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Glioblastoma (GBM) is themost malignant tumor in center nervous system. Clinical

statistics revealed that senior GBM patients had a worse overall survival (OS)

comparing with that of patients in other ages, which is mainly related with tumor

microenvironment including tumor-associated immune cells in particular.

However, the immune heterogeneity and age-related prognosis in GBM are

under studied. Here we developed a machine learning-based method to

integrate public large-scale single-cell RNA sequencing (scRNA-seq) datasets to

establish a comprehensive atlas of immune cells infiltrating in cross-age GBM. We

found that the compositions of the immune cells are remarkably different across

ages. Brain-resident microglia constitute the majority of glioblastoma-associated

macrophages (GAMs) in patients, whereas dramatic elevation of extracranial

monocyte-derived macrophages (MDMs) is observed in GAMs of senior patients,

which contributes to the worse prognosis of aged patients. Further analysis

suggests that the increased MDMs arisen from excessive recruitment and

proliferation of peripheral monocytes not only lead to the T cell function

inhibition in GBM, but also stimulate tumor cells proliferation via VEGFA

secretion. In summary, our work provides new cues for the correlational

relationship between the immune microenvironment of GBM and aging, which

might be insightful for precise and effective therapeutic interventions for senior

GBM patients.

KEYWORDS

age, tumor heterogeneity, single-cell RNA sequencing (scRNA-seq), immune
microenvironment, GBM, monocyte-derived macrophage (MDM)
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1 Introduction

GBM is an aggressive brain cancer with a high incidence rate of 32

per 1,000,000 per year (1). GBM is hard for radical cures surgically

and is invalid to radiotherapy and chemotherapy in clinic (2, 3).

Patients died by rapid deterioration and shortage of effective

medicines. The median survival time of GBM patients is about 15

months after diagnosis (4–6). GBM mainly occurs in the elderly and

the median age of first onset is 64 (7). In general, tumors (i.e.,

leukemia or lung cancer) within younger patients tend to be more

malignant (8), whereas GBM patients have worse prognosis with age.

However, how and in what extent age influences on the prognosis of

GBM are unclear.

Tumor heterogeneity exercises major influence on the prognosis

of tumor patients. The heterogeneity in GBM cancer cells has been

investigated intensively, which includes but is not limited to the

divergence in gene mutations, epigenetic modifications and cell of

origins and so on (9–12). The great impact of heterogeneity of tumor

microenvironment and immune microenvironment in particular on

the tumor progression has been recognized in recent years, which

constitutes the theoretical basis of tumor immunotherapy (13–16).

The studies on tumor immunology in GBM are limited because of the

existence of brain blood barrier (BBB) that blocks the entrance of

most of the peripheral immune cells. Bulk omics whose signals

summarized over millions of cells are limited to characterize each

kind of immune cell populations in GBM tumor environment.

Various GBM scRNA-seq data reveal that resident microglia as well

as infiltrated peripheral immune cells (including MDMs) contribute

to the heterogeneity of GBM immune microenvironment (17–22).

To overcome the batch effects among various scRNA-seq and

establish the landscape of immune microenvironment across age, we

developed a machine learning method to integrate a variety of

scRNA-seq data in public and analyzed the immune cells

infiltrating in GBM collected from individuals of various ages. Our

data suggested that the heterogeneity of immune cells across age led to

the worse OS of aged GBM patients. MDM subpopulation in elderly

suppressed the immunologic function and promoted tumor cell

growth in a paracrine manner.
2 Materials and methods

2.1 Integration of single-cell RNA
sequencing datasets

We constructed an atlas of cells in GBM by integrating six public

scRNA-seq datasets generated by various studies. Because sequencing

protocols and experiment conditions are different across these studies,

batch effects shall induce an overwhelming number of technical

variations in gene expression counts, which impede the integration

of different scRNA-seq datasets and the discovery of true biological

signals. It is noticed that two kinds of information are immune to

technical variations in sequencing and experiment. First, it is the cell-

type label that indicates the cell state. Among various GBM datasets,

most cell states in tumor environments are similar. Second, the

correlation between genes can combat technical variations. Let’s
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consider the example of face recognition. Even if someone wears a

face mask, human visual neurons can precisely recognize the identity

of the person. This is because the human brain neural network can

utilize the correlation structure among facial features. Similarly, the

gene-gene correlation can benefit the detection of true biological

signals. The correlation structure among genes can be characterized

by relative gene abundance, which is known as gene usage. Based on

the above analyses, we designed a factor model called scClassifier to

extract gene usages relating to cell states. scClassifier is implemented

by using deep neural networks. After training with the cell-type

annotated GBM datasets, scClassifier can automatically disentangle

the factors regarding cell states and the factors regarding batch effects.

