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Hepatocellular carcinoma (HCC) is a high-incidence malignant tumor worldwide

and lacks effective treatment options. Targeted drugs are the preferred

recommendations for the systemic treatment of hepatocellular carcinoma.

Immunotherapy is a breakthrough in the systemic treatment of malignant

tumors, including HCC. However, either targeted therapy or immunotherapy

alone is inefficient and has limited survival benefits on part of HCC patients.

Investigations have proved that tyrosine kinase inhibitors (TKIs) have regulatory

effects on the tumor microenvironment and immune response, which are

potential sensitizers for immunotherapy. Herein, a combination therapy using

TKIs and immunotherapy has been explored and demonstrated to improve the

effectiveness of treatment. As an effective immunotherapy, adoptive T cell

therapy in solid tumors is required to improve tumor infiltration and killing

activity which can be possibly achieved by combination with TKIs.

KEYWORDS
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1 Introduction

According to GLOBOCAN2020 (a global cancer statistic online database), primary

liver cancer, a common malignant tumor with high morbidity and mortality, ranks 6th in

tumor incidence and 3rd in tumor-related mortality globally. Hepatocellular carcinoma

(HCC) is the most common type of primary liver cancer (accounts for 75%-85%) (1). As

the greatest etiological risk factor for HCC, viral infections including hepatitis B virus

(HBV), hepatitis C virus (HCV), and hepatitis delta virus (HDV) are considered the major

cause of HCC cases (2). Liver fibrosis and cirrhosis, caused by chronic hepatitis infections,

will further affect the patients’ liver function and the anti-tumor therapy, reducing the
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survival rate of patients. The high mortality rate of HCC is

attributed to its insidious nature and lack of effective treatment

options. Early-stage HCC patients with hepatic resection and

transplantation have a 5-year survival of 70–80% (3). However,

the majority of HCC patients are diagnosed in the intermediate

stages or advanced stages resulting in a significant decrease in

survival rate due to missing the best treatment opportunities and

lack of effective therapies (4, 5).

Tyrosine kinase inhibitors (TKIs) with antiangiogenic

properties are used as first-line systemic therapy in advanced

HCC. Although TKIs have certain survival benefits for HCC

patients, the inevitable problem of primary or acquired resistance

has become the bottleneck that interferes the long-term response

and limits the improvement of prognosis. In addition to resistance

issues, the lack of identified driver mutations, underlying liver

cirrhosis, and impaired functional reserves are also difficulties in

treating advanced HCC patients.

Adoptive T cell therapy is an emerging research topic in tumor

immunotherapy that progress rapidly from basic research to clinical

application. Adoptive T cell therapy refers to manipulating and

expanding autologous or allogeneic T cells in vitro followed by

infusing into tumor patients to generate a robust immune-

mediated antitumor response (6). Previous research has

demonstrated the promising efficacy of adoptive T cell therapy in

the treatment of hematologic tumors. There are growing

investigations conducted to evaluate adoptive T cell therapy in

solid tumors, including HCC. However, several barriers are

identified, including the immunosuppression of the tumor

microenvironment (TME) (7, 8) and target antigen heterogeneity

(9). To improve the survival time and living quality of HCC patients,

researchers are engaged in overcoming these issues mentioned above.

Recently, it has been discovered that TKIs also have

immunomodulatory effects besides their well-known antiangiogenic

properties (10). This finding obtained great attention to the

combination therapy of TKIs with other immune therapies. In this

review, we discuss this new combination therapy with a focus on TKIs

as potential sensitizers of adoptive T cells for HCC. In the beginning,

an introduction to diagnostic methods and current treatment

strategies will be given. The discovery of immunomodulatory effects

of TKIs and the underlying mechanisms will then be presented.

Finally, current adoptive T cell therapies for HCC together with

their combination therapies with different TKIs will be discussed.
2 Diagnoses and treatments for HCC

2.1 Diagnoses for HCC

Diagnostic imaging and Alpha-fetoprotein (AFP) testing are the

most common ways for HCC screening and diagnosis (3). However,

imaging methods, including ultrasound, CT, and MRI, are less

effective for HCC diagnosis at early stage (11, 12). As to AFP testing,

a serum biomarker for HCC normally used in conjunction with

imaging, it is not sensitive or specific for HCC that about 30% of

HCC patients with confirmed liver cancer have no significant
Frontiers in Immunology 02
increase in AFP (13). Since more curative approaches are

available to early-stage HCC patients resulting in a higher

survival rate, advanced screening techniques and diagnostic

methods capable of detecting HCC at early stage are required to

gain the optimal therapeutic outcome (3).

