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Hepatocellular carcinoma (HCC) is a lethal malignancy with a lack of effective

treatments particularly for the disease at an advanced stage. Even though

immune checkpoint inhibitors (ICIs) have made great progress in the treatment

of HCC, durable and ideal clinical benefits still cannot be achieved in plenty of

patients with HCC. Therefore, novel and refined ICI-based combination

therapies are still needed to enhance the therapeutic effect. The latest study

has reported that the carbonic anhydrase XII inhibitor (CAXIIi), a novel type of

anticancer drug, can modify the tumor immunosuppression microenvironment

by affecting hypoxic/acidic metabolism and alter the functions of monocytes and

macrophages by regulating the expression of C-C motif chemokine ligand 8

(CCL8). These observations shine a light on improving programmed cell death

protein 1 (PD-1)/programmed cell death ligand-1 (PD-L1) immunotherapy in

combination with CAXIIis. This mini-review aims to ignite enthusiasm to explore

the potential application of CAXIIis in combination with immunotherapy for HCC.

KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) is the most common histological type in primary liver

cancer, which occurs predominantly in individuals with chronic liver disease or cirrhosis. HCC

is the fourth leading cause of cancer-related death worldwide, and its incidence has been rising

globally over the last 20 years (1, 2). It has been expected to keep increasing until 2030 in some

countries including the United States, and it has become the fourth of the most common
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malignancies in China (3, 4). Patients with early-stage HCC may be

curable by receiving radical treatment, such as local ablation, surgical

resection, or liver transplantation. However, a high recurrence rate still

exists (5-year survival rate after surgery is only approximately 35%) (2).

In addition, over one-half of HCC patients have already been at an

advanced stage when diagnosed due to the lack of sensitive and specific

diagnostic tools in the clinic. More importantly, the options of available

therapeutic strategies for those patients are also limited (5). For

instance, a multikinase inhibitor (MKI), a newly developed

anticancer agent compared to traditional chemotherapy, has already

made significant progress in HCC treatment in recent years. MKIs such

as lenvatinib, cabozantinib, and regorafenib have been approved for

treating advanced or metastatic HCC (6–8). However, a considerable

number of HCC patients are still unable to gain durable and ideal

clinical benefits (7–10).

Since most HCCs are derived from chronic inflammatory liver

damage (e.g., hepatitis B virus-related) (11, 12), such a disease is

considered an inflammation-related cancer. Therefore, HCC patients

are theoretically considered to benefit from immunotherapy (5). In

addition, notable advances in the comprehension of HCC

immunogenicity have been achieved over the last few years, leading

to the evaluation of immune checkpoint inhibitors (ICIs) as a frontline

treatment in this setting. However, based on the results of clinical trials,

ICI monotherapy has been found to provide limited efficacy against

HCC, with the treatment being beneficial in a limited cohort of patients

(13, 14). Additionally, the role of ICIs in combination with other

anticancer agents (including MKIs) in unresectable treatment-naive

HCC has also been assessed in some phase I–III clinical trials (Table 1)

(6, 14, 18–21). For instance, in the IMbrave150 trial (phase III study),

which randomized HCC patients to atezolizumab plus bevacizumab or

to sorafenib monotherapy, the overall survival (OS) and independent

review facility-assessed progression-free survival (PFS) both were

superior in patients receiving the immunotherapy-based combination

compared to those of the monotherapy group (22). Furthermore, as

reported in the phase III HIMALAYA trial, the risk of death for HCC

patients in the durvalumab plus tremelimumab group was significantly

lower than that of the sorafenib monotherapy group (Table 1) (16).

Such evidence not only suggests a novel standard of care in HCC

patients but also proves the superiority of ICI-combined therapy.

However, several unanswered questions remain in such settings,

including the lack of biomarkers predictive of response to

immunotherapy and the presence of a non-negligible proportion of

patients who do not gain benefit from ICIs (21, 23, 24). Therefore, how

to explore a novel and effective ICI-based combination therapeutic

strategy to obtain better clinical benefits has become a hot and difficult

issue in the current international frontier of HCC treatment (25–29).
Exsiting carbonic anhydrase XII
inhibitor in solid cancer treatment

Carbonic anhydrase XII (CAXII) is a transmembrane zinc

metalloenzyme involved in the regulation of the tumor

microenvironment, contributing to tumor cell proliferation,

invasion, migration, and pluripotency (30). It has been reported
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that CAXII is overexpressed in HCC, and its level is significantly

negatively correlated with the prognosis of HCC patients, which

may act as an independent prognostic factor (31–33).

