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Role of regulation of PD-1 and
PD-L1 expression in sepsis
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Long term immunosuppression is problematic during sepsis. The PD-1 and PD-

L1 immune checkpoint proteins have potent immunosuppressive functions.

Recent studies have revealed several features of PD-1 and PD-L1 and their

roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first

reviewing the biological features of PD-1 and PD-L1 and then discussing the

mechanisms that control the expression of PD-1 and PD-L1. We then review the

functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1

and PD-L1 in sepsis, including their involvement in several sepsis-related

processes and their potential therapeutic relevance in sepsis. In general, PD-1

and PD-L1 have critical roles in sepsis, indicating that their regulation may be a

potential therapeutic target for sepsis.
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1 Introduction

Sepsis is a severe illness caused by an aberrant host response to infections, and it is

associated with acute organ failure and a high mortality risk (1). Although there has been a

global improvement in clinical outcomes as a result of improved treatment practices

resulting from the dissemination and implementation of the Surviving Sepsis Campaign

guidelines (2) over the preceding decades (3), mortality rates remain unacceptably high,

ranging from 25 to 30 percent for sepsis and 40 to 50 percent in cases of septic shock, with

country-specific variations (4–6). Moreover, many sepsis survivors have long-term physical

and cognitive impairments as well as higher death rates than the general population (7–11).

Years ago, it was believed that sepsis mortality and morbidity resulted from an

excessive systemic inflammatory response, but medications designed to reduce this

response did not enhance survival (12, 13). Several investigations have shown that sepsis

is not only characterized by early acute inflammation but is also a concomitant

immunosuppressed condition that may last for months after the original episode of

sepsis (14, 15). Immune suppression during sepsis makes it harder to eliminate the

underlying infection and increases the chance of subsequent infections (16, 17).

Importantly, the chronic immunosuppressed states generated by defective innate and

adaptive immune responses are responsible for reduced immunity, multi-organ damage,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1029438/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1029438/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1029438&domain=pdf&date_stamp=2023-03-09
mailto:taoma@tmu.edu.cn
https://doi.org/10.3389/fimmu.2023.1029438
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1029438
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2023.1029438
protracted hospital stays, and mortality (17–21). To properly treat

this condition, it is essential to understand how sepsis

produces immunosuppression.

Immune checkpoint pathways are endogenous immune system

components that govern the immune response under normal

physiological conditions (22). The programmed cell death protein

1 (PD-1) and programmed death ligand 1 (PD-L1) immune

checkpoint is an important regulator that inhibits T cell receptor-

induced activation signals (23). In addition, interaction between

PD-L1 and PD-1 suppresses the immune system systemically in

many cells (24, 25). Multiple clinical studies have established a

correlation between PD-1 or PD-L1 expression and sepsis mortality

(26–28). Immunotherapy for sepsis using anti-PD-1 and anti-PD-

L1 antibodies has shown benefit in animal studies (29–32) while

clinical trials in humans have not given the direct benefit evidence

of PD-1 or PD-L1 blockade (33, 34). The purpose of this review is to

describe the biological properties of PD-1 and PD-L1 and their

functions in physiological conditions, focusing on the mechanisms

that regulate PD-1 and PD-L1 expression and the roles of the PD-1/

PD-L1 axis in sepsis. In general, PD-1 and PD-L1 have critical roles

in sepsis, indicating that regulation of their expression may be a

potential therapeutic target for sepsis.
2 PD-1 and PD-L expression
and structure

PD-1, also known as CD279, is one of the co-inhibitory

receptors initially found on the surface of antigen-activated T

lymphocytes (35). A small percentage of lymph node, spleen, and

bone marrow cells, as well as immature CD4+CD8+ thymocytes has

been reported to express the PD-1 protein (36). The presence of
Frontiers in Immunology 02
PD-1 (mRNA or protein) is seldom detected and appears only after

a period of stimulation (37). Activation of lymphocyte B cell

receptors or T cell receptors is often associated with an increase

in PD-1 expression (38, 39).