Recently, new screening techniques have been studied and

shown advantages in early screening and early diagnosis of liver

cancer such as the liquid biopsy method which is based on

circulating tumor cells (CTC), circulating tumor DNA (ctDNA),

extracellular vehicles (EVs), circulating cell-free RNA (cfRNA)

(14, 15). It has been reported that ctDNA is superior to serum

AFP in sensitivity and specificity for early screening of HCC

(16). In addition, the development of molecular biology

technology has discovered the important role of non-coding

RNA (ncRNA) in tumorigenesis and progression, providing

alternative ways for early-stage HCC detection. ncRNAs,

taking up to 60% of the transcriptional output in human cells,

are untranslated transcripts and can be classified based on their

length, such as microRNAs (22-25 nucleotides) and long-

ncRNAs (>200 nucleotides) (17, 18). Researchers have found

abnormal expression of miRNA in liver cancer, such as miRNA-

502c-3p, miRNA-342-3p, and miRNA-21 (19–22). The accuracy

of using a miRNA panel (consisting of 7 miRNAs) can improve

the diagnosis of HCC to reach a detection rate close to 90% (23).

LncRNA is also associated with cancer progression and can

function as HCC diagnostic markers such as TUG1, ZFAS1,

and SCARNA10 (21, 24–26). Compared with traditional tumor

markers, ncRNA expression abnormalities may appear earlier

and can potentially become a category of more convenient,

accurate, and non-invasive detection markers.
2.2 Current treatments for HCC

Tumors can be characterized by The Barcelona Clinic Liver

Cancer (BCLC) staging system via performance status, the size and

number of tumors, vascular invasion, extrahepatic metastases, and

liver function (27). Treatment strategies for tumors in each stage are

varied. Liver transplantation, hepatic radical resection, and ablation

are preferred and applicable to early-stage HCC. Surgery, including

hepatic resection and liver transplantation, has been considered as

curative therapy, which is currently the most important way to help

patients achieve long-term survival (28–31). Hepatic resection is

recommended for patients with excellent performance status, good

liver function, and no clinically significant portal hypertension (32).

Ablation delivers heat directly to tumors to induce tumor necrosis.

It is also a potentially curative procedure for HCC at early stages,

with similar survival rates to surgical resection (33–35). As to

intermediate-stage HCC patients, transarterial chemoembolization

(TACE) is the first candidate. The current treatments for advanced

HCC are systemic therapies, including chemotherapy, targeted

therapy, and immunotherapy (36–38). Though curative and

locoregional therapies showed promising prognoses, more than

60% of HCC patients were diagnosed at the middle and advanced

stages, eventually receiving systemic therapy. Systemic therapy thus

plays a vital role in liver cancer treatment.
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Since chemotherapy showed unsatisfactory outcomes and

related to severe toxicities, molecularly targeted therapy and

immunotherapy have played a critical role in the systemic

treatment of advanced HCC (39–41). Several molecular targeted

therapy drugs with effects on angiogenesis, cell proliferation, and

metastasis have been shown to improve overall survival (OS) in

advanced HCC. The main molecular targeted drugs in use are TKIs

and monoclonal antibodies.

TKIs belong to a category of tumor angiogenesis inhibitors.

Sorafenib is the first multikinase inhibitor approved for the

treatment of HCC based on its benefit in two multicenter clinical

trials (42–44). Sorafenib works through the inhibition of the

receptor tyrosine kinases of vascular endothelial growth factor

receptor (VEGFR), platelet-derived growth factor receptor

(PDGFR), fibroblast growth factor receptor(FGFR)-b, and c-KIT,

blocking the RAF/MEK/ERK pathway (45, 46). Lenvatinib showed

a non-inferiority in overall survival and superiority in progression-

free survival, time to progression and objective response rate (ORR)

compared to sorafenib in a randomized phase 3 non-inferiority trial

and has been approved as another first-line treatment of HCC (47).

The second-line TKIs are cabozantinib and regrafinib. These agents

commonly have effects targeting various receptors including

VEGFR, PDGFR, and FGFR (48).

For monoclonal antibodies, bevacizumab and ramucirumab are

currently used in clinics based on the promising results obtained

from previous clinical studies. The combination of bevacizumab (a

monoclonal antibody that targets VEGF, inhibiting angiogenesis)

and atezolizumab (an immune checkpoint inhibitor that targets

programmed cell death protein-1 and reverses T-cell suppression)

has become one of the first-line treatment because it showed better

overall and improved survival with unresectable HCC compared

with sorafenib in IMbrave150, a global phase III randomized trial

(49). Ramucirumab is a human immunoglobulin G1 monoclonal

antibody and a VEGFR2 inhibitor. It is now a second-line therapy

because, in the REACH-2 trial, ramucirumab showed a significant

improvement compared with placebo in median OS(mOS) for

advanced HCC patients who had prior sorafenib treatment (50).