A highly hypoxic tumor microenvironment is a hallmark for

human cancer including HCC, which results from the Warburg

effect and the surrounding fibrotic tissues caused by persistent

chronic inflammation. The overproduction of pyruvate, lactate,

and carbonic acid in response to hypoxia aggravates the hypoxic/

acidic microenvironment, leading to the enhancement of tumor

invasion, tumor immune surveillance escape, and local

inflammation. As a regulator of hypoxic stress and acidity, CAXII

can affect the tumor microenvironment by regulating proteins such

as 14V-ATPase and 15V-ATPase, thereby promoting HCC

progression (32, 33). Therefore, a CAXII inhibitor (CAXIIi) is

thought to be a novel anti-HCC agent, controlling HCC

progression and reducing immunosuppressive stress via the

regulation of hypoxic/acidic metabolism. However, the

investigation of the antitumor effects and mechanisms of CAXIIis

is still in fragmentation. The development and exploration of

antitumor CAXIIis have become a new global research hot spot

(30, 32, 33).

The initiation of CAXIIis on cancer treatment has started

recently. A phase I clinical trial of the first highly selective small-

molecule inhibitor of both CAIX and CAXII (SLC-0111) recently

has been completed with promising results (34). Briefly, 17 patients

with 10 different cancer types including one HCC patient were

recruited to be on the inhibitor. The results showed that the

inhibitor was safe in patients with previously treated advanced

solid tumors (Figure 1) (34). Moreover, a multicenter, open-label,

phase Ib study of SLC-0111 in combination with gemcitabine for

metastatic pancreatic ductal cancer in subjects positive for CAIX

has been conducted since 2018 (Figure 1). Acetazolamide, as a

multiple carbonic anhydrase inhibitor (including CAXII), and its

combination with radiochemotherapy have been tested in lung

cancer (NCT03467360), while the combination of acetazolamide

and temozolomide has also been trialed for brain cancer

(NCT03011671) (Figure 1) (35, 36). To our knowledge, no

other attempt has been made to investigate the therapeutic

effect of CAXIIis in HCC treatment so far, which is still a

desertlike field.
Enhance anti-tumor immunity by
modulating macrophage

Macrophages, some of the most abundant immune cells in

tissues, are highly heterogeneous and can switch between different

functions in the context of their niches where they are located. Their

functions are determined by their polarized types (M1 or M2).

Generally, the M1 subtype secretes inflammatory cytokines and

reactive oxygen intermediates and presents antigen to tumor-

suppressive T cells, stimulating the immune response (37, 38). In

contrast, the M2 subtype is a tumor-promoting macrophage,

inducing T-cell anergy (or exhaustion) and angiogenesis,

producing extracellular matrix components, and repairing
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damaged tissues (37, 38). Although the origins of macrophages in

many cancers remain uncertain, most of the macrophages recruited

to the tumor microenvironment, known as the tumor-associated

macrophages (TAMs), are the tumor-supportive M2 subtype (39).
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Abundant M2 macrophages were positively associated with poor

survival in patients with breast cancer (40, 41). Recent studies have

found that effectively interfering with macrophages is a potential

strategy to treat cancer (42–44).
TABLE 1 Selected trials of ICI-combined therapies for HCC.

HCC stage Therapeutic
regimen

Study Phase Total
patient
number

ORR
(RECIST1.1)

Median
PFS

(months)

Median
OS

(months)

Line of
therapy

Advanced HCC
(not eligible for surgical and/or
locoregional tderapies or progressive
disease after surgical and/or
locoregional tderapies)

Nivolumab/
ipilimumab

NCT01658878
(CheckMate
040) (15)

I/II 148 32% (95% CI,
20-47)
vs.

27 (95% CI,
15-41)

NA 22.8 (95%
CI, 9.4-not
reached)

vs.
12.5 (95%
CI, 7.6-
16.4)

First-line

Advanced HCC
(not eligible for locoregional tderapy)

Tremelimumab/
durvalumab

NCT03298451
(HIMALAYA)
(16)

III 1171 20.1% (95%
CI, NA)

vs.
5.1% (95% CI,

NA)

3.8 (95%
CI, 3.7–5.3)

vs.
4.1 (95%

CI, 3.8-5.5)

16.4 (95%
CI, 14.2–
19.6)
vs.

