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One of the most common cancers is hepatocellular carcinoma (HCC). Numerous

studies have shown the relationship between abnormal lipid metabolism-related

genes (LMRGs) and malignancies. In most studies, the single LMRG was studied

and has limited clinical application value. This study aims to develop a novel LMRG

prognostic model for HCC patients and to study its utility for predictive, preventive,

and personalized medicine. We used the single-cell RNA sequencing (scRNA-seq)

dataset and TCGA dataset of HCC samples and discovered differentially expressed

LMRGs between primary and metastatic HCC patients. By using the least absolute

selection and shrinkage operator (LASSO) regression machine learning algorithm,

we constructed a risk prognosis model with six LMRGs (AKR1C1, CYP27A1,

CYP2C9, GLB1, HMGCS2, and PLPP1). The risk prognosis model was further

validated in an external cohort of ICGC. We also constructed a nomogram that

could accurately predict overall survival in HCC patients based on cancer status

and LMRGs. Further investigation of the association between the LMRGmodel and

somatic tumormutational burden (TMB), tumor immune infiltration, and biological

function was performed. We found that the most frequent somatic mutations in

the LMRG high-risk group were CTNNB1, TTN, TP53, ALB, MUC16, and PCLO.

Moreover, naïve CD8+ T cells, common myeloid progenitors, endothelial cells,

granulocyte-monocyte progenitors, hematopoietic stem cells, M2 macrophages,

and plasmacytoid dendritic cells were significantly correlated with the LMRG high-

risk group. Finally, gene set enrichment analysis showed that RNA degradation,

spliceosome, and lysosome pathways were associated with the LMRG high-risk

group. For the first time, we used scRNA-seq and bulk RNA-seq to construct an

LMRG-related risk score model, which may provide insights into more effective

treatment strategies for predictive, preventive, and personalized medicine of

HCC patients.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1036562/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1036562/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1036562/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1036562/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1036562/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1036562&domain=pdf&date_stamp=2023-03-01
mailto:hjiang03@126.com
https://doi.org/10.3389/fimmu.2023.1036562
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1036562
https://www.frontiersin.org/journals/immunology


Mou et al. 10.3389/fimmu.2023.1036562
1 Introduction

According to recent epidemiological data, 906,000 new cases of

liver cancer were diagnosed globally in 2020, making it the sixth

most prevalent cancer worldwide (1). Hepatocellular carcinoma

(HCC) is a common type of liver cancer (2). The disease is caused

by a number of risk factors, including HBV/HCV infection,

nonalcoholic steatohepatitis (NASH), alcoholism, and smoking.

HCC treatment, including surgery, chemotherapy, and radiation

therapy, has significantly enhanced survival and reduced cancer cell

proliferation in patients with the disease (3). Early HCC is treatable

with tumor resection and liver transplantation; however, many

patients are not diagnosed until the late stages (4). As HCC is

highly heterogeneous, predictive, preventive, and personalized

medicine can improve therapy outcomes. Therefore, it is essential

to uncover the mechanisms that drive the progression of HCC, and

effective biomarkers must be identified as soon as possible to

provide individualized treatment for HCC patients.

Recent studies have revealed that alterations in lipid metabolism

are significant metabolic indicators of cancer cells in general (5).

Changes in lipid metabolism, for instance, can occur in tumor cells

and the tumor microenvironment, which influences the

development, proliferation, invasion, and metastasis of cancer

cells (6). A previous study showed that TAR DNA-Binding

Protein 43 (TDP-43) can suppress apoptosis by facilitating lipid

metabolism in HCC (7). In HCC, ovarian cancer, lung

adenocarcinoma, pancreatic cancer, renal cell carcinoma, and

diffuse glioma, lipid metabolism-related genes (LMRGs) show

excellent predictive values (8). Consequently, targeting lipid

metabolism has been viewed as a potential way of treating

tumors. To date, several prognostic models have examined the

value of genes associated with ferroptosis, epithelial-mesenchymal

transition, and immunity in HCC, whereas little is known about

how LMRGs contribute to HCC and whether LMRGs are correlated

with HCC patient prognosis (9–11).