PD-L1 (CD274) and PD-L2 (CD273) are the two ligands for

PD-1 (CD279). PD-L1 expression can be found on hematopoietic

cells, such as T lymphocytes, B lymphocytes, macrophages and

dendritic cells (DCs), as well as non-hematopoietic healthy tissue

cells, such as vascular endothelial cells, keratinocytes, pancreatic

islet cells, astrocytes, corneal epithelial cells, and endothelial cells

(40). It has been reported that macrophages, DCs, and mast cells

express PD-L2 (41). Binding to PD-L1 is the major mechanism of

PD-1 function in sepsis (42). Moreover, PD-L1 gene deficiency

improves sepsis survival, while PD-L2 gene deficiency does not

show a survival benefit for sepsis (43).

Both PD-1 and PD-L1 are type I transmembrane

immunoglobulin (Ig) superfamily members (41). PD-1 contains a

cytoplasmic domain that comprises two tyrosine-based signaling

motifs and an extracellular domain that mimics Ig-V as well as a

transmembrane domain (40). PD-L1 has an Ig-V extracellular

domain, an Ig-C-like extracellular domain, a transmembrane

domain, and a short cytoplasmic tail devoid of conventional

signaling patterns (44). It is possible for the extracellular domains

of PD-L1 and PD-1 to interact, causing PD-1 to alter its shape,

which allows Src family kinases to phosphorylate the immuno-

receptor tyrosine-based inhibitory motif (ITIM) and immuno-

receptor tyrosine-based switch motif (ITSM) (45) (Figure 1).

These phosphorylated tyrosine patterns attract the SHP-2 and

SHP-1 protein tyrosine phosphatases, which suppress the

activation of T lymphocytes (46). When the PD-1 receptor is

ligated, SHP-2 inhibits the Akt and ERK/MAPK signaling

pathways by dephosphorylating PI3K (47). In the absence of
FIGURE 1

Overview of the PD-1 and PD-L1 checkpoints and signaling pathways associated with them. The presentation of antigen by MHC on APCs to the
TCR complex on T cells activates T cells via the Zap70 and ERK/MAPK signaling pathways. CD28 on T cells binds to CD80/86 on APCs to provide
co-stimulatory signals. PD-1/PD-L and CTLA-4 signaling suppress the AKT signaling pathway to limit T cell activation. CTLA-4 suppresses the AKT
pathway directly by recruiting PP2A, while PD-1 signaling includes SHP-mediated regulation of Zap20 and the PI3K/AKT signaling pathway. Green
lines indicate stimulatory messages, while red lines represent inhibitory ones. ITSM and ITIM are intracellular domains of immunological checkpoints
that are responsible for intracellular signaling. APC, antigen presenting cell; TCR, T cell receptor; MHC, major histocompatibility complex; PD-1,
programmed death-1; CTLA4, cytotoxic T lymphocyte antigen-4; ZAP70, zeta chain of T cell receptor associated protein kinase 70; PI3K,
phosphoinositide 3 kinase; PP2A, protein phosphatase 2A; ERK, extracellular signal-regulated kinase; MAPK, mitogen activated protein kinase; AKT,
protein kinase B; ITIM, immunoreceptor tyrosine-based inhibition motif; ITSM, immunoreceptor tyrosine-based motif; SHP, Src homology region 2
domain-containing phosphatase.
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SHP-2-induced T cell exhaustion, SHP-1 plays a compensatory role

(48). In addition, the SHP2 phosphatase is capable of

dephosphorylating the CD28 costimulatory receptor (44).
3 Regulation of PD-1 and
PD-L1 expression

3.1 Regulation of PD-1 expression

The mechanisms that regulate PD-1 expression in T cells are

well known. PD-1 is barely detectable on naive T cells, but PD-1

surface expression rapidly increases on all T cells upon first antigen-

mediated activation through the T cell receptor (TCR) (49). When

the activating antigen is rapidly eliminated, PD-1 expression levels

on responding T cells decrease (50, 51). If the antigen is not

eliminated, such as during persistent infections and malignancies,

PD-1 expression persists at a high level (50–52). PD-1 expression on

antigen-activated T cells is controlled by many transcription factors,

including nuclear factor of activated T cells (NFAT), cytoplasmic 1,

fork head box protein O1 (FOXO1), T-bet, and B lymphocyte-

induced maturation protein 1 (Blimp-1) (40, 53), as well as the

serine–threonine kinase glycogen synthase kinase 3 (GSK3) (54).

Although TCR activation is the most essential factor in controlling

T cell PD-1 expression, other factors independent of TCR activation

also play a role. For instance, in chronic infection, PD-1 expression

may be sustained even after antigen clearance (55–57). The

following re-expansion of exhausted CD8+ T cell populations

under infection also persistently express PD-1 (56). There are

dynamic patterns of DNA methylation at the Pdcd1 gene that

correspond with PD-1 expression during T cell development (58).