In the last two decades, significant breakthroughs have been made

in immunotherapy for tumors, including monoclonal antibodies,

tumor vaccines, adoptive transfer of immune cells, and

immunomodulatory agents (39, 51). Immune checkpoints are key

members of immunoregulatory pathways regulated by ligand/receptor

interactions, playing an important role oftenly in preventing

overactive immune responses. Immune checkpoint inhibitors (ICIs)

are monoclonal antibodies that regulate T cell activity through a series

of targets, such as programmed cell death protein-1 and its ligand

(PD-1/PD-L1), cytotoxic T lymphocyte protein 4 (CTLA-4), mucin

domain-containing molecule-3 (Tim-3), and lymphocyte activation

gene 3 protein (LAG-3), to exert anti-tumor effects (40). Including

atezolizumab, pembrolizumab, ipilimumab, and nivolumab, ICIs and

their combination regimens have been used as first-line and second-

line treatments for hepatocellular carcinoma in clinical practices (52).

In addition to the above commonly used treatment strategies, antiviral

therapy is also an optional method considering that chronic HBV/

HCV infection is a major cause of HCC. Studies have shown antiviral

therapy benefits the survival of HBV-associated HCC patients (53, 54).
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For example, anti-HBV drugs have been reported to suppress the

growth of HBV-expressing hepatoma cells via down-regulation of the

hepatitis B virus X protein (55).

Although the HCC treatment options and their efficiency have

been developed in recent years, and the application of

multidisciplinary treatment strategies shows better outcomes

compared with monotherapies, the current objective remission

rate and the prognosis are still unsatisfactory (56). The obstacles,

such as the recurrence rate of surgery, inevitable drug resistance of

targeted drugs, and a low response to systemic cancer therapy, are at

urgent need to be overcome.
3 The discovery and underlying
immunomodulatory mechanisms
of TKIs

Recently, new treatments and optimization of current treatment

regimens through combination therapies have been studied to

improve prognosis. Several clinical trials have been conducted and

showed promising outcomes. For example, several new molecular

kinase inhibitors like palbociclib, ribociclib, and tivantinib have been

under investigation and have shown their effectiveness (57, 58). As to

combination therapies, an interesting finding has been reported that

TKIs possess synergistic antitumor effects with immunotherapies in

the clinical trials of combination therapy (58). In this section, we will

introduce the discovery of TKIs’ immunomodulatory effect first and

then discuss the related mechanisms.
3.1 The discovery of immunomodulatory
effects of TKIs

The immunomodulatory effect of TKIs was discovered in

combination therapies. Both preclinical and clinical trials of

combinations of anti-PD-1 and TKIs have shown promising

outcomes for HCC treatments (59). In a phase Ib open-label

multicentre study, 100 HCC patients were enrolled, who were

diagnosed as BCLC stage B (n=29) or C (n=71) diseases. The result

showed that the ORR of lenvatinib plus pembrolizumab treatment was

46.0% (95% CI, 36.0% to 56.3%) by modified Response Evaluation

Criteria in Solid Tumors (mRECIST), without new or unexpected

toxicities resulting from the combination therapy (60). Notably, 11

patients (11%) were evaluated to have a complete response (CR). At

the data cut-off date, median progression-free survival (mPFS) was 9.3

months (95% CI, 5.6 to 9.7 months) and mOS was 22.0 months

(95% CI, 20.4 months to NE), showing a promising antitumor

activity observed in unresectable HCC with lenvatinib plus

pembrolizumab treatment. Immunomodulatory effects of TKIs were

also observed in mouse models of liver cancer. Kenichi Nomoto et al.

found that lenvatinib had greater antitumor activity in

immunocompetent mice than in immunodeficient mice, which

implies that part of the antitumor effect of lenvatinib originates

from the immune responses (61). It was further demonstrated that

lenvatinib plus anti-PD-1 antibody enhanced tumor regression and
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increased treatment response rate. Both studies showed an increased

percentage of CD8+ T cells, confirming the synergistic effect of TKIs

and immunotherapy (61, 62).
3.2 The underlying immunomodulatory
mechanism of TKIs

Targeting on the varied functional mechanisms of the therapeutic

targets, TKIs induce immunomodulatory effects with increased

antitumor effects and decreased immunosuppression based on the

following main categories of mechanisms: (a) normalize tumor

capillaries, (b) enhance immune cell infiltration and activation in

tumors, (c) reverse immunosuppression of TME, (d) promote the

release and presentation of tumor antigens (Figure 1).

Different from normal vessels, pathological angiogenesis in tumors

shows abnormal structures and functional defects (63). Pathologic

neovascularization is the critical manner of tumor blood supply,

which further induced hypoperfusion, hypoxia, acidosis, and tumor

metastasis (64, 65). Neovascularization is regulated by more than 40

molecules acting proangiogenicly or antiangiogenicly, respectively (66–

68). Angiogenesis inhibitors including TKIs are first applied to decrease

tumor vessel formation, resulting in blocking nutrient supply and

inducing tumor cell dormancy (63). Unexpectedly, the alleviation of

hypoxia and acidosis in tumor tissue has been found in clinical

application when using lower doses of antiangiogenic agents (69),

which may synergize with radiotherapy, chemotherapy, and immune
Frontiers in Immunology 04
therapy. Rakesh K. Jain first proposed the rationale that antiangiogenic

therapy normalizes tumor vasculature networks before their destruction

and hence improves the delivery of oxygen (70). This rationale based on

the antiangiogenic therapy rectifies the imbalance of proangiogenic and

antiangiogenic factors, which results in the elimination of the excess

endothelial cells and the immature and inefficient blood vessels.