The cell state-related factors encode true biological signals, and can be

used to predict cell type as well as integrate multiple datasets. Details

about scClassifier are given in the following.

Let’s introduce the mathematical notations used throughout the

paper first. Let y and z1 denote a factor variable corresponding to cell

type and a factor variable accounting for technical variations, i.e.,

batch effect, respectively. The cell-type annotations y1,···,yN of N cells

are given by users and are discrete variables. Thus, y is modeled by the

Categorical distribution. Besides batch effect, technical variations of

single-cell transcriptomics have multiple resources that have been not

well charted. Therefore, z1 is modeled with the normal distribution.

For every cell, the complete hidden cell state zy is determined by the

factors y and z1 with the procedure described as follows,

y ∼ Categorical(a0)

z1 ∼ Normal(m0,S0)

zy ∼ Normal(mzy ,ozy
)

where a0, m0, and ∑0 are the parameters of prior distributions. In

practice, without loss of generality, we choose a0 =
( 1,⋯, 1)
|fflfflfflfflffl{zfflfflfflfflffl}

L
, L is the

number of cell types. And we choose the mean vector m0 =
( 0,⋯, 0)
|fflfflfflfflffl{zfflfflfflfflffl}

dand the diagonal covariance matrix o0 = diag
ð 1,⋯, 1 Þ
|fflfflffl{zfflfflffl}

d
, d is the

dimension of the hidden state. In the analyses of the paper, d is set

as 50. The parameters mzy and ∑zy are inferred from y and z1 by using a

deep neural network.

Once the complete hidden cell state zy is determined, the

generation of single-cell gene expression follows the procedure:

first, gene usage h is sampled from a Dirichlet distribution, where

the parameter is inferred from zy by using a decoder neural network;

second, gene expression counts are generated from h by using the

multinomial distribution. Specifically,

a = Decoder(zy)

h ∼ Dirichlet(a)

X ∼ Multinomial(h)

The parameters of the proposed model are learned by using the

stochastic variational inference introduced by the semi-supervised

variational autoencoder (23), which can be scalable to large scRNA-

seq datasets. To utilize the stochastic variational inference, we

introduce the variational distribution,
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q(X, zy , y, z1) = q(X)q(zy jX)q(y j zy)q(z1 j y, zy)
We use the evidence lower bound (ELBO) as the loss for model

training. The deep neural network-based factor model is recently

introduced in computer vision. It has been successfully used to

factorize various kinds of factors in handwritten digit images (24).

In the paper, we extend the deep neural network-based factor model

to process single-cell transcriptomics and to extract the variations of

gene expression regarding cell states.
2.2 Cell type annotation, clustering,
and visualization

Besides single-cell integration, scClassifier can be used in a variety

of single-cell computational tasks, including the visualization of cell-to-

cell variability and cell type annotation. First, the variance distribution

model q(zy|X) yields 50-dimensional embeddings if gene expression

matrix X is given. The 50-dimensional embeddings can produce the

two-dimensional coordinates of cells through uniform manifold

approximation and projection (UMAP). Besides, given gene

expression matrix X, the model q(zy|X)q(y|zy) can predict cell type of

each cell (cell type annotation). The two-dimensional coordinates and

cell type were used to draw the UMAP plots in the paper (25).

To find the subpopulation of every cell type, we needed to

perform clustering on the two-dimensional coordinates of cells.