Multiple gene signatures for predicting the prognosis of HCC

patients have been created in prior research based on bulk RNA

sequencing; however, these signatures have not been used in clinical

settings. RNA signals from several cells within a sample are

combined during bulk RNA sequencing to reflect the sample’s

average RNA content. As a result, cell type predominance has a

large impact. However, there are certain genetic traits linked to

HCC that may differently favor its development. Therefore,

uncommon or diverse cell populations cannot be studied by bulk

RNA sequencing. Single-cell RNA sequencing (scRNA-seq), in

contrast to bulk RNA sequencing analysis, enables the

investigation of transcriptional activity inside a single cell and

allows the detection of tiny, clinically important tumor

subpopulations (12).

Machine learning (ML) research has increased quickly because it

provides a practical means to analyze huge and complicated datasets.

In practice, a variety of ML algorithms are used (including random
Abbreviations: HCC, Hepatocellular carcinoma; DEGs, differentially expressed

genes; LMRG, Lipid Metabolism-related genes; TMB, tumor mutational burden;

GSEA, Gene set enrichment analysis; OS, overall survival; RS, risk score.
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survival forest, support vector machine, gradient boosting, Bayesian,

and deep learning). Moreover, these machine learning algorithms

have been applied to the clinical management and prevention of HCC

(13), including the discovery of biomarkers for early diagnosis (14),

the development of prediction signatures for HCC recurrence (15,

16), and the production of single-cell atlases of HCC cell

heterogeneity in response to immunotherapy (17).

In this study, we aimed to identify a prognostic biomarker that

predicts the overall survival of HCC patients by scRNA-seq and

bulk RNA-seq. We identified an LMRG signature in a training HCC

cohort and further validated it in an external cohort. A novel

nomogram incorporating clinical features and an LMRG

signature was also constructed. The results demonstrated that this

LMRG signature could help in the early diagnosis of patients with

HCC, which also plays essential roles in the prognostication process

and could be a viable therapeutic target for HCC patients.
2 Methods

2.1 Data collection and preparation

TCGA and ICGC provide data on gene expression, prognosis,

and clinicopathology for hepatocellular carcinoma (HCC) (18).

Single-cell RNA sequencing (scRNA-seq) data from ten HCC

patients were downloaded from the Gene Expression Omnibus

(19). In addition, a total of 260 HCC samples from the ICGC

cohorts (20) with clinical data and 232 with gene expression data

were used as independent validation sets. Moreover, lipid

metabolism-related genes (LMRGs) were obtained from Reactome.
2.2 ScRNA-seq data processing

The transcript count matrix were analyzed with the Seurat

package v4.1.0 in R, as mentioned previously. Subsequent analysis

was performed for the three specific tumor sites at the primary

tumor, portal vein tumor thrombus, and metastatic lymph node in

the 10 HCC patients. The resulting matrix was used to select the top

2000 highly expressed and variable genes. These selected genes were

then used to compute the independent component (IC). RunUMAP

were used to perform expression profile analysis. An absolute value

of (|log FC|) > 0.5 and an adjusted P value (adj P) < 0.05 were used

as the cutoff values for differentially expressed genes (DEGs).
2.3 Machine learning model construction

We created models utilizing ML algorithms to forecast the

prognosis of HCC patients using the TCGA-LIHC dataset. The ML

approach, the least absolute shrinkage and selection operator

(LASSO) regression model, was chosen based on the distribution

of the outcome variable. The LASSO regression approach

automates the selection of variables by shrinkage and the deletion

of nonsignificant variables by setting them to zero to achieve L1

regularization to maximize prediction accuracy (21). By minimizing
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the sum of squares, LASSO adjusts a shrinkage penalty lambda (l)
or tuning hyperparameter to the regression coefficients. As lambda

values increase, the model becomes more biased, and further

coefficients may be eliminated or set to zero. Using the optimum

lambda value, the parameter estimates for the prediction model

were calculated. We fitted additional models using a negative

binomial depending on the number of zeros in the outcome

variable. To determine which factors had the highest predictive

value for determining the prognosis of HCC, we assessed the

variable relevance rankings. The variables with the highest

predictive value were identified among those chosen by the model

with the best lambda value. The LMRG signature was then

determined using the risk score (RS) formula based on the

findings of the multivariate COX regression: RS = ∑ (bi * Expi).