Subsequent pre-clinical studies verified this hypothesis and revealed

that inhibition of multiple tumor-promoting effects of VEGF is the key

factor (63). However, sustained antiangiogenic therapy cannot maintain

its effect in normalizing the pathogenic tumor vessels. Instead, sustained

antiangiogenic results in the reduction rather than normalization of

pathogenic tumor vessels. Thus, extensive experiments are still needed

to explore an optimized strategy of vascular normalization which is

potentially applicable in clinical practice.

Besides the effect of normalizing tumor vasculature, TKIs can

also improve the infiltration and activation of antitumor immune

cells to interfere with tumor progression. CD8+ T cells are the most

important type of tumor-killing cells, and TKIs significantly

increase the proportion of anti-tumor effector T cells (61, 71).

Another investigation showed that TKIs enhanced the effector

functions of human NK cells by activation of the RAS/RAF/ERK

pathway in a dose- and time-dependent manner (72). TKIs have

been reported to induce increased expression of recognizing and

activating ligands for NK cells, T cells, NKT cells, NKT-like cells,

and gsT cells, promoting chemotaxis and tumor killing (73–76).

Down-regulation of major histocompatibility complex class I

(MHC-I) expression of tumor cells by TKIs is also a major
A

B

D

C

FIGURE 1

The underlying immunomodulatory mechanisms of TKIs. The immunomodulatory effects of TKIs are based on the following: (A) normalize tumor
capillaries, (B) enhance immune cell infiltration and activation in tumors, (C) reverse immunosuppression of TME, (D) promote the release and
presentation of tumor antigens. TKIs, tyrosine kinase inhibitors; TAMs, tumor-associated macrophages; Tregs, regulatory T cells; MDSCs, myeloid-
derived suppressor cells; TME, tumor microenvironment; DCs, dendritic cells.
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underlying mechanism to increase NK cell responses (77).

Moreover, TKIs can induce tumor cells to release neutrophil

chemotactic factors, resulting in a rapid neutrophil infiltration

into the tumor and enhanced tumor eradication (78).

In add i t i on to insu ffic i en t immune infi l t r a t i on ,

immunosuppressive factors in TME also prevent immune cells

from exerting anti-tumor effects. TKIs can reverse the

immunosuppression of TME by reducing the infiltration and

immunosuppressing effect of tumor-associated macrophages

(TAMs), regulatory T cells (Tregs), and myeloid-derived

suppressor cells (MDSCs) (79). TAM is involved in the formation

of the immunosuppressive microenvironment and the inhibition of

anticancer immune responses by secreting immunosuppressive

factors, inhibiting the proliferation and activation of T cells, and

promoting tumor invasion and metastasis (80). Ulrike Protzer et al.

investigated the influence of sorafenib on TAM in vitro and in vivo.

The results revealed that sorafenib stimulated macrophages to

produce cytokines such as IL-6, TNF-a, and IL-12, and

subsequently induced antitumor NK cell responses via the NF-kB
pathway (81). Other studies validated sorafenib’s modulatory effect

on TAM by decreasing the percentage of TAMs and restoring the

classical activation of macrophages, thus decreasing the tumor

burden (77, 81, 82).

Interactions of TKIs and cancer cells are considered to mediate

immunomodulatory activity by promoting tumor antigen

presentation. T cells are known to specifically recognize tumour

antigens and become activated to execute their anti-tumor

functions, while insufficient presentation of tumour antigens is an

important reason for the lack of T cell responsiveness in tumor

patients (83). TKIs induce cytotoxicity through the inhibition of

multiple tyrosine kinases to block the VEGFR and PDGFR

pathways. Subsequent cell death can expose tumour antigens and

activate antigen presentation by dendritic cells (DCs). This cross-

presentation of antigens activates T cells, completing a so-called

“immune sensitization” (83, 84). On the other hand, VEGF inhibits

the adhesion of lymphocytes to endothelial cells through

intercellular adhesion molecule-1 (ICAM-1), vascular cell

adhesion molecule-1 (VCAM-1), and Fas Ligand (FasL), thereby

affecting the infiltration of T cells into the tumor tissue (85, 86). In

addition, VEGF inhibits the maturation of DCs, and the

development and activation of T cells (87, 88). Negative

regulation of VEGF functions on DCs and T cells is the potential

mechanism of TKIs promoting antigen presentation.
4 TKIs as potential sensitizers of
adoptive T cell therapy for HCC

Showing a promising antitumor activity, the landscape of

treatment strategy for HCC may change dramatically with the

advance of immunotherapy in the near future. Since the

immunomodulation effect of TKIs has been discovered,

combination therapy of TKIs with other immunotherapies has

also been under evaluation, such as ICIs and immune cells (89).