Therefore, we built a model that can predict the sub-clusters using

a python package Scikit-learn. This model allows for automatic

estimation of the number of subpopulations, since the main

components of the model are the Dirichlet process.
2.3 Cell communication analysis of GBM
by iTALK

To explore the growth factor interactions associated with

monocytes in GBM, we performed cell communication analysis

with an R package iTALK published in 2019 (26). First, we

calculated differentially expressed genes (DEGs) between adult and

aged patients by using the Wilcoxon signed-rank test. Next, we

selected growth factor pairs for our research from the L-R database.

Meanwhile, a list of growth factor pairs matching the DEGs was

generated by the “FindLR” function in iTALK package. Finally, we

sorted the list using the logFC between the adults and aged, and

selected monocytes-related growth factor pairs with top absolute

value. The growth factor pairs were shown in the Circos plots with

the “LRPlot” function. The T cell-associated immune checkpoint

interactions within GBM were analyzed with the same procedure.
2.4 Differential gene analysis and violin plots

After obtaining the expression matrix corrected for batch effects,

we constructed a new Seurat object, and then calculated its differential

genes according to the FindMarkers function of the Seurat package.

Violin plots are visualized by the VlnPlot function of the Seurat
Frontiers in Immunology 03
package. Besides, in order to merge different violin plots, we drew the

stacked violin plots based on our code.
2.5 Data access and survival analysis

For OS data, we used The Cancer Genome Atlas (TCGA) from 606

(Firehose Legacy)) glioblastoma mutiforme samples (GBM_TCGA),

and The Surveillance, Epidemiology, and End Results (SEER) Program

of the National Cancer Institute (NCI) from 20878 glioblastoma

multiforme. TCGA data are accessed by the R package cgdsr (ver

1.3.0). SEER data are downloaded from the SEERStat software

(ver 8.4.0.1). To perform survival analysis, the R packages survival

(ver 3.3.1) and survminer (ver 0.4.9) are used to calculate and plot the

Kaplan-Meier curve. For legacy data, median levels were used to

segregate cancer patients according to OS outcome. P value is

adjusted with the Benjamini-Hochberg correction method.
2.6 Gene ontology analysis

We used the R package clusterProfiler (ver 4.0.5) to perform GO

pathway enrichment analysis, where the GO annotation was given in

the R package org.Hs.eg.db (ver 3.13.0). The GO enrichment results

are shown as the bubble plots with the R package ggplot2 (ver 3.3.6).

R version is 4.1.2.
2.7 Human tissue specimens
and immunohistochemistry

Paraffin-embedded specimens from patients with IV GBM were

obtained surgically, from the First Affiliated Hospital of Xiamen

University. Collection of all samples was approved by the local

ethical committee and the institutional review board of the hospital.

Each patient gave written informed consent and patient data have

been made anonymous. Detailed information of patients is included

in Supplementary Table 1. For immunofluorescent staining, blocks

were processed at 5 mm. After dewaxing and rehydration, heat

mediated antigen retrieval was performed using citrate buffer. And

then samples were incubated with lysozyme primary antibody

(Abcam, Cat#ab108508) at 1/200 dilution overnight at 4°C. After

washing with PBS, the sections were incubated with second antibody

conjugated to Cy5 (Jackson ImmunoResearch Laboratories, 1:200)

and DAPI (Thermo Fisher Scientific, Cat#D1306) for 1 h at RT.

Immunofluorescence images were taken by Leica SP8.
3 Result

3.1 Senior GBM patients have poor OS

Analyzing TCGA and SEER data of GBM patients, we discovered

a negative correlation between OS and age (Figures 1A, S1A) and

showed a worse OS in senior GBM patients. Adding with the similar

observations from other studies (27), it suggests that age is an
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independent risk factor of poor prognosis in GBM. Therefore, patients

(Figures 1A, S1A) were grouped by ages and the OS of elder group is

significantly poorer than the young group (Figures 1B, S1B). To clarify

that OS was not affected by other factors, we did a survival analysis

related to gender and mutation subtype in adults and aged. No

significant sexual difference was found in the aged stage though

women had a slightly better OS in the adult stage (Figure 1C).