The accuracy of the risk score model was evaluated by ROC and

Kaplan–Meier survival analyses. The Kaplan–Meier survival curve

combined with the log-rank test was employed to evaluate the

survival differences between the LMRG high- and low-risk groups.

The model was further validated in an external dataset of ICGC.
2.4 Nomogram construction

Univariate and multivariate regression analyses were used to

analyze the independent clinical factors. Prior to nomogram

construction, the LMRG signature and the clinical characteristics

were integrated. The predictive accuracy of the prognostic model

was evaluated by the time-dependent ROC curve. We evaluated the

performance of the established nomogram on the basis of ROC

curves, and decision curve analysis for overall survival at 1, 3, and

5 years.
2.5 Histological data analysis of HCC

The protein expression of AKR1C1, CYP27A1, CYP2C9, GLB1,

HMGCS2, and PLPP1 in HCC patients was analyzed using

histological data from the Human Protein Atlas (HPA) database

(http://www.proteinatl.as.org/).
2.6 Western blot

HCC samples from all patients were collected with written

informed consent with approval from the institutional research

ethics committee of the First People’s Hospital of Qinzhou

(Approval number, 2021-15). The patients provided their written

informed consent to participate in this study. Total proteins were

extracted by lysis buffer radioimmunoprecipitation assay (RIPA;

Beyotime, USA) with 1% phenylmethylsulfonyl fluoride (PMSF).

Polyvinylidene fluoride (PVDF) membranes containing proteins

separated on sodium dodecylsulfate–polyacrylamide gel

electrophoresis (SDS-PAGE) gels were blocked with 5% nonfat

milk and incubated with different primary antibodies, including b-
ACTIN (#4970S, Cell Signal Technology), CYP27A1 (#67045-1-Ig,

Proteintech), and GLB1 (#TA505544, ORIGENE), overnight at 4°C,
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and chemiluminescence was used for detection. Protein

quantification was performed using ImageJ software.
2.7 Tumor mutational burden

The DNA somatic mutation dataset from TCGA-LIHC was

used to determine whether LMRG signatures were associated with

TMB. In accordance with our previous description, HCC patients

were divided into LMRG-high and LMRG-low risk groups (https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp). The somatic

mutations in the two LMRG groups were further visualized using

the “maftools” R package.
2.8 Gene set enrichment analysis

To further understand the relationship of LMRGs and

biological processes, we used GSEA software based on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) gene set (KEGG C2,

MSigDB database v7.5.1) to assess possible differences in biological

functions between the LMRG high- and low-risk groups (https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp). To measure the

significance of genomic enrichment, we used the P value of

normalized enrichment scores and the Q-value of FDR.
2.9 Immune infiltration

To analyze the association between LMRG signatures and

tumor-infiltrating immune cells, xCell analysis was used to

estimate the fraction of the 64 subtype immune cells in each

TCGA-LIHC sample (22). Subgroup analysis of signature

immune cells for both LMRG high- and low-risk patients was

carried out. An illustration of the results is shown using a heatmap

and violin plot.
2.10 Statistical analysis

All analyses were performed with R version 4.0.5 and its

appropriate packages without special instructions. A P value <

0.05 was set as statistically significant for all the analyses.