Adoptive T cell therapy is one of the immunotherapies and has

shown great value for clinical translation. Currently, several
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adoptive T cell therapies have been approved by Food and Drug

Administration (FDA) for lymphoma, myeloma, and leukemia (90).

In recent years, there are many attempts in applying adoptive T cell

therapies for other tumors. In this section, we will first summarize

the current state of applying adoptive T cell therapy for HCC and

discuss the related challenges. The combination therapy of TKIs

with adoptive T cells will also be discussed.
4.1 Adoptive T cell therapy for HCC

T cells are important effector cells in the specific immune

response of the somatic machinery to tumor cells and are

currently the most widely studied effector cells in pericyte

therapy. T cell-based pericyte therapies include autologous T cells,

allogeneic T cells, tumor-infiltrating lymphocytes (TILs), chimeric

antigen receptor T cells (CAR-T cells), T cell receptor engineered T

cells (TCR-T cells) and other engineered T cells (9). Up to date, 63

researches of T cell-based therapies for HCC have been registered at

ClinicalTrials (https://clinicaltrials.gov/ ), with CAR-T cells account

for the largest proportion among all T cell transfer approaches

(Table 1). CAR-T cells originally showed their remarkable efficacy

in treating hematological malignancies (91). The chimeric antigen

receptors (CARs) contain an extracellular antigen-recognition

domain, a transmembrane domain, and an intracellular signaling

domain, which recognize tumor-specific antigens expressed and

achieve non-MHC-restricted activations (92). Glypian-3 (GPC-3)

has been demonstrated to relate with immunoreactivity towards

tumor cells and is highly expressed in HCC, becoming a notable

candidate target in HCC. CAR-T cells targeting GPC-3 have been

shown effective in animal models with orthotopic xenografts and

patient-derived xenografts highly expressing GPC-3 (93, 94).

Adoptive T cell therapy can specifically and efficiently kill target

cells. However, there are barriers and challenges for the clinical

application of adoptive T cells. Theoretically, adoptive T cells can

enhance cellular immune responses to eliminate cancer cells, but

adoptive T cell therapy has demonstrated low clinical efficacy in the

treatment of solid tumors, including HCC, due to the limited

expansion, poor persistence, terminal differentiation and

dysfunction or exhaustion of T cells (95, 96). Target antigen

heterogeneity is also a barrier for adoptive T cell therapy

application in solid tumors (9). Contrary to hematologic

malignancies, solid tumors usually lack consistently expressed

specific antigens for T cells to identify and become activated,

consequently causing adoptive T cells fail to exert their anti-tumor

effects. Off-target effects and cytokine storm also hinder the clinical

performance of adoptive T cell therapy. In addition, the

immunosuppression effect of the TME is a major barrier for the

recruitment of adoptive T cells into tumors, fulfilling their antitumor

activity (7, 8). TME is a complex circumstance including blood

vessels, immune cells, fibroblasts, various signaling molecules, and

extracellular matrix (97). Accumulation of immune cells, such as

TAMs, MDSCs, and Tregs, as well as cytokines, including

transforming growth factor-b, interleukin-6, and interleukin-1, are

known to induce immunosuppression. As a result of interactions

between cytokines, immune cells, and tumor cells, TME participates
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TABLE 1 Clinical Trials of Adoptive T Cell Therapy for HCC Registered at ClinicalTrials from 2008 to 2022.

NCT
Number Type of T cells Title Phase

NCT03175705 Autologous T cells
Adoptive Transfer of Specific HCC Antigens CD8+ T Cells for Treating Patients With Relapsed/Advanced
HCC

I

NCT05304481 Autologous T cells Efficacy and Safety of Activated T Lymphocytes (ATL) in Hepatocellular Carcinoma II

NCT00562666 Autologous T cells Immunotherapy of Hepatocellular Carcinoma With Gamma Delta T Cells I

NCT03093688 Autologous T cells
Clinical Safty and Efficacy Study of Infusion of iNKT Cells and CD8+T Cells in Patients With Advanced Solid
Tumor

I/II

NCT04518774 Allogeneic T cells
Allogeneic “Gammadelta T Cells (gd T Cells)” Cell Immunotherapy in I Hepatocellular Carcinoma Clinical
Trial

I

NCT02905188 CAR-T cells Glypican 3-specific Chimeric Antigen Receptor Expressing T Cells for Hepatocellular Carcinoma (GLYCAR) I

NCT05103631 CAR-T cells
Interleukin-15 Armored Glypican 3-specific Chimeric Antigen Receptor Expressed in Autologous T Cells for
Hepatocellular Carcinoma

I

NCT04506983 CAR-T cells GPC3-CAR-T Cells for the Hepatocellular Carcinoma I

NCT03146234 CAR-T cells CAR-GPC3 T Cells in Patients With Refractory Hepatocellular Carcinoma
Not
Applicable