Neither TP53 nor PTEN mutations alters OS across age (Figures 1D,

E). Similar results showed that patients with EGFRmutation in the aged

group still had a poorer OS than those in the adult group, but this

mutation could make the adult OS as poor as that in aged group,

suggesting that EGFRmutations in adults could simulate the changes in

old age, and EGFR might be involved in the regulation of age-related

OS changes (Figure 1F). Taken together, age emerges as an independent

risk factor of worse OS in GBM.
Frontiers in Immunology 04
3.2 Integration analysis of single-cell RNA-
seq data from adult and aged patients

The heterogeneity of tumor environment and the heterogeneity of

tumor-associated immune cells in particular are unclear in GBM across

ages. Herein we focused on immune microenvironment of GBM with

scRNA-seq. We analyzed the transcriptome of 23 GBM patients across

ages from 6 public scRNA-seq datasets. GBM patients were divided into

two groups, adult (20<age< 50, n=10) and aged (age>64, n=13)

(Table 1). To build a comprehensive immune landscape of primary

GBM, 6 datasets were integrated into a huge dataset for analysis

(Figure 2A). The clustering and UMAP analysis (Figure S2A, C) on

the huge dataset by traditional Seurat tools were disturbed by ineluctable

batch effects that yielded from technical variations in sequencing

protocols. Unexpectedly, the biological variations (Figure S2B, D) for
B

C D

E F

A

FIGURE 1

Age is an independent risk factor of prognosis and overall survival. (A) Scatter plot of OS (logarithmically transformed) correlated with age from 606
samples in the TCGA database. (B) Kaplan-Meier curves of survival analysis used to compare the OS of GBM patients in the SEER database, divided into
four groups according to age. (C–F) Kaplan-Meier curves of survival analysis used to compare the differences in OS between the two age groups [Adult
(30≤age<50) and Aged (age≥64)] with different genders (C), TP53 mutation (D), PTEN mutation (E), or EGFR mutation (F). *(P< 0.05), **(P< 0.01), ***(P<
0.001), ****(P< 0.0001), ns (no significance).
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clustering were removed when batch effects were corrected by classical

harmony algorithm. Therefore, we developed a machine learning

method named scClassifier to integrate various scRNA-seq datasets to

capture the biological variations (Method1). Ultimately, 85,372 cells
Frontiers in Immunology 05
from the adult tumor samples and 29,634 cells from the aged tumor

samples were integrated (Table 1, Figure 2B). Then tumor cells, normal

brain cells, and different kinds of immune cells (Figure 2C) were

clustered by their universal marker genes (Figure 2D).
TABLE 1 Statistical chart shows details of all samples that we collected, such as cell counts and number of patients.

Group Total Cell Counts Cell Counts Number of Patients Cell Type

Adult Aged Adults Aged

1 1901 1645 256 3 1 tumor,immune

2 11786 0 11786 0 6 tumor,immune

3 84969 71053 13916 5 2 tumor,immune

4 15935 12259 3676 1 4 immune

5 415 415 0 1 0 tumor,immune

6 17982 – – – – tumor

Total 132988 85372 29634 10 13
B C

D

A

FIGURE 2

Integration of GBM scRNA-seq containing immune cells and tumor cells. (A) Workflow of scRNA-seq integration, data analysis, and validation based on
the primary tumors, which are collected from nine adult and thirteen aged patients. (B) Corrected UMAP plots colored by the cell types which are
identified by marker genes in GBM. (C) UMAP plots colored by the scRNA-seq source using our method in each GBM group. (D) Heatmap showing
relevant expression across different cell subsets. The color is the same as the cell subsets in Figure 2B.
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3.3 More MDMs infiltrate in GBM of
aged patients

Immune infiltration is essential for tumorigenesis (28, 29).

Hereby we surveyed the entire infiltrated immune cells in both

GBM and normal brain tissues. As expected, the overall immune

infiltration was higher in tumors than normal brains (Figures 3A, S3)

(30). Given the top incidence occurs over 65-years-old and 50% of

GBM patients are older than 64, the ratio of infiltrated immune cells

in aged patients was very close to that in general GBM patients.