13.8 (95%
CI, 12.3-
16.1)

First-line

Advanced HCC
[not amenable to a curative treatment
approach (e.g., transplant, surgery,
ablation tderapy) or locoregional
tderapy (e.g., TACE)]

Cabozantinib/
Atezolizumab
(vs. sorafenib)

NCT03755791
(COSMIC-
312) (17)

III 837 13% (95% CI,
8.9-17.6)

vs.
5% (95% CI,
1.8-10.4)

6.8 (99%
CI, 5.6-8.3)

vs.
4.2 (99%

CI, 2.8-7.0)
(HR 0.63;
99% CI,

0.44-0.91; P
= 0.0012)

15.4 (96%
CI, 13.7-
17.7)
vs.

15.5 (96%
CI, 12.1-
NE)

(HR 0.90;
96% CI,
0.69-1.18;
P=0.44)

First-line

Unresectable HCC
(immunotderapy-naive; have eitder
progressed on, are intolerant to, or
refused treatment witd sorafenib or
anotder approved TKI)

Tremelimumab
+durvalumab

NCT02519348
(18)

I/II 332 24.0% (95%
CI, 14.9-35.5)

vs.
10.6% (95%
CI, 5.4-18.1)

2.2 (95%
CI, 1.9-5.5)

vs.
2.1 (95%

CI, 1.8-3.4)

18.7 (95%
CI, 10.8–
28.3) vs.
13.6 (95%
CI, 8.7-17.6)

Subsequent-
line

Advanced or metastatic and/or
unresectable HCC (not amenable to a
curative approach)

Atezolizumab/
Bevacizumab
(vs.
atezolizumab)
(group F)

NCT02715531
(GO30140)
(19)

Ib 119 20% (95% CI,
11-32)
vs.

17% (95% CI,
8-29)

5.6 (95%
CI, 3.6-7.4)

vs.
3.4 (95%

CI, 1.9-5.2)
(HR 0.55;
80% CI,
0.40-0.74;
P=0.011)

NE First-line

Unresectable HCC
(HCC for which no otder appropriate
tderapy is available)

Lenvatinib+
pembrolizumab

NCT03006926
(KEYNOTE-
524) (20)

Ib 104 36.0%
(95% CI, 26.6-

46.2)

8.6
(95% CI,
7.1-9.7)

22
(95% CI,
20.4-NE)

First-line

Locally advanced or metastatic and/or
unresectable HCC

Atezolizumab/
Bevacizumab
(vs. sorafenib)

NCT03434379
(IMbrave150)
(21)

III 501 27.3% (95%
CI, 22.5-32.5)

vs.
11.9 (95% CI,
7.4-18.0)

6.9 (95%
CI, 5.7-8.6)

vs.
4.3 (95%

CI, 4.0-5.6)
(HR

0.65;95%
CI, 0.53-
0.81;

P<0.001)

19.2 (95%
CI, 17.0-
23.7)
vs.

13.4 (95%
CI, 11.4-
16.9)

(HR 0.66;
95% CI,
0.52-0.85;
P<0.001)

First-line
fr
CI, confidence interval; HR, hazard ratio; NA, not available; NE, not estimable; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RECIST 1.1,
Response Evaluation Criteria in Solid Tumors 1.1; ICI, immune checkpoint inhibitor; HCC, hepatocellular carcinoma.
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Evidence has shown that the metabolic reprogramming of

macrophages can eventually inhibit tumor growth by regulating T

cells (45). With tumors developing, the response protein of protein

kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is produced

by the interaction between macrophages and cancer cells, which

participates in the remodeling of several key metabolic pathways of

macrophages. Blocking the expression of PERK can inhibit the

downstream metabolic signaling in tumor-infiltrating macrophages,

resulting in more effector T cells to fight the cancer cells and

consequently enhancing the efficacy of PD-1 inhibitors (45).

Therefore, targeting or editing the metabolism of macrophages has

been thought to be a novel therapeutic treatment in combination with

PD-1 inhibitors. Furthermore, it has been reported recently that

CAXIIis can interfere with the metabolism of macrophages by

regulating CCL8 and PERK expression (46) and promote the

therapeutic effect of PD-1 inhibitors in HCC treatment (47).
Effects of carbonic anhydrase XII
inhibitor on macrophages

Evidence has shown that CAXII was the most significantly

upregulated gene among all aCA family genes in tumor-infiltrating

monocytes when comparing to the ones in the paired non-tumor liver

tissues (45). Moreover, the expression level of CAXIImRNA increased

in tumor-infiltrating monocytes but not in other CD14+ cell

components in both tumor tissue and non-tumor liver tissue,

indicating that CAXII might contribute to HCC progression (45). It

was also shown that a positive correlation existed between the

expression level of CAXII and glucose transporter GLUT1 in tumor-
Frontiers in Immunology 04
purified CD14+ cells, which may affect the glycolytic switch in tumor-

infiltrating monocytes and macrophages (45).