3 Results

3.1 Data profiling of the GSE149614 cohort
by scRNA-seq

The workflow of this study is shown in Figure 1. After

downloading the GSE149614 cohort from the GEO database, the

data were profiled using scRNA-seq to determine the differentially

expressed genes (DEGs) between primary and metastatic tumor

tissues in HCC (19). UMAP algorithms were implemented for

nonlinear dimensionality reduction, and samples were clustered,

as shown in Figures 2A–C. The samples included 53 clusters
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(Figure 2A) and six major cell types (Figure 2B). Among the six

major cell types, hepatocytes are the most abundant cells. Myeloid

cells, T/NK cells, B cells, fibroblast cells, and endothelial cells are less

abundant cells. We also showed the distribution of cells in primary

HCC and metastatic HCC (Figure 2C).

Then, DEGs related to HCC development were identified. To

identify lipid metabolism-related genes (LMRGs) in HCC

development, the DEGs were intersected with the LMRGs in the

Reactome Pathway Database (https://reactome.org/), and 28 genes

were obtained (Figure 2D and Supplementary Table 1). The 28

genes were defined as the screened LMRGs. Figure 2E shows the

expression of 28 genes in different cell types. Most of the 28 genes

were highly expressed in hepatocytes. However, G0S2 and

ALOX5AP were highly expressed in myeloid cells, PLPP1 was

highly expressed in endothelial cells, and FABP4 was highly

expressed in fibroblasts and endothelial cells.
3.2 Identification and validation of
prognostic biomarkers for the risk model

To construct a predictive risk model, 28 previously screened

LMRGs were subjected to univariate Cox regression analysis and

the LASSO method. Supplementary Table 2 details the univariate

Cox analysis of the 28 LMRGs. The LASSO model in
Frontiers in Immunology 04
Supplementary Figures 1A, B implies that eight genes (AKR1C1,

APOA1, CYP27A1, CYP2C9, GC, GLB1, HMGCS2, and PLPP1)

would be assessed in multivariate Cox analysis. As a result,

AKR1C1, CYP27A1, CYP2C9, GLB1, HMGCS2, and PLPP1 were

selected for the LMRG signature (Supplementary Table 2), and the

risk score was risk score (RS) = 0.00225 × AKR1C1 - 0.00200 ×

CYP27A1 - 0.00182 × CYP2C9 + 0.02063 × GLB1 - 0.00074 ×

HMGCS2 - 0.01185 × PLPP1. Based on Kaplan-Meier analysis, we

calculated survival probabilities for HCC patients with high and low

expression of each gene (AKR1C1, CYP27A1, CYP2C9, GLB1,

HMGCS2, and PLPP1). The results showed that high expression

of CYP27A1, CYP2C9, HMGCS2, and PLPP1 was correlated with

better overall survival (OS) outcomes (Figure 3A). The expression

of these genes in single-cell data (GSE149614) is shown in

Figures 3B. Moreover, to examine the protein levels of AKR1C1,

CYP27A1, CYP2C9, GLB1, HMGCS2, and PLPP1 between HCC

and normal samples, we used the histological data in the HPA

database and identified that the protein expression of AKR1C1 and

GLB1 was significantly higher in HCC than in normal patients,

while the protein expression of CYP27A1 and HMGCS2 was

significantly higher in normal samples than in HCC samples

(Figure 4A). Previous studies showed that AKR1C1 was

upregulated in HCC and HMGCS2 was downregulated in HCC

(23–25), which was consistent with our results. Since AKR1C1 and

HMGCS2 were already reported in previous studies, we further
FIGURE 1

Workflow of this study. Step 1: Single-cell analysis. Step 2: LMRG signature identification. Step 3: LMRG-high and -low risk group characterization.
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validated the expression of GLB1 and CYP27A1 by Western

blotting in HCC samples and adjacent normal samples. The

results were consistent with the IHC results, as shown in

Figure 4B. Subjects in the training cohort (TCGA-LIHC) and the

testing cohort (ICGC-LIRI-JP) were divided into LMRG high- and
Frontiers in Immunology 05
low-risk groups by the median RS (Supplementary Table 3). The