Compared with aged patients, adult patients had less immune

infiltration (Figure 3A). 8 subpopulations of immune cells were

found in tumor microenvironment. In general, brain-resident

microglia composed the majority (31) and the number of other

immune cells (e.g., B cells, T cells, DCs) were low no matter in

adult or aged patients (Figures 3B–E). Comparing each population of

immune cells in adult and aged patients, we found the ratio of GAMs

was higher in aged patients. GAMs were composed with microglia

and MDMs. The MDM rather than microglia population was

significantly increased in aged patients (Figures 3B–E).

To verify the conclusion above, we stained human GBM tissue

samples with LYZ, one of theMDM-specific markers (Figures S4D, S4E)
Frontiers in Immunology 06
yielded by feature plot and violin plot. As expected, LYZ+ cells were

increased in aged GBM patients. (Figures 3F, G).

We found that monocyte-associated growth factors were enriched in

aged patients whichmight promote their proliferation (Figures 4A, S5A).

The chemokines for monocytes were evidently up-regulated in tumor

cells and other immune cells. For example, CCL2was highly expressed in

aged tumor cells (Figures 4B, S5B) to recruit monocyte from peripheral

blood (32). Highly expression of CCL2 is regarded as an unfavorable

factor for survival (33). Besides, CCL2 is also considered to induce M2

polarization of MDMs (34). In all, it may result in enhanced monocytes

recruitment from peripheral tissue to GBM and promote them to

differentiate into M2 MDMs.
3.4 Aged MDMs present features of
M2 macrophage

To investigate how the heterogeneity of immune cells leads to the

worse OS in aged patients, we performed DEG analysis onMDMs and

followed by GO analysis for the top 100 genes. Although aged-MDMs

rather than adult-MDMs presented typical macrophage signature

(Figures 5A, B, S6A), further analysis using markers of pro-
B C

D

E

F G

A

FIGURE 3

GAM infiltration, especially MDM infiltration, increases more significantly in the aged group. (A) Histogram showing the proportion of immune cells, brain
somatic cells, or tumor cells in integrated GBM scRNA seq data, grouped by adult and aged (each n=9). (B, C) UMAP plots of immune cells in GBM of
adult (B) and aged (C) patients. (D) Stacked barplots showing cell types composition of all patients scRNA data from adult group (left) and aged group
(right). (E) Histogram calculating and comparing all cell types proportion of immune cells in adult group(n=10) and aged group(n=13). (F, G)
Immunofluorescent staining for lysozyme (MDM marker) in GBM sections from adult group and aged group (F). Amplified areas of white rectangles are
shown below and the ratio of LYZ+ cells is quantified (G), n=24 fields from 5 GBM samples for each group. All the quantification data are presented as
mean ± SEM, two-tailed unpaired Student’s t-test. Scale bars, 100mm. *(P< 0.05), **(P< 0.01), ns (no significance).
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inflammatory features (M1) and anti-inflammatory features (M2)

showed that the M2 type was dominant in aged MDMs (Figure 5C),

which is suppressive to tumor immune activity. In consistent, TOP 5

highly expressed genes in aged-MDMs, i.e., FCGR2B, TGFBI, CD163

and GPNMB showed negative correlation with the patients’ OS by

association analysis of gene expression and patient survival in TCGA

(Figure 5D). Such correlation was not found in adult MDMs

(Figure 5E). Thus, the increased immunosuppressive MDMs lead to

the poor prognosis and OS in aged patients.
3.5 The MDM-B subgroup is significantly
increased in older age and is critical for the
regulation of age-related OS

We further characterized the MDM sub-population that responded

to the change of MDMs in both quantity and quality with age. MDMs

were divided into four sub-clusters as MDM A\B\C\D (Figure 6A).

MDM-A was dominant in adult MDMs and decreased with age;

whereas the MDM-B increased significantly with age and prevailed in

most of aged MDMs (Figure 6B). In addition, MDM-B presents
Frontiers in Immunology 07
typical M2 features (Figures 6C, S7A). Genes highly enriched in

MDM-B (Figures S7B–D) and unfavorable to OS were the key factor

for poor OS of aged patients. Therefore, a small portion of aged

patients with low expression of those genes, such as C5AR1, CD14

and SLC11A1 had very close OS to that of adult patients

(Figures 6D–F).