Using assay for transposase-accessible chromatin with sequencing
Frontiers in Immunology 03
(ATAC-seq), researchers identified a distinct pattern of accessibility

of the Pdcd1 gene in fatigued T cells (57, 59), and ablation of a

regulatory region 23 kb upstream of the transcriptional start site

decreases PD-1 expression (59). This 23 kb upstream region in

mouse T cells is essential for regulating PD-1 expression (59).
3.2 Regulation of PD-L1 expression

In contrast to PD-1, PD-L1 is ubiquitously expressed by several

kinds of cells and regulated by more factors in an inflammation

environment. There are three major regulatory mechanisms of PD-

L1 expression (Figure 2) as follows: 1) proinflammatory signals

promote the expression of PD-L1; 2) microRNAs control the post-

transcriptional regulation of PD-L1 gene expression; 3) protein

circulation, ubiquitination, and glycosylation all influence PD-L1

levels. The regulators of PD-L1 expression have been listed

in Table 1.

3.2.1 Inflammatory signaling mediates
PD-L1 regulation

PD-L1 gene expression is linked to inflammation, which is

consistent with its role in preventing T cell activation (96).

Numerous soluble chemicals generated by immune cells have

recently been discovered as PD-L1-inducing agents. IFN-g is

traditionally considered to be the most potent soluble inducer of

PD-L1, indicating that PD-L1 expression may be a crude indicator

of IFN-g signaling and T cell activation in the majority of instances

(97). In sepsis, activated T cells produce significant levels of the

IFN-g proinflammatory cytokine (98). Upon binding to its receptor,

IFN-g activates the JAK-STAT pathway, which in turn activates the

STAT1 protein (99), resulting in an increase in a group of
FIGURE 2

Regulation of PD-L1 expression. The expression of PD-L1 is regulated by several mechanisms. Various signaling pathways, such as TLRs, interferon
receptors, cytokine receptors, and receptor tyrosine kinases, increase PD-L1 expression. There are several microRNAs that regulate PD-L1 mRNA
transcription. Finally, PD-L1 is regulated at the protein level by protein circulation, ubiquitination, and glycosylation. Red lines represent inhibitory
signals, and black lines represent stimulatory signals. AP1, activator protein 1; LPS, lipopolysaccharides; LEF, lymphoid enhancer- binding factor;
TLRs, Toll-like receptors; NF- kB, nuclear factor kB; IRF, interferon regulatory factor; STAT, signal transducer and activator of transcription; TCF, T
cell- specific transcription factor; GSK3, glycogen synthase kinase 3; JAK, Janus kinase; CDK5, cyclin dependent kinase 5; CMTM, CKLF-like MARVEL
transmembrane domain containing; DUBs, deubiquitinating enzymes; STT3, subunit of the oligosaccharyltransferase complex; GSK3a, glycogen
synthase kinase 3a; b-TrCP, b-tranducin repeat-containing protein.
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transcription factors known as interferon-responsive factors (100),

which increase the induction of PD-L1 (101). In addition to IFN-g,
type I interferons (IFN-a and IFN-b) may stimulate PD-L1

expression in endothelial cells, monocytes, and DCs in vitro (65,

66). Type I and type II interferons may activate the AKT-mTOR

cascade, which regulates interferon-dependent mRNA translation

(102), indicating that the interferon receptor signaling pathway and

the AKT-mTOR signaling pathway interact (103). The

phosphatidylinositol 3-kinase (PI3K) signaling pathway influences

cell growth and survival (104), and pharmacological inhibition of

PI3K-AKT signaling inhibits IFN-induced PD-L1 expression (100).

Additionally, the PI3K-AKT pathway may regulate PD-L1

expression in an IFN-independent manner, and it has been
Frontiers in Immunology 04
proposed that at least a part of this regulation occurs via altering

PD-L1 mRNA levels by mTOR (105).

Lipopolysaccharide (LPS) is the principal component of the

outer membrane of Gram-negative bacteria, contributing

significantly to the structural integrity of the bacterium and

protecting it against certain forms of chemical attack (106). LPS

treatment of macrophages (67), monocytes (68), and primary bone

marrow-derived DCs (69) results in enhanced PD-L1 expression.

