mam.2018.07.001
https://doi.org/10.1016/j.yexmp.2010.10.004
https://doi.org/10.1016/j.yexmp.2010.10.004
https://doi.org/10.1002/ehf2.12744
https://doi.org/10.1038/s41569-021-00566-9
https://doi.org/10.1172/Jci129203
https://doi.org/10.1172/Jci129203
https://doi.org/10.1038/s41467-020-18128-x
https://doi.org/10.3389/fimmu.2023.1053793
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zou and Khoo 10.3389/fimmu.2023.1053793
28. Hua X, Wang YY, Jia P, Xiong Q, Hu Y, Chang Y, et al. Multi-level transcriptome
sequencing identifies Col1a1 as a candidate marker in human heart failure progression.
BMC Med (2020) 18(1):2–. doi: 10.1186/s12916-019-1469-4

29. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, et al. Deep
rna sequencing reveals dynamic regulation of myocardial noncoding rnas in failing
human heart and remodeling with mechanical circulatory support. Circulation (2014) 129
(9):1009–21. doi: 10.1161/CIRCULATIONAHA.113.003863

30. Liu YC, Morley M, Brandimarto J, Hannenhalli S, Hu Y, Ashley EA, et al. Rna-seq
identifies novel myocardial gene expression signatures of heart failure. Genomics (2015)
105(2):83–9. doi: 10.1016/j.ygeno.2014.12.002

31. McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, et al.
Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight
(2019) 4(22):2379–3708. doi: 10.1172/jci.insight.131597

32. Robinson MD, McCarthy DJ, Smyth GK. Edger: A bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics (2010) 26
(1):139–40. doi: 10.1093/bioinformatics/btp616
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