median RS for TCGA-LIHC was 1.001, and the median RS for

ICGC-LIRI-JP was 0.976. Moreover, the areas under the ROC

curves (AUCs) were evaluated, resulting in finding the AUCs of

OS. The values for the training cohort were 0.745 (1 year), 0.696 (3
A B

D

E

C

FIGURE 2

Data profiling of the GSE149614 cohort by scRNA-seq. (A-C) Samples from primary and metastatic hepatocellular carcinoma (HCC) tissue clustered
by the UMAP algorithm. The dimension reduction showed the results of (A) 53 clusters, (B) six major cell types, and (C) primary and metastatic HCC.
(D) Identification of lipid metabolism-related genes (LMRGs) in HCC development. A total of 746 LMRGs were assessed in the Reactome Pathway
Database (https://reactome.org/). A total of 319 differentially expressed genes (DEGs) between primary and metastatic HCC samples were used to
intersect with the 746 LMRGs. Finally, 28 screened LMRGs were identified. (E) Dot plot showing the expression of 28 LMRGs in different cell types.
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years), and 0.702 (5 years), while the values for the testing cohort

were 0.792 (1 year), 0.79 (3 years), and 0.761 (5 years)

(Supplementary Figures 2A, B). The survival probabilities of HCC

patients in both the training and testing cohorts were estimated by

Kaplan-Meier analysis. Figures 4C, D show that poorer overall

survival outcomes were observed in the LMRG high-risk groups

than in the LMRG low-risk groups.
3.3 Construction and validation of
the nomogram

On the basis of the training cohort, univariate and multivariate

Cox regression models were utilized to screen significantly correlated

clinical parameters for prognosis (Supplementary Figures 3A, B). As a

result, cancer status and RS were screened (Supplementary
Frontiers in Immunology 06
Figures 3A, B). Then, a nomogram involving cancer status and RS

was developed, and the survival of HCC patients at 1, 3, and 5 years

was predicted by summarizing all points of the clinical parameters

(Figure 5A). High AUC values (0.704, 0.743, and 0.792 for 1-, 3-, and

5-year survival, respectively) implied that the nomogram performed

well in predicting OS (Figure 5B). To estimate the prediction power of

the nomogram constructed, a decision curve analysis was performed.

The results revealed that the nomogram could provide better benefits

to HCC patients than the risk model constructed by genes for 5-year

OS prediction (Figure 5C).
3.4 Mutation analysis in the training cohort

Somatic mutations were evaluated to analyze the tumor

mutation burden and RS. The mutational landscape was
A

B

FIGURE 3

Identification of biomarkers for HCC. (A) Kaplan-Meier analysis showed the survival probabilities of HCC patients with high and low expression of the
hub LMRG gene (AKR1C1, CYP27A1, CYP2C9, GLB1, HMGCS2, and PLPP1). (B) UMAP results showed the expression of the hub LMRG genes (AKR1C1,
CYP27A1, CYP2C9, GLB1, HMGCS2, and PLPP1) in single-cell data.
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constructed, indicating that the LMRG high-risk group (92.64%)

had more frequent mutation events than the low-risk group

(86.14%) (Figure 6A). In addition, three significantly mutated

genes, TP53 (LMRG high-risk: 43%, low-risk: 17%), CTNNB1

(LMRG high-risk: 16%, low-risk: 33%), and TTN (LMRG high-

risk: 23%, low-risk: 21%), were identified in the two groups

(Figure 6B. Accordingly, it was revealed that a mutation event

was a risk factor in HCC.
3.5 Gene set enrichment analysis in the
training cohort

Next, gene set enrichment analysis provided the pathways that

were enriched in the LMRG high- and low-risk groups of the

training cohorts. Pathways such as RNA degradation, spliceosome,

epithelial cell signaling in Helicobacter pylori infection, lysosome,

oocyte meiosis, and progesterone-mediated oocyte maturation were
Frontiers in Immunology 07
upregulated in the LMRG high-risk group (Figure 7A). On the other

hand, pathways such as fatty acid metabolism, drug metabolism-

cytochrome P450, glycine, serine and threonine metabolism, retinol

metabolism, valine, leucine and isoleucine degradation, and

tryptophan metabolism were upregulated in the LMRG low-risk

group (Figure 7B). Moreover, other enriched pathways are

illustrated in Supplementary Table 4.
3.6 Analysis of immune microenvironment
characteristics in the training cohort