LPS signals via Toll-like receptor 4 (TLR4), and activation of

nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) leads to the generation of type I interferons (107, 108).

In addition, RELA, an NF-kB subunit, assembles into a complex

with the PD-L1 promoter called RELA-MUC1-C, which in turn

increases transcription of PD-L1 (109). Polyinosinic: polycytidylic

acid [poly(I:C)] is an immunostimulant that is used to simulate viral

infections (110). Poly(I:C) induces TLR3 activation on DCs and

endothelial cells, thereby increasing PD-L1 expression (111), and

this process requires PI3K signaling for the increase of PD-L1

expression (112).

Hypoxia is a critical feature of sepsis, as impaired lung function

and drastic inflammation often outgrows the oxygen supply.

Immune cells respond to this oxygen deficiency by activating a

series of hypoxia-inducible factors (HIFs) (113). Both HIF-1a and

HIF-2a have been shown to physically interact with the hypoxia

response element (HRE) in the promoter region of PD-L1 (83, 114).

Furthermore, it has been shown that the expression of PD-L1

may be regulated by other stimulators. In vitro cultivated

monocytes and tubular epithelial cells express less PD-L1 when

treated with transforming growth factor (TGF)-b (115). PD-L1

expression in endothelial cells may be stimulated by IL-12 (116) and

tumor necrosis factor (TNF) (117). When stimulated with IL-2, IL-

17, IL-15 (118), IL-12 (116), IL-4, and granulocyte-macrophage

colony-stimulating factor (GM-CSF) (119), monocytes and

macrophages display higher amounts of surface PD-L1expression.

DCs treated with IL-1, IL-6, IL-10, IL-27 (120), and TNF (117)

exhibit elevated levels of PD-L1. Despite the fact that the

aforementioned findings reveal that a large range of inflammatory

mediators may regulate PD-L1 expression, it remains unclear in

many situations whether this control occurs indirectly, such as

through influencing IFN production.

3.2.2 MicroRNA-mediated PD-L1 regulation
MicroRNAs play an important role in normal physiology as

posttranscriptional gene expression regulators by controlling the

degradation of target mRNA and/or inhibiting translation. A recent

study has demonstrated the role of microRNAs in the control of

PD-L1 expression (121), which may take place either directly by

binding to PD-L1 mRNA or indirectly by regulating the expression

of other PD-L1 regulators. Traditionally, miR-513 and miR-155 are

mechanisms for fine-tuning PD-L1 expression in response to IFN-

signaling. Both miR-513 and miR-155 suppress PD-L1 at the

translational level by direct binding to the 3’ UTR of PD-L1

mRNA (84, 122). IFN-g suppresses miR-513 expression while

reinforcing PD-L1 expression, whereas IFN-g induces miR-155

while suppressing PD-L1 expression (86). In addition to these
TABLE 1 Regulators of PD-L1 in normal cells.

Type Regulators Tissue type

Inflammatory
signaling

IFN-g ↑endothelial cells (60), monocytes (61),
dendritic cells, macrophages (61, 62), renal
tubular epithelial cells (63), and neutrophils
(64)

IFN-a and
IFN-b

↑endothelial cells (65), monocytes and
dendritic cells (66)

TLR4 ↑macrophages (67), monocytes (68), and
dendritic cells (69)

TLR3 ↑dendritic cells (70) and endothelial cells
(71)

TNF-a ↑endothelial cells (60), dendritic cells (72),
and monocytes (73, 74)

TGF-b ↑dendritic cells (75, 76) and T cells (77)
↓renal tubular epithelial cells (78) and
monocytes (74)

IL-6 ↑dendritic cells (72)

IL-10 ↑dendritic cells (79) and monocytes (73)

IL-1b ↑dendritic cells (72)

IL-17 ↑monocytes (73)

IL-12 ↑endothelial cells (65) and monocyte-
derived macrophages (80)

IL-27 ↑dendritic cells (81, 82)

HIF1a ↑myeloid cells (83)

microRNA miR-513 ↓cholangiocytes (84, 85)

miR-155 ↓dermal lymphatic endothelial cells (86)

miR-200 ↓cancer cells (87)

miR-34 ↓cancer cells (88)

Protein level
regulation

CMTM6 ↑dendritic cells (89, 90)

b-catenin ↑dendritic cells (91)

GSK3b ↓cancer cells (92, 93)

E3 ligases ↓cancer cells (94)

CSN5 ↑cancer cells (95)
“↑” means up-regulate PD-L1 expression, and “↓” means down-regulate PD-L1 expression.
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direct effects, miRNAs may also indirectly affect PD-L1 expression

by influencing the expression of other PD-L1 regulators, such as by

repressing PTEN (a tumor-suppressor gene that negatively

regulates PI3K-AKT signaling) to increase PD-L1 expression, or

by inhibiting PD-L1 expression via its direct action on the STAT3

transcription factor (123, 124).