In addition, the glycolysis inhibitor 2-deoxyglucose (2-DG) or

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3,

a key glycolytic enzyme) can effectively reduce the expression of

CAXII mRNA and protein levels in HepG2 tumor culture

supernatant (TSN)-treated monocytes (peripheral blood purified

CD14+ cells from healthy subjects) (45, 46). Meanwhile, the tumor-

triggered glycolytic switch in monocytes has been found to induce

the activation of hypoxia-inducible factor (HIF)1a and the

production of tumor necrosis factor (TNF)-a, interleukin (IL)-10,

and IL-1b, which in turn synergistically upregulates the CAXII

expression in monocytes (45, 46). Therefore, it has been considered

that aerobic glycolysis can induce the CAXII upregulation through

HIF1a and the autocrine cytokine-dependent pathways in

monocytes and macrophages, and CAXII was also found to

mediate the survival of macrophages and monocytes in an acidic

microenvironment in HepG2 cells (45).

The C-C motif chemokine ligand 8 (CCL8), a member of the

CC chemotactic protein family, can recruit monocytes, T cells,

eosinophils, basophils, natural killer (NK) cells, and dendritic cells

by binding to the receptors of CCR1, CCR2, CCR3, and CCR5. It

acts as an important immune regulator in inflammatory response,

antitumor immunity, and acute graft-versus-host disease (aGVHD)

(48). Evidence has shown that the levels of matrix metalloproteinase

(MMP)9, vascular endothelial growth factor A (VEGFA), and CCL8

are all increased in tumor monocytes, with CCL8 showing the most

pronounced upregulation compared to non-tumor monocytes. It

has been demonstrated that the glycolysis-induced upregulation of

CAXII expression was related to the CCL8 production in tumor-
FIGURE 1

Milestone of selected CAXII inhibitor (CAXIIi) research and development. Currently, only one CAXIIi has been tested in a clinical trial for
hepatocellular carcinoma treatment. Tiliroside monotherapy has been found to inhibit the development of hepatocellular carcinoma cells by a
preclinical study.
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associated monocytes and macrophages (47, 48). Moreover, CCL8,

as a CC chemokine that utilizes multiple cellular receptors to attract

and activate human leukocytes, was reported to significantly

promote the migration of HepG2 cells and increase the

expression levels of vimentin (VIM) and SNAI1, two epithelial–

mesenchymal transition (EMT)-related markers (48). The mRNA

level of CCL8 in tumor-infiltrating monocytes was also found to be

positively correlated with VIM, negatively with cadherin 1 (CDH1),

and positively with the metastatic potential of HCC. Therefore, the

CAXII/CCL8 axis has been thought to be involved in the

progression and metastasis of tumor and a potential therapeutic

target (47, 48).

Further evidence displayed that CAXIIis significantly increased

the therapeutic effects (including suppressing tumor growth,

attenuating tumor metastasis, and enhancing OS of mice) of anti–

PD-1 antibodies on HCC compared to either single CAXII inhibitor

group or single anti–PD-1 antibody group alone (P < 0.05) in vivo,

respectively (47). In addition, CAXIIis have also been found to

increase the apoptosis of macrophages, reduce the ratio of

macrophages in total CD45+ cells, and increase the ratio of CD8+

T cells in total tumor lymphocytes (47). Such a result is partly

consistent with our previous study in which targeting CAXII can

effectively inhibit the development of liver cancer and triple-

negative breast cancer cells (32, 49). What is noteworthy is that

even though CAXII was mainly concentrated on tumor-infiltrating

macrophages in the majority of tumor samples, it has also been

found that CAXII might be important for the survival and function

of M2-subtype macrophages in the tissues of HCC (47).