NCT05352542 CAR-T cells GPC3-targeting LCAR-H93T Cell in Treatment of Advanced Hepatocellular Carcinoma I

NCT03884751 CAR-T cells Chimeric Antigen Receptor T Cells Targeting Glypican-3 I

NCT05003895 CAR-T cells GPC3 Targeted CAR-T Cell Therapy in Advanced GPC3 Expressing Hepatocellular Carcinoma (HCC) I

NCT04121273 CAR-T Cells GPC3-targeted CAR-T Cell for Treating GPC3 Positive Advanced HCC I

NCT03980288 CAR-T cells 4th Generation Chimeric Antigen Receptor T Cells Targeting Glypican-3 I

NCT03672305 CAR-T cells Clinical Study on the Efficacy and Safety of c-Met/PD-L1 CAR-T Cell Injection in the Treatment of HCC I

NCT05323201 CAR-T cells Study Of B7H3 CAR-T Cells in Treating Advanced Liver Cancer I/II

NCT02723942 CAR-T cells CAR-T Cell Immunotherapy for HCC Targeting GPC3 I/II

NCT03084380 CAR-T cells Anti-GPC3 CAR-T for Treating GPC3-positive Advanced Hepatocellular Carcinoma (HCC) I/II

NCT05155189 CAR-T cells
A Study to Evaluate Safety and Efficacy of Armored CAR-T Cell Injection C-CAR031 in Advanced
Hepatocellular Carcinoma

I

NCT03349255 CAR-T cells Clinical Study of ET1402L1-CAR T Cells in AFP Expressing Hepatocellular Carcinoma I

NCT04093648 CAR-T cells
T Cells co- Expressing a Second Generation Glypican 3-specific Chimeric Antigen Receptor With Cytokines
Interleukin-21 and 15 as Immunotherapy for Patients With Liver Cancer (TEGAR)

I

NCT04951141 CAR-T cells Clinical Study of Intratumoral Injection of CAR-T Cells in the Treatment of Advanced Liver Tumors I

NCT02395250 CAR-T cells Anti-GPC3 CAR T for Treating Patients With Advanced HCC I

NCT05344664 CAR-T cells Novel GPC3 CAR-T Cell Therapy for Hepatocellular Carcinoma I

NCT03993743 CAR-T cells A Study of CD147-targeted CAR-T by Hepatic Artery Infusions for Very Advanced Hepatocellular Carcinoma I

NCT03198546 CAR-T cells GPC3-CAR-T Cells for Immunotherapy of Cancer With GPC3 Expression I

NCT02715362 CAR-T cells A Study of GPC3 Redirected Autologous T Cells for Advanced HCC I/II

NCT04270461 CAR-T cells NKG2D-based CAR T-cells Immunotherapy for Patient With r/r NKG2DL+ Solid Tumors I

NCT02587689 CAR-T cells
Phase I/II Study of Anti-Mucin1 (MUC1) CAR T Cells for Patients With MUC1+ Advanced Refractory Solid
Tumor

I/II

NCT05131763 CAR-T cells NKG2D-based CAR T-cells Immunotherapy for Patient With r/r NKG2DL+ Solid Tumors I

NCT03130712 CAR-T cells A Study of GPC3-targeted T Cells by Intratumor Injection for Advanced HCC (GPC3-CART) I/II

NCT04550663 CAR-T cells NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors I

NCT05120271 CAR-T cells BOXR1030 T Cells in Subjects With Advanced GPC3-Positive Solid Tumors I/II

NCT05028933 CAR-T cells IMC001 for Clinical Research on Advanced Digestive System Malignancies I

(Continued)
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TABLE 1 Continued

NCT
Number Type of T cells Title Phase

NCT03013712 CAR-T cells A Clinical Research of CAR T Cells Targeting EpCAM Positive Cancer I/II

NCT03302403 CAR-T cells
Clinical Study of Redirected Autologous T Cells With a Chimeric Antigen Receptor in Patients With
Malignant Tumors

Not
Applicable

NCT03965546 CAR-T cells ET 140202 -T Cell Combined With TAE or Sorafenib in the Treatment of Liver Cancer I

NCT03888859 CAR-T cells ET1402L1-ARTEMIS2 T Cells in Alpha Fetoprotein (AFP) Expressing Hepatocellular Carcinoma I

NCT03941626
CAR-T cells/TCR-T
cells

Autologous CAR-T/TCR-T Cell Immunotherapy for Solid Malignancies I/II

NCT03638206
CAR-T cells/TCR-T
cells

Autologous CAR-T/TCR-T Cell Immunotherapy for Malignancies I/II

NCT04677088 TCR-T cells
TCR-Redirected T Cell Treatment in Patients With Recurrent HBV-related Hepatocellular Carcinoma Post
Liver Transplantation

I

NCT04745403 TCR-T cells Redirected HBV-Specific T Cells in Patients With HBV-related HCC (SAFE-T-HBV) I