3.2.3 PD-L1 regulation at the protein level
Express ion of PD-L1 is ul t imate ly contro l led by

posttranslational regulation. Autophagy and endocytosis require

lysosomal breakdown to recycle cytoplasmic proteins, organelles,

extracellular proteins, and cell surface receptors. CKLF-like

MARVEL transmembrane domain-containing 6 (CMTM6) is a

transmembrane protein that interacts with the PD-L1 protein on

the cell surface (89). CMTM6 binds to PD-L1 and extends its half-

life by blocking ubiquitination and lysosomal degradation during

protein recycling (89). These effects increase and sustain elevated

levels of PD-L1 on the cell surface (90). Inhibition of CMTM6

expression reduces PD-L1 protein synthesis, but it has little effect on

PD-L1 mRNA levels (69).

PD-L1 has four residues, namely, N35, N192, N200, and N219,

which are attached by an oligosaccharide (92). This N-linked

glycosylation is essential for PD-L1 stability and PD-L1 binding

ability (92, 125). b-catenin enhances PD-L1 glycosylation and

stabilization by increasing transcription of the STT3 subunit (N-

glycosyltransferase component) of the oligosaccharyltransferase

complex (126, 127). Unglycosylated PD-L1 is a fragile protein

(92). GSK3b phosphorylates residues T180 and S184 of PD-L1,

which are subsequently bound by the b-tranducin repeats

containing protein (b-TrCP) E3 ubiquitin ligase and then targeted

for ubiquitin-dependent degradation by the 26S proteasome (92,

93). Glycosylation at N192, N200, and N219 impairs the interaction

with GSK3b and stabilizes PD-L1 as a result (92). The

phosphorylation and degradation of PD-L1 by GSK3b is a crucial

mechanism for decreasing PD-L1 levels.

E3 ligases perform a critical function by binding ubiquitin

chains to their targets, thereby designating them for degradation

(128). There are several different E3 ligases that can degrade PD-L1

in both normal and diseased states (94). Deubiquitinating enzymes

(DUBs) prevent substrate protein ubiquitination by removing

ubiquitin chains, therefore stabilizing the protein (95).

Deubiquitination mediated by COP9 signalosome 5 (CSN5) leads

to TNF-induced activation of PD-L1 (95). Further, there are many

other protein regulatory mechanisms of PD-L1 that have been

reviewed in other articles (96).
4 Physiological function of the PD-1/
PD-L1 pathway

PD-1 and PD-L1 are important to maintain a healthy body

(129). In the absence of PD-1, excessive immune-mediated tissue

damage may have catastrophic effects on the host. Different genetic

backgrounds of PD-1-deficient animals are susceptible to

developing lupus-like autoimmune disease (130, 131) or
Frontiers in Immunology 05
catastrophic autoimmune cardiomyopathy (132). PD-1 inhibition,

whether genetic or antibody-based, has also been shown to

accelerate the onset of diabetes in individuals who are neither

obese nor diabetic (133). Other findings include the defect of T-

cell training in the thymus in PD-1 deficient mice (131) and the

impairment of maternal tolerance in fetuses and their mothers as a

result of PD-L1 inhibition (134).

The PD-1 pathway plays an important role in limiting

immunopathological responses in host tissues by promoting

inflammatory response downregulation and return to immune

system balance (135). If CD8+ T cell responses are not well

regulated, significant immunopathology may occur from the

production of proinflammatory cytokines, such as IFN-g and

TNF. Lethal immunopathology occurs in PD-1deficient or PD-

L1deficient animals after infection with strains of lymphocytic

choriomeningitis virus (LCMV) that produce chronic infection,

illustrating the critical function of the PD-1 pathway in regulating

immune-mediated tissue damage (50, 136, 137). This deadly

immunopathology is based on CD8+ T cells and may involve the

perforin-dependent destruction of vascular endothelial cells (136).