Overexpression of CAXII may mediate the accumulation of M2

cells in tumor tissues via regulating PERK and CCL8 (47, 50, 51).
Potential carbonic anhydrase
XII inhibitors

Since the immunoregulation ability of CAXIIis has been revealed, it

has become a crucial issue to choose an appropriate CAXIIi that can

properly synergize with the therapeutic effect of ICIs. In addition, some

CAXIIis have already displayed excellent anticancer effects on different

types of cancer cells (32, 34). The CAXII inhibitor SLC-0111 has been

found to enhance the cisplatin antitumor activity and suppress the

growth and invasion of head and neck squamous cell carcinoma (52).

Meanwhile, it has also been found to sensitize patients with either

melanoma or breast cancer to PD-1/PD-L1 inhibitors by enhancing the

Th-1 response (53). In addition, the therapeutic strategy of

acetazolamide combined with radiotherapy has been tested in lung

cancer (NCT03467360), and the combination of acetazolamide plus

temozolomide has also been trialed for brain cancer (NCT03011671)

(Figure 1) (35, 36). However, few studies have been conducted to show

the combination of CAXIIis with PD-1/PD-L1 ICIs in HCC thus far. It

would be more intriguing if the tumor-suppressive effect of CAXIIis

could be further enhanced by combining with PD-1 inhibitors.

The plant Tribulus terrestris L. (TT) can be found in many

regions of Asia and Africa and has been used in traditional Chinese

medicine and Ayurvedic medicine as an herb to treat liver diseases
Frontiers in Immunology 05
for thousands of years. Tiliroside (TS), one of the main extractions

from this herb (54, 55), has been found to possess anti-

inflammatory, anticholinesterase, and antioxidant activities (56).

Moreover, our recent study has further revealed its multiple

anticancer effects on HCC cells and, more importantly, its

property of CAXIIi (32). Evidence has displayed that TS can

inhibit the proliferation, colony formation, migration, three-

dimensional (3D) organoid formation, and invasive abilities by

regulating apoptosis and stemness in HCC cells while having low

toxicity to normal cells (32). The study also found that TS can

regulate the tumor microenvironment by modulating the levels of

pHi, pHe, and lactate, therefore inhibiting the development of

triple-negative breast cells, and act as a multifunctional CAXIIi

(Figure 1) (49).

Therefore, TS is a promising candidate in combination with

PD-1 inhibitors to improve the immunotherapy efficacy (Figure 2).
Side effects of CAXIIi application

At present, there are a few studies on the safety of CAXIIis. For

instance, a novel CAXIIi named 6A10-Fab-fragment is currently

being trialed in a phase I study to evaluate its maximum tolerated

dose and patient-specific dosimetry in a combined therapeutic

strategy for patients with glioblastoma (NCT05533242) (57).

Moreover, for treating advanced solid tumors, the safety and

tolerability of a highly selective small-molecule inhibitor of CAIX/

CAXII (SLC-0111) have already been evaluated by a phase I study

(NCT02215850) with very promising results (34). For details, as

reported by this study, SLC-0111 was generally well tolerated at

doses of 1,000 mg daily or below, but frequent early discontinuation

was observed at doses of 2,000 mg. However, as displayed by

pharmacokinetic (PK) assessments, both the 1,000- and 2,000-mg

doses gained similar levels of drug exposure following single doses

of SLC-0111. Moreover, majority of the reported drug-related

adverse events (AEs) were grade 1 or 2 in severity, and the most

frequent AEs were fatigue, nausea, anorexia, diarrhea, and

vomiting, all of which were reversible (34). Only one patient has

been reported to undergo a grade 3 hepatobiliary disorder, which

was considered to be a serious AE related to SLC-0111 but not a

dose-limiting toxicity (DLT) (34). Furthermore, the toxicities of

SLC-0111 will be continually evaluated by other ongoing clinical

trials, such as NCT03450018. Apparently, the safety evaluation of

CAXIIis still requires more research investment.
Future directions

Cancer is not a simple disease but a complex product of changes

in the genome and the body’s internal environmental response.