A training cohort was implemented in the xCell algorithm for

immune infiltration estimation (Supplementary Table 5). The

results of the immune infiltration in the TCGA-LIHC cohort

were shown in Figure 8A. Remarkably, high levels of naïve CD8+

T cells, common myeloid progenitors, endothelial cells,

granulocyte-monocyte progenitors, hematopoietic stem cells, M2
A

B

DC

FIGURE 4

Validation of hub LMRG genes. (A) Histological data of AKR1C1, CYP27A1, CYP2C9, GLB1, HMGCS2, and PLPP1 from the Human Protein Atlas. (B)
Western blotting analysis of GLB1 and CYP27A1. (C) Kaplan-Meier curves of the risk model in the training cohort. (D) Kaplan-Meier curves of the risk
model in the testing cohort. Training cohort: TCGA-LIHC; testing cohort: ICGC-LIRI-JP. *p<0.05.
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macrophages, and plasmacytoid dendritic cells were observed in the

LMRG high-risk group. However, high levels of activated myeloid

dendritic cells, B cells, memory CD4+ T cells, class-switched

memory B cells, common lymphoid progenitors, myeloid

dendritic cells, M1 macrophages, mast cells, monocytes, NKT

cells, and Th2 CD4+ T cells were observed in the LMRG low-risk

group (Figure 8B).
4 Discussion

Hepatocellular carcinoma (HCC), one of the most common and

aggressive tumors, has been linked to a high rate of morbidity for

patients. Although several environmental or genetic risk factors

linked to hepatocellular carcinoma (HCC) have been identified, the

molecular processes causing HCC occurrence are still unknown.

The proliferation and spread of tumors are facilitated by abnormal

lipid metabolism. Research on the mechanism of lipid metabolism

might therefore aid in the development of novel, targeted

treatments to control or remove these refractory tumor cells,

which might lead to the development of new medicines for HCC.

A great number of studies have found a link between abnormal lipid
Frontiers in Immunology 08
metabolism and the onset and progression of malignancies (26). As

a result, a lipid metabolism-related gene (LMRG) signature for

predicting the survival of HCC patients is needed. Large-scale bulk

and single-cell sequencing of tumor samples is now possible because

of recent breakthroughs in sequencing technology. Moreover, the

direct examination of genetic cell-to-cell variety is made possible by

machine learning technology. For the first time, we were able to

create a 6-LMRG signature of HCC in this study by scRNA-Seq.

AKR1C1, CYP27A1, CYP2C9, GLB1, HMGCS2, and PLPP1, all six

LMRGs, have been implicated in the genesis and progression of

cancer. Upregulated AKR1C1 expression was found in HPV16-

positive oropharyngeal squamous cell carcinoma with viral

integration, and it was linked with a poor prognosis in both

HPV-positive and HPV-negative tumors (27). Furthermore, as

one of the vitamin D pathway genes, CYP27A1 has some impact

on prostate cancer chemoprevention based on vitamin D

metabolism and has the ability to predict the prognosis of

prostate cancer patients (28, 29). A variation in the CYP2C9 gene

has been linked to an increased risk of colorectal cancer and

adenoma (30). GLB1 is a lysosomal exoglycosidase that

catabolizes glycoconjugates and has been linked to cancer cell

senescence (31). HMGCS2 has been linked to oncogenic activity
A

B C

FIGURE 5

Construction and validation of a nomogram for HCC. (A) A nomogram was constructed based on cancer status and six LMRGs. (B) ROC curves of
the nomogram in the training cohort. (C) Decision curve analysis of the nomogram in the TCGA cohort at 5 years. ***p<0.001.
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in a variety of human tumors (32, 33). HMGCS2 was identified as a

differential hub gene of lipid metabolism in the pancancer immune

microenvironment. Lower levels of PLPP1 mRNA expression in

tumor tissues than in surrounding normal tissues are linked to a

worse prognosis (34).