Considering microglia are the most abundant population in all

GBM-associated immune cells, microglia from patients across age

were further clustered and showed a close proportion of M1/M2

subtypes, excluding the major role of microglia in worse prognosis

with age (Figures 6G, S7E, F). These data suggest the anti-

inflammatory MDMs in aged GBM caused the poor OS with age.

3.6 Aged MDMs compromise tumor immune
response and promote tumor growth in
paracrine manner

M2 macrophage inhibits T cell function (35) and M2 tumor-

associated macrophage restricts T cells from killing tumor cells (36).

To examine the immune activity of T cell in GBM, we performed

checkpoint communication analysis in both adult and aged patients.
B

A

FIGURE 4

Increased proliferation and recruitment of monocytes. (A) Circos plot showing growth factor interactions between monocytes and other cells. The outer
ring represents the cell type, and the inner ring represents the gene. The color of the line indicates the direction of upregulation (adult vs aged) and the
width of the line indicates the degree of upregulation, as shown in the legend. (B) Violin plot showing the expression of CCL2 in each immune cell type,
divided by adult and aged cells.
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We found the immune checkpoint genes were upregulated in T cells

from aged patients (Figures 7A, S8), which suggested an

immunosuppressive state in aged GBM. In consistent, cytotoxic

CD8+ T cells decreased and exhausted CD4+ T cells (HAVCR2+)

increased in aged GBM (Figures 7B–D).

MDMs promote tumor growth by secreting growth factors (37).

Among all the growth factors detected in GBM, VEGFA was highly

expressed in MDMs and tumor cells (Figure S5), suggesting that

increased MDMs could lead to upregulation of VEGFA and promote

tumor growth.
Frontiers in Immunology 08
TCGA data showed that aged patients with reduced VEGFA and

TNFSF4 (an immune checkpoint gene) expression had a better OS,

which suggests two oncogenic functions by MDMs were

synergistic (Figure 7E).
4 Discussion

In this article, we created an atlas of immune cells infiltrating in

GBM by holistically analyzing six public scRNA-seq datasets from
B

C

D E

A

FIGURE 5

MDMs in the aged group are much anti-inflammatory and unfavorable to OS. (A, B) GO (Gene ontology) analysis of top 100 specific genes of MDMs (A)
or relatively highly expressed genes in aged MDMs (B). Data displaying the top 10 enriched GO terms ranked by p values. The color indicates p values for
GO term enrichment and the circle size indicates the number of enriched genes for each GO term. (C) Heatmap showing the marker gene signatures of
the identified M1 and M2 subtype cells in the adult group(left) and the aged group(right), and the ratio of each subtype in the adult or aged were counted
on the top row of columns. (D, E) Boxplots showing the differences of OS between high or low expressions of the top 5 genes highly expressed in MDM
aged group (D) or MDM adult group (E), respectively. Data are obtained from TCGA-GBM database. *P<0.05, **P< 0.01. All the quantification data are
presented as mean ± SEM, two-tailed unpaired Student’s t-test. ns (no significance).
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patients of variant ages. To integrate the six datasets, we developed a

machine learning method named scClassifier. Besides, scClassifier

shows better performance on cell-type annotation and integration

than the standard methods (Figure S9). Our data suggested that

immune heterogeneity by ages contributed to the worse OS in aged

GBM patients (Figure 8). The number of infiltrated immune cells was

increased with ages and GAMs had the most dramatic change. GAM

infiltration has been associated with poor prognosis and OS (38, 39),

but the effect of MDMs and microglia may be different by age.

Previous studies have not found that MDMs is the immune cell

population that changes the most significantly with age. According to

TCGA data analysis, our research discovered targeting MDMs is

probably more beneficial to improve OS of aged patients but not

adult patients.
Frontiers in Immunology 09
This difference in the infiltration of MDMs with age may be useful

for classification as subtype of GBM. Our study has successfully

repeated the used MDM specific markers. Furthermore, we find

FCGR2B, GPNMB etc are probable new MDM specific markers in

GBM. These genes can be used to detect the level of MDMs, and to

evaluate and predict prognosis and OS of non IDH-mut or EGFR

mutation GBM.