NCT02686372 TCR-T Cells
A Study of TCR-Redirected T Cell Infusion to Prevent Hepatocellular Carcinoma Recurrence Post Liver
Transplantation

I

NCT03971747 TCR-T cells
AFP Specific T Cell Receptor Transduced T Cells Injection(C-TCR055) in Unresectable Hepatocellular
Carcinoma

I

NCT04502082 TCR-T cells Study of ET140203 T Cells in Adults With Advanced Hepatocellular Carcinoma (ARYA-1) I/II

NCT03998033 TCR-T cells Study of ET140202 T Cells in Adults With Advanced Hepatocellular Carcinoma I

NCT04634357 TCR-T cells ET140203 T Cells in Pediatric Subjects With Hepatoblastoma, HCN-NOS, or Hepatocellular Carcinoma I/II

NCT02719782 TCR-T cells
A Study of TCR-Redirected T Cell Infusion in Subject With Recurrent HBV-related HCC Post Liver
Transplantation

I

NCT05195294 TCR-T cells
Study of HBV-TCR T Cells (LioCyx-M) as Monotherapy or as Combination With Lenvatinib for HBV-related
HCC

I/II

NCT03899415 TCR-T cells TCR-Redirected T Cells Therapy in Patient With HBV Related HCC I

NCT04368182 TCR-T cells
AFP Specific T Cell Receptor Transduced T Cells Injection(C-TCR055) in Unresectable Hepatocellular
Carcinoma

I

NCT04756648 TCR-T cells Phase I Clinical Trial of CT0180 Cells in the Treatment of Hepatocellular Carcinoma I

NCT04973098 TCR-T cells Phase I Clinical Trial of CT0181 Cells in the Treatment of Hepatocellular Carcinoma I

NCT04864054 TCR-T cells ECT204 T-Cell Therapy in Adults With Advanced HCC I/II

NCT01967823 TCR-T cells T Cell Receptor Immunotherapy Targeting NY-ESO-1 for Patients With NY-ESO-1 Expressing Cancer II

NCT05339321 TCR-T cells
Autologous HBV-specific T Cell Receptor Engineered T Cells (TCR-T) in Patients With HBV-related
Advanced HCC

I

NCT03132792 TCR-T cells AFP-c332 T Cell in Advanced HCC I

NCT02638857
Dendritic cell precision
multiple antigen T cells

Immunotherapy Using Precision T Cells Specific to Multiple Common Tumor-Associated Antigen Combined
With Transcatheter Arterial Chemoembolization for the Treatment of Advanced Hepatocellular Carcinoma

I/II

NCT02632188
Dendritic cell precision
multiple antigen T cells

Radical Surgery Followed by Immunotherapy Using Precision T Cells Specific to Multiple Common Tumor-
Associated Antigen for the Treatment of Hepatocellular Carcinoma

I/II

NCT04417764
PD-1 knockout
engineered T cells

TACE Combined With PD-1 Knockout Engineered T Cell in Advanced Hepatocellular Carcinoma. I

NCT03983967
Cytokine induced killer
cells

Evaluate the Efficacy and Safety of ‘Immuncell-LC’ in Patients Undergoing Liver Transplantation I/II

NCT02856815
Cytokine induced killer
cells

Safety and Efficacy of “Immuncell-LC” in TACE Therapy II

NCT01462903
Tumor infiltrating
lymphocytes

A Study of Adoptive Immunotherapy With Autologous Tumor Infiltrating Lymphocytes in Solid Tumors I
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in the regulation of metastasis and anticancer drug sensitivity (97). In

HCC, the immune-suppressing liver environments and chronic

inflammation caused by liver diseases interfere with the effects of

immunotherapy (98). There is an urgent need to more

comprehensively understand adoptive T cell therapy effects and

mechanisms, and optimize its application strategies.
4.2 TKIs as potential sensitizers of adoptive
T cell therapy for HCC

As discussed in section 3, TKIs have been found having

immunomodulatory effects and have shown improved patient

outcomes by combination therapies. Together with the obstacles

faced by current adoptive T cell therapy for HCC, it is rational to

consider the possibility of combining TKIs with adoptive T cell

therapy to achieve better performance. We here summarize the

immunomodulatory effects of commonly used TKIs and discuss

their potential applications as sensitizers in combination therapies

with adoptive T cells.