Using a multivariate Cox regression analysis approach, we

combined the signatures of several genes. The nomogram model,

composed of the tumor status and the risk score derived from the

LMRG signature, can visually predict the one-, three- and five-year

overall survival outcomes for individual HCC patients. The final six

genes demonstrated high accuracy in both the validation set and the

overall prognosis for samples. In both TCGA and ICGC data, the

LMRG low-risk score group showed worse results than the LMRG

high-risk score group. In our present study, the most frequent

somatic mutations in the LMRG high-risk group were CTNNB1,

TTN, TP53, ALB, MUC16, and PCLO. Previous studies have shown

that TP53,MUC16, and TTNmutations are common in many types

of cancer, including gastric cancer and pancreatic and bladder

cancers, and are associated with poor prognoses (35–38). In our

study, the immune microenvironments of the LMRG high- and

low-risk groups were analyzed by the xCell algorithm. Here, naïve
Frontiers in Immunology 09
CD8+ T cells, common myeloid progenitors, endothelial cells,

granulocyte-monocyte progenitors, hematopoietic stem cells, M2

macrophages, and plasmacytoid dendritic cells were significantly

correlated with the LMRG high-risk group, which was first revealed

in an HCC study.

The results of the gene set enrichment analysis showed that fatty

acid metabolism and lysosome pathways, which involve lipid

metabolism-related genes, changed between the LMRG high-risk

group and the LMRG low-risk group. The fatty acid metabolism

pathway participates in energy production, membrane synthesis,

and signal transduction in tumor initiation and progression. Cancer

cells rely on fatty acids as cellular building blocks for membrane

formation, energy storage, and the production of signaling

molecules (39). Lysosome pathways were associated with the

LMRG high-risk group in our study. Lysosome pathways play an

important role in autophagy. Autophagy, which is an evolutionarily

conserved cellular degradation process that delivers cellular

components to lysosomes, plays a critical role in cellular

homeostasis through the degradation of lipids (40). Dysfunction

or dysregulation of autophagy has been proven to be associated with

HCC (41). The lysosome is a metabolic signaling hub that integrates
A

B

FIGURE 6

The tumor mutation burden characteristics of patients in the LMRG high- and low-risk groups. (A) Mutational landscape in the TCGA cohort of the
LMRG high-risk groups. (B) Mutational landscape in the TCGA cohort of the low-risk groups.
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FIGURE 7

The KEGG pathway enrichment analysis of patients in the LMRG high- and low-risk groups. (A) Enriched pathways in the LMRG high-risk group. (B)
Enriched pathways in the LMRG low-risk group.
A

B

FIGURE 8

The different immune infiltration of patients in the LMRG high- and low-risk groups were identified. (A) The profile of immune infiltration in the TCGA-
LIHC cohort showed by heatmap. (B) The violin plot shows the significantly different immune cells between the two risk groups in the TCGA cohort.
g
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different environmental signals to regulate core anabolic and

catabolic pathways critical in the maintenance of cellular

homeostasis (42). As a result, the changes in fatty acid

metabolism and lysosome pathways between the LMRG high-risk

group and the LMRG low-risk group affect the overall survival

outcomes of HCC patients through cellular homeostasis.

The findings of our study highlight the significant role of

multiomics studies in basic research as well as translational and

applied research within the field of personalized medicine for HCC.

In particular, biomarkers based on LMRGs are essential for a

reliable and effective evaluation of HCC prognosis and diagnosis.

Moreover, clarifying molecular mechanisms through LMRGs is

essential for the discovery of effective targets to treat HCC

personalized treatment. HCC personalized medicine will benefit

greatly from the prognosis-related LMRGs, and risk models

identified in this study.
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ROC curves of the LMRG model. (A) ROC curves of the risk model in the

training cohort. (B) ROC curves of the risk model in the testing cohort.
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