MDMs are derived from monocytes. Monocytes are myeloid

derived non-resident cells, which need recruitment from

extracerebral circulatory vessels. Normal brain tissue is lowly

infiltrated by monocytes/MDMs, while in GBM they infiltrate

highly. This phenomenon is observed in this article, too. But the

difference is that we find a significant increase of MDMs in aged

patients. It is previously reported that CCL2 is secreted abundantly by
B C

D E

F G

A

FIGURE 6

The subgroup of MDM-B but not microglia was the key to age-related OS reduction. (A) UMAP plot of four MDM subpopulations in primary GBM.
(B) Histogram showing the proportion of each MDM subgroup in total GBM cells from the integrated GBM scRNA seq data, grouped by adult (n=10) and
age (n=13). ns (no significance). (C) Stacked barplot showing macrophage subtype proportion of four MDM subpopulations. M1 and M2 means classical
macrophage classification by polarization. M0 means double-negative M1 and M2 features while M3 means double-positive M1 and M2 features. (D–G)
Kaplan–Meier curves demonstrating the difference of OS in TCGA GBM patients in adult and aged groups with high or low expression of C5AR1 (D),
CD14 (E), SLC11A1 (F), or CX3CR1 (G). All the quantification data are presented as mean ± SEM, two-tailed unpaired Student’s t-test. *(P< 0.05), **(P<
0.01), ***(P< 0.001), ns (no significance).
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GBM cells (35, 40). Zhu et al. has found that gliomas cell lines GPL261

and U87 can secret abundant CCL2 in vitro (41). Our research shows

a high expression of CCL2 in tumor cells and MDMs, and the

expression is much higher in aged group. This may induce a total

up-regulation of CCL2, and finally induce a hyper accumulation of

MDMs, as well as M2 differentiation. Current therapy targeting
Frontiers in Immunology 10
CCL2-CCR2 axis proves it is a promising target of GBM (42).

Whether targeting CCL2-CCR2 axis is only favorable of age-related

OS or highly MDM-infiltrated patients needs further exploration.

As for downstream of MDMs, current reports show that MDMs

can exert immunosuppressive function through the regulation of T

cells. Li et al. has discovered co-culture of naive T cell with glioma-
B C D

A

E

FIGURE 7

MDMs regulate age-related OS by affecting T cells and secreting growth factors. (A) Circos plot showing immune checkpoint interactions between T
cells and other cells. The outer ring represents the cell type and the inner ring represents the gene. The color of the line indicates the direction of
upregulation (adult vs aged) and the width of the line indicates the degree of upregulation, as shown in the legend. (B) Violin plot showing the expression
of each T cell marker in adult or aged T cells, which divided them into two groups by CD4 and CD8 expression. (C, D) Pie plots exhibiting the proportion
of CD4+ and CD8+ T cells in adult or aged T cells. (E) Kaplan–Meier curves demonstrating the difference of OS in TCGA GBM patients in Age<64 and
Age≥64 two groups with high or low expression of TNFSF4 and VEGFA. All the quantification data are presented as mean ± SEM, two-tailed unpaired
Student’s t-test. *(P< 0.05), ****(P< 0.0001).
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associated MDMs can induce a differentiation into TGFBI and IL-

10 secreted CD4+ Treg cell (43). Meanwhile, through highly

expressing PD-L1 and PD-L2,(PD-1 ligands) CD80 and CD86

(CTLA-4 ligands) and other immune checkpoint genes, MDMs

interact with CD8+ T cells and then suppress their cytotoxic

function (44). Our research reveals CTLA-4 and its ligand CD86

are much more highly expressed in aged T cells and MDMs. This

verifies aged MDMs are probably more suppressive for T cells. In

addition, many other checkpoint genes are found up-regulated in

aged T cells. Among them TNFSF4 is likely to be a new therapy

target to de-repress the negative regulation of T cells from MDMs.

After that, TGFBI secreted by MDMs can also target CD8+ T cells

directly, inhibiting its killing effect on tumor cells (45). This is

corresponded with the largely upregulated immune checkpoint

genes and high expression of TGFBI in aged MDMs in our study.

Therefore, detecting the expression of these genes for targeted

therapy may be able to better treat of GBM.
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15. Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S, Patiño-Garcıá A, Dobbs J,
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