The PD-1 pathway also regulates proatherogenic inflammatory

responses because animals defective in the low-density lipoprotein

receptor develop more atherosclerotic lesions if they lack PD-L1

(138). The reduced vascular integrity that occurs in the absence of

PD-1 signaling provides a significant hurdle for PD-1

immunotherapy because inhibiting PD-1 may increase the risk of

heart attacks, strokes, and edema by altering the permeability of the

vascular barrier (138).

The PD-1 pathway also affects the development and responses

of memory T cells. Compared to wild-type T cells, PD-1-deficient T

cells isolated from vaccinia virus-infected mixed bone marrow

chimera mice display greater amounts of CC-chemokine receptor

7 (CCR7) and CD62L, and they are skewed toward a central

memory T cell phenotype (139). Experimentally induced deletion

of PD-1 results in a higher proliferation of memory T cells when

they are transplanted into wild-type recipients and then challenged

with another strain of vaccine virus (139). Experiments using

vaccinia virus infection have indicated that PD-1 inhibition

during secondary challenge may repair deficiencies in CD8+ T

cell responses in the absence of CD4+ T cell assistance (140).

Secondary PD-1 blockage after viral lung infection significantly

improved CD8+ T cell activities (141). The amount and quality of

memory T cell responses may be affected by PD-1 inhibition during

primary versus secondary challenges, and this may be dependent on

the illness environment.
5 PD-1/PD-L1 axis in sepsis

Sepsis is a lethal uncontrolled host reaction to infection.

Clinically, sepsis is currently defined as having an infection and a

sudden change in how an organ works, as measured by the

Sequential Organ Failure Assessment score (142). We still don’t

know all the details of how cell damage and organ malfunction

result from sepsis. Reduced T lymphocyte function, impaired
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myeloid cell activity, and non-immune cell death have been

described as the pathophysiological features of sepsis (143).

The number of cells that express the PD-1 and PD-L1 genes is

increased during sepsis (144). In the CLP model, CD4+ T cells

increase PD-1 expression within 24 hours, CD8+ T cells increase

PD-1 expression at a time of 3 days to 7 days, and myeloid cells

increase PD-L1 expression within 24 hours (144). A previous study

has reported that endothelial cells in splenic capillaries of

individuals who died of sepsis had a higher level of PD-L1 than

endothelial cells in the spleens of individuals with brain death or

injury necessitating immediate splenectomy (27). Individuals with

sepsis have increased surface PD-1 expression on T lymphocytes

and increased surface PD-L1 expression on myeloid cells (28). Loss

of PD-1 signaling often enhances immunological control of

numerous forms of infection, such as viral, fungal, and bacterial

infections (136, 141, 145–147). Numerous studies have connected

PD-1/PD-L1 axis to altered immune cell activity in sepsis (Figure 3).
5.1 The PD-1/PD-L1 axis inhibits T
lymphocyte function

High levels of PD-1 on T cells have been detected in patients

with sepsis (148). Higher PD-1 expression on T cells has been

associated with lymphopenia, T cell death, increased mortality (27,

28, 149, 150), and subsequent nosocomial infections (151). By

suppressing T cell proliferation, survival, cytokine generation, and

other effector activities, engagement of PD-1 by PD-L1 changes the

activity of T cells in a number of ways (79, 152, 153). Binding of PD-

L1 to effector T cells that express PD-1 reduces costimulatory

signaling, resulting in depletion of the T cell response capacity,

characterized by diminished co-stimulatory receptor expression

(such as CD28), activation of inhibitory immunological

checkpoints, and metabolic derangements, leading to impaired

synthesis of effector cytokines, poor proliferation, and increased
Frontiers in Immunology 06
susceptibility to apoptotic cell death (154). In sepsis, blocking the

binding of PD-1 on T cells with PD-L1 prevents T cell depletion and

is associated with increased microbial clearance and a decreased

mortality rate (27, 155–159).
5.2 The PD-1/PD-L1 axis impairs myeloid
cell function

Sepsis inhibits the functionality of myeloid cells via the PD-1/

PD-L1 axis (144). In sepsis patients, an increase in PD-L1

expression on monocytes and neutrophils is accompanied with a

decrease in their phagocytic capabilities (158). It has been

demonstrated that cecal ligation and puncture (CLP)-induced

murine sepsis increases PD-1 expression on liver Kupffer cells

and that deleting PD-1 enhances their phagocytic activity (160).