Therefore, the current cancer immunotherapy targeting a single

target, such as PD-1/PD-L1 inhibitor, Cytotoxic T-lymphocyte

Antigen-4 (CTLA-4) inhibitor, and Chimeric antigen receptor

(CAR) T-cell therapy (CAR-T), has very limited therapeutic effect

on most cancers (58, 59). Thus, new combination therapies have

been sought to improve clinical benefits. As mentioned above,
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CAXIIis, novel and strong anticancer agents, can enhance the

therapeutic effect of PD-1 inhibitors by regulating the antitumor

immunity in HCC (47), providing a new thought for cancer

treatment. Therefore, the roles of CAXIIis in the integrated

metabolic space of tumor and immune cells should be further

explored in a future study for exerting their anticancer and

immunomodulatory effects in a more efficient way. On the other

hand, based on a more comprehensive and clear regulatory network

of CAXIIis, more chances could be gained by expanding their

application in different combination therapies with multiple

targets for treating cancer, as shown in a preclinical study that

combined CAIX and CAXII dual inhibition with immune

checkpoint blockade resulting in improved efficacy of immune

therapy in melanoma and breast cancer (53). Meanwhile, the

effects of CAXIIis combined with different or multiple immune

checkpoint blockades should also be evaluated for seeking novel

ICI-based treatment (53). Moreover, adding a safe and targeted

drug delivery system, which is a pattern of specifically designed

carriers, to the application of CAXIIis in cancer treatment is also a

recommended potential research direction (60, 61). Those

nanoparticles were created to encapsulate and deliver agents to

specific lesion sites with enhanced solubility and efficacy of drugs

and reduced interaction with untargeted tissues (60, 61). For

instance, our previous study has reported the capability of

promoting the therapeutic effect, possessed by a novel lipid-based

nanoparticle, LNP-DP1, in treating HCC (60). Furthermore,

currently, to the best of our knowledge, none of the biomarkers

has been reported to be applied in predicting the effectiveness,

safety, or toxicity of CAXIIi treatment. Such unsolved issue is like

an invisible barrier that might impede the potential application of
Frontiers in Immunology 06
CAXIIis in cancer treatment, including cancer immunotherapy

(62). Therefore, the assessment of biomarkers for CAXIIis is

encouraged in a future study. The same future investigation is

also required for evaluating the safety and tolerability of CAXIIis.
Conclusion

Accumulating evidence has demonstrated the anticancer effect

of CAXIIis on different types of cancers, including HCC. Therefore,

such agents are considered promising novel anti-HCC drugs that

can suppress HCC progression (32). Moreover, CAXIIis have been

found to reduce the immunosuppressive stress mediated by

hypoxic/acidic metabolism, regulate the expression of CCL8, and

affect the functions of monocytes and macrophages, thereby

improving the antitumor immunity and enhancing the

therapeutic effect of PD-1 inhibitors in HCC (47). In summary,

CAXIIis are not only effective single anticancer agents but also

potential sensitizers of PD-1 inhibitors. Thus, a candidate such as

TL, a novel CAXIIi with high efficiency against tumors and low

toxicity to normal cells, has been considered to hold untapped

potential in ICI-based combination therapy for HCC treatment.

Furthermore, more promising candidates of CAXIIis are warranted

to be included in future studies to explore more effective therapeutic

strategies and novel therapeutic targets for HCC. Additionally, the

combination setting of PD-1 inhibitors plus CAXIIis and

antiangiogenic agents may offer more effective therapeutic options

to patients if the function of CAXIIis as a PD-1 inhibitor sensitizer

has been fully evaluated.
FIGURE 2

Potential mechanism of tiliroside (TS) enhancing the therapeutic effect of PD-1/PD-L1 inhibitors. HCC cells trigger the metabolic switch from
oxidative phosphorylation to aerobic glycolysis in tumor-infiltrating monocytes and macrophages. The activation of HIF1a is induced and
consequently the cytokines of TNF-a, IL-10, and IL-1b are produced, which in turn synergistically upregulate the CAXII expression in monocytes and
macrophages, and then increase the expression of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). CAXII inhibitors (such as TS) can
regulate the infiltration of lymphocytes (reducing the ratio of macrophages in total CD45+ cells and increasing the ratio of CD8+ T cells in total
tumor lymphocytes) and suppress the expression of vimentin (VIM) and SNAI1 but increase CDH1 by regulating the expression of C-C motif
chemokine ligand 8 (CCL8) and PERK, consequently increasing the therapeutic effect of PD-1/PD-L1 inhibitors. HCC, hepatocellular carcinoma;
HIF1a, hypoxia-inducible factor (HIF)1a; TNF-a, Tumour necrosis factor a; IL-10, Interleukin 10; IL-1*b, Interleukin-1b; CAXII, carbonic anhydrase XII;
SNAI1, Snail Family Transcriptional Repressor 1; CDH1, cadherin 1; PERK, Protein kinase RNA-like endoplasmic reticulum kinase.
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