The immunoregulatory effects of sorafenib have been observed

recently. Sorafenib may enhance the infiltration and activation of T

cells in the tumor microenvironment for various types of tumors by

increasing the production of T cell-recruiting cytokines and

chemokines (99–101). Treatment of serial low doses of sorafenib

enhanced the activation, cytotoxicity, and migration of CD8+ T cells

(102) . Sorafenib inhibi ts the express ion of mult iple

immunosuppressive factors, such as indoleamine 2,3-dioxygenase

(IDO), transforming growth factor-beta (TGF-beta), VEGF,

interleukin-10 (IL-10), monocyte chemoattractant protein-1

(MCP-1), by down-regulation of the STAT3 signaling pathway

(102). In HCC, several studies have proven sorafenib can enhance

antitumor responses through increasing the proportion of tumor-

specific effector CD8+ T cells and reducing the proportion of

exhausted or immunosuppressive immune cells such as PD-1-

expressing CD8+ T cells and Foxp3+ Tregs (103, 104). The

enhancement of antitumor immunity of sorafenib implies its

potential as a sensitizer for adoptive T cell therapy. A recent

study has confirmed this theory that combined treatment of

GPC3-specific CAR-T cell therapy with subpharmacologic doses

of sorafenib demonstrated an enhanced antitumor effect both in

vitro and in vivo (105). Lenvatinib showed better antitumor activity

than that of sorafenib in immunocompetent mice but not in

immunodeficient mice (61). Further investigation revealed that

lenvatinib modulates antitumor immune responses by reducing

tumor-associated macrophages and increasing activated CD8+ T

cells secreting interferon-g and granzyme B (62). Lenvatinib

prevents Treg differentiation and infiltration, and reverses T cell

suppression, by reducing tumor PD-L1 level (106, 107).

As second-line TKIs, regorafenib and cabozantinib also exhibit

immunomodulatory effects and antiangiogenetic functions.

Regorafenib promoted T cell activation, M1 macrophage

polarization, and proliferation/activation of cocultured T cells via

p38 kinase/Creb1/Klf4 axis, therefore enhancing antitumor

immunity independently from its antiangiogenic effects (108).

The antitumor effect of T cells is a human leukocyte antigen class
Frontiers in Immunology 08
I (HLA-I)-dependent immune response. HLA-I is essential for

tumor antigen presentation and subsequent antitumor immunity.

Tumor cells evade immune detection by acquiring deficiencies in

HLA antigen processing and presentation pathways (109). It has

been shown that regorafenib can increase the expression of cell

surface HLA-I, and upregulate various genes associated with the

HLA-I antigen processing pathway, as well as its transcriptional

regulators (110). Cabozantinib showed its immunomodulatory

activity making murine colon tumor cells more sensitive to

immune-mediated killing by altering the phenotype of tumor

cells, the proportions of immune cell subpopulations in the

peripheral circulation, and the tumor microenvironment (71).

Subsequent research revealed that cabozantinib significantly

increased the infiltration of neutrophils and reduced the

proportions of intratumor CD8+PD1+ T cells in HCC (111).
5 Prospects and challenges

With the progress of molecular biological research, the complex

and diverse phenotypes, mechanisms, and therapeutic responses of

cancer have been gradually uncovered, which are translated to the

clinical treatment of cancer. Reprogramming of cellular metabolism

replaces the metabolic processes that operate in most normal tissue

cells, maintaining their rapid proliferation, invasion, migration, and

metastasis (112). In HCC, for instance, abnormal lipid metabolism

triggered by SPIN1/SREBP1/FASN axis has been reported to enhance

tumor growth (113). Recently, TKIs have been reported to have

effects on the metabolic balance of multiple endogenous metabolic

pathways, including lipid metabolism (114). More research on the

functioning mechanism of TKIs in tumor treatment is needed to

guide the clinical application of TKIs in cancer treatment.

Early-stage clinical studies combining targeted therapy with

immunotherapy such as ICIs are ongoing and have shown a

synergistic effect, suggesting combined treatment for HCC in the

future (115, 116). Investigations have proved the immunoregulatory

effects of targeted therapy on tumor microenvironment and immune

responses (117), making it a potential sensitizer for adoptive T cell

therapy. However, the regulatory mechanism of targeted therapy on

immune responses, TME, and adoptive T cells have not yet been

elucidated. There is also a need formore direct evidence to confirm the

clinical benefits of the combination of targeted therapy and adoptive T

cell therapy. Further optimization for the combination therapy is still

needed for the selection of targeted therapy and the corresponding

immune cells to be affected. Therefore, a comprehensive

understanding of combination therapy is necessary to optimize the

management of HCC and to bring survival benefits for the patients.

It remains a challenge to assess the effects of combination

therapies. For HCC patients treated with targeted therapy or

immune therapy, mRECIST and immune RECIST (iRECIST) can

be applied (118, 119). Tumor antigens, for example AFP and GPC-

3, can provide reference value for efficacy evaluation (13, 120).

However, current evaluation methods all showed inevitable low

sensitivity and hysteresis. Liquid biopsy can dynamically monitor

and reflect the treatment efficacy and can be used as a supplement to

imaging, but standardization of the evaluation criteria is still needed
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1046771
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2023.1046771
(121, 122). ncRNA has been trialed as a novel biomarker in clinical

diagnosis and efficacy monitoring, but still needs to be extensively

validated (123). The development of specific and sensitive

molecular markers for the monitoring of the cancer prognosis

and treatment efficacy of HCC is still an urgent issue to be settled.
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