In a sepsis CLP model, the expression of PD-L1 on circulating

neutrophils is correlated with both pro- and anti-inflammatory

cytokine levels and mortality (161). Patients with septic shock who

have elevated PD-L1 levels on their circulating monocytes are more

likely to die during the first 28 days of their illness (162). Recent

research has shown that natural killer (NK) cell PD-L1 expression

within 24 h of ICU admission is related to increased sepsis severity

(163). Patients with sepsis have elevated PD-L1 levels in their

peripheral blood monocytes, and binding with PD-1 impairs cell

survival and function. In addition, anti-PD-1 antibody therapy

restores monocyte production of critical cytokines, including IFN-

g and IL-2 (158).
5.3 PD-1/PD-L1 signaling causes non-
immune cell death

PD-1/PD-L1 signaling has been associated with organ damage

induced by sepsis (158). In addition to leukocytes, non-immune
FIGURE 3

Schematic depiction of the PD-1/PD-L1 related immune cell dysfunction. The interaction between PD-1 and PD-L1 impairs T cell function and
myeloid cell function. Antibodies against these inhibitory molecules restore the immune system’s function and boost resistance to infection in
patients suffering from sepsis. The up arrow represents an increase, whereas the down arrow denotes a decrease. PD-1, programmed cell death-1;
PD-L1, programmed cell death ligand-1; IFN-g, interferon-gamma; IL-2, interleukin-2; IL-6, inerleukin-6.
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cells, such as the lung, liver, kidney, colon, small intestine, and tissue

endothelial cells express PD-L1 (40, 43, 164). CLP-induced PD-L1

defective sepsis mice have lower levels of serum bilirubin, alanine

aminotransferase (ALT), and aspartate aminotransferase (AST),

and their endothelial permeability barrier is unaltered, with

greater systemic bacteria clearance and better survival (43).

Deletion of PD-L2 enhances systemic bacterial clearance but does

not protect against the increase in hepatocellular damage markers,

such as serum bilirubin and AST, and it does not influence the

survival of CLP model (43). Both PD-1 and PD-L1 are increased on

liver sinusoidal endothelial cells in a CLP model of sepsis, and

deleting PD-L1 protects against sepsis-induced increases in hepatic

vascular leakage, edema, and endothelial cell mortality (165).

Patients with severe sepsis have PD-L1 expression in their

postmortem lung tissue (27). Pulmonary endothelial cell

permeability and lung damage are reduced when PD-1 or PD-1 is

deleted from lung endothelial or parenchymal cells during sepsis

(166, 167). Neutrophil infiltration and sepsis-induced lung damage

may both be reduced by intravenous delivery of siRNAs that

specifically target PD-L1 expression, indicating that this protein

may be a therapeutic target for the prevention of sepsis-induced

lung injury (166). PD-L1 also controls the intestinal damage caused

by sepsis. Deletion or treatment with an antibody of PD-L1 lowers

the degree of intestinal damage resulting from sepsis (168). In the

early phase of systemic LCMV infection, PD-L1 deficiency on

endothelial cell leads to increased vascular permeability and

ultimately to circulatory collapse (136). It is important to note

that shock or systemic inflammatory syndromes related to different

pathogens might respond differently to checkpoint blockade

or inhibition.
5.4 Therapeutic targeting of the PD-1/PD-
L1 pathway

PD-1/PD-L1 signaling is a potential therapeutic target of sepsis.

Patients with sepsis have been integrated using the Persistent

Inflammation, Immunosuppression, and Catabolism Syndrome

(PICS) (142). The inflammatory and immune-suppressing phases

were considered to happen at the same time in sepsis (143). At

initially, several anti-inflammatory strategies were tested since

sepsis was thought to be fundamentally hyperinflammation. Yet,

none of these sepsis therapy methods have shown any evidence of

success (142). Therefore, immunological stimulation is a novel

approach to combating sepsis, particularly its Immunoparalysis

component. In CLP-induced sepsis, PD-1 knockout animals have

a greater likelihood of survival than wild-type mice (169). Anti-PD-

L1 antibody treatment in mouse models of CLP-induced sepsis

reduces T cell apoptosis, increases bacterial clearance, and

minimizes organ damage (31). Anti-PD-L1 antibody treatment

24h after fungal sepsis caused by Candida albicans protects T cell

function and enhances survival (30). The two-hit model is another

type of sepsis model. It has a higher death rate than the CLP model

and a more severe immune suppression than the CLP model. Using

a two-pronged attack, first CLP-induced sepsis and then fungal

sepsis using C. albicans, researchers created a model of sepsis and
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found that the novel PD-L1 blocking peptide, compound 8,

decreases mortality by half (170). Similarly, a recent study has

reported that treating CLP-induced sepsis with the novel LD01

peptide, which suppresses PD-1 signaling, enhances macrophage

phagocytosis, T cell activity, and survival (171). No single study

showed benefit of PD-1/PD-L1 blockage in sepsis caused by

pulmonary infection, and the majority of pre-clinical models

examined did not include antibiotic treatment, which is a critical

part of therapy for sepsis (172). Anti-PD-L1 therapy did not alter

the survival of sepsis model caused by Staphylococcus aureus

pneumonia (173). It should be noted that different organisms,

different sites of infection, and timing of therapy all may have an

effect on the outcomes of anti-PD-1 or anti-PD-L1 antibody

treatment in sepsis.

For humans, most studies compared PD-1 or PD-L1 expression

between sepsis patients and healthy volunteers but not critically ill

patients. The effectiveness of PD-1 or PD-L1 blockade on human

cells has just been tested in vitro blockade assays (174). Ex vivo

administration with an anti-PD-1 antibody decreases apoptosis and

increases IFN-g production in CD8 T cells collected from septic

patients (150) as well as reverses sepsis-induced T cell dysfunction

and enhances neutrophil and monocyte phagocytic activity in

circulating blood cells collected from septic patients (158). The

anti-PD-1 antibody, nivolumab, has been licensed for use in cancer

patients (175, 176). Clinical trials for nivolumab in sepsis have also

made progress. A 2019 Phase 1b clinical trial investigating the safety

and tolerability of nivolumab in septic patients reported no side

effects, such as a cytokine storm (33). Similarly, another 2019 Phase

1b clinical trial investigating the safety of the anti-PD-L1 antibody,

BMS-936559, in sepsis patients validated the antibody’s safety with

no instances of hypercytokinemia (34). All studies gave evidence

that there were no safety concerns with PD-1/PD-L1 blockade in

ICU-bound sepsis patients at high risk for mortality and no

indication of a “cytokine storm”. No evidence has shown the

benefit of immunotherapy (PD-1 and PD-L1 blockade) in clinical

trials in humans for sepsis (33, 34). Interesting, recent studies have

indicated that the anti-PD-1/PD-L1 axis may be safe for use in

sepsis (33, 34). However, cancer research studies have revealed a

wide variety of major side effects related to immune checkpoint

inhibition, including liver damage, thrombocytopenia,

pneumonitis, colitis, thyroiditis, and vasculitis (177). Additional

clinical trials will provide better knowledge of the blockade of the

PD-1/PD-L1 axis in sepsis.
6 Discussion and conclusion

PD-1 and PD-L1 are potent immune checkpoint proteins in

several cells, and they are upregulated by several inflammation

signals. In sepsis, PD-1 and PD-L1 expression is corelated with the

mortality rate, and blockade of PD-1 or PD-L1 protects against

sepsis. In current state, the blockade of PD-1/PD-L1 would be able

to correct the immunosuppression in sepsis, as in oncology

treatment. However, many unknowns remain. First, it is

unknown how PD-1 and PD-L1 differ from other inhibitory

receptors in terms of their specific and shared functions.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1029438
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1029438
Inhibitory receptors are not known to act in a hierarchical manner;

if one receptor is destroyed, other receptors may compensate. These

signaling pathways are still undefined. For example, it remains

unknown how blocking one receptor affects the ability of another to

communicate. Second, methods are needed to inhibit PD-1 or PD-

L1 expression increases in sepsis. The blockade of PD-1/PD-L1 can

cause the immune system to attack healthy cells, leading to a range

of immune-related adverse events such as rash, colitis, pneumonitis,

and hepatitis (178). In sepsis, PD-L1 expression is increased as a

result of immune dysregulation. Restoring PD-L1 expression levels

to normal by inhibiting PD-L1 expression upregulation is a

potential therapeutic modality capable of avoiding autoimmune

damage due to PD-L1 blockade. In summary, we believe that

regulating the PD-1/PD-L1 pathway will be a potent weapon to

protect against sepsis in the future.
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