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Manual cell selection in single
cell transcriptomics using
scSELpy supports the analysis
of immune cell subsets

Mark Dedden1, Maximilian Wiendl1, Tanja M. Müller1,2, Markus
F. Neurath1,2 and Sebastian Zundler1,2*

1Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany, 2Deutsches Zentrum Immuntherapie (DZI), University
Hospital Erlangen, Erlangen, Germany
Introduction: Single cell RNA sequencing plays an increasing and indispensable

role in immunological research such as in the field of inflammatory bowel

diseases (IBD). Professional pipelines are complex, but tools for the manual

selection and further downstream analysis of single cell populations are missing

so far.

Methods: We developed a tool called scSELpy, which can easily be integrated

into Scanpy-based pipelines, allowing the manual selection of cells on single cell

transcriptomic datasets by drawing polygons on various data representations.

The tool further supports the downstream analysis of the selected cells and the

plotting of results.

Results: Taking advantage of two previously published single cell RNA

sequencing datasets we show that this tool is useful for the positive and

negative selection of T cell subsets implicated in IBD beyond standard

clustering. We further demonstrate the feasibility for subphenotyping T cell

subsets and use scSELpy to corroborate earlier conclusions drawn from the

dataset. Moreover, we also show its usefulness in the context of T cell receptor

sequencing.

Discussion: Collectively, scSELpy is a promising additive tool fulfilling a so far

unmet need in the field of single cell transcriptomic analysis that might support

future immunological research.

KEYWORDS

single cell RNA sequencing, transcriptomics, chronic inflammation, inflammatory bowel
disease, gut homing
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Introduction

Progress in life sciences has led to deep insights into

physiological and pathological processes in recent years. However,

in turn, this also resulted in more and more sophisticated problems

to be further addressed. In particular, this concerns the

inconceivable complexity of immunological processes that

research has discovered and now tries to understand in even

greater detail.

One example are immune-mediated inflammatory disorders

(IMIDs) (1) such as the inflammatory bowel diseases (IBD)

ulcerative colitis (UC) and Crohn’s disease (CD) characterized by

relapsing-remitting chronic inflammation of the gastrointestinal tract

(2, 3). While an important role of the immune system in the

pathogenesis of IBD had early been demonstrated (4), further

ground-breaking insights in fields such as genetics (5) have shaped

the current picture of multifactorial diseases driven by antigen

translocation from a dysbiotic luminal microenvironment over a

leaky epithelial barrier into the lamina propria of a

genetically susceptible individual (6). Here, dysregulated immune

responses are evoked and cause inflammation resulting in tissue

destruction and a vicious cycle of further host-environment

miscommunication (7). This also triggers the recruitment of

immune cells such as T lymphocytes from the peripheral blood

to the intestinal tissue, a process called gut homing that is specifically

regulated in the gut and involves molecules such as the chemokine

receptor CX3CR1 or the integrin a4b7 (8). This also contributes to

the expansion of diverse pro-inflammatory effector and effector

memory T cell subsets in the inflamed gut including T helper 1

(TH1) and T helper 17 (TH17) cells (9), while regulatory T cells

cannot sufficiently suppress these disease-driving cells (10).

Technological advances and also the introduction of novel

therapeutic approaches (11–13) into the clinics have led to

unprecedented insights into the regulation of aberrant immune

responses in chronic inflammation in general and IBD in particular.

In this context, the single cell RNA-sequencing (scRNA-seq)

technology has become a popular and indispensable technique for

interrogating the transcriptome on single cell level and for resolving

the heterogeneity of various subsets of adaptive and innate immune

cells involved in inflammatory networks in chronic inflammation

(14). Consistently, while the first single cell being sequenced was

reported in 2009 (15), more than 4000 Pubmed-indexed articles

published in 2021 mention single-cell sequencing.

To aid in the interpretation of these big data, many tools have

been written over the past years to support scRNA-seq analyses

(16). Two programs are the backbone for most of these analyses: the

Python library Scanpy (17) and the R package Seurat (18). To detect

communities of cells with similar features, unsupervised clustering

according to the Leiden or Louvain algorithms can easily be

integrated into Scanpy- or Seurat-based pipelines. However, these

approaches may sometimes be limited or time-consuming, when

the goal is to analyze a specific subset of cells that does not directly

match to the clusters identified.

We hypothesized that in these situations, manual selection of

cells on any two-dimensional representation of single cell
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sequencing data might be a helpful additive tool for exploring the

dataset. Although there are already some interactive single cell

analysis tools, which are very user-friendly and allow to manually

select cells by polygons without the need for much bioinformatics

knowledge (19, 20), these applications are limited, when it comes to

integrating other tools, changing analysis parameters or performing

sophisticated downstream analyses. On the other hand, despite a

huge variety of solutions for these advanced issues in Scanpy, there

is currently no easy way to integrate manual cell selection by

polygons in Scanpy-based pipelines. Collectively, there is an

unmet need for a tool facilitating not only manual cell selection

on single cell data, but also supporting downstream characterization

and analyses of the selected population, e.g. in terms of (differential)

gene expression, in Scanpy.

Thus, we aimed to close this gap and to simplify the analysis of

immune cell subsets in scRNA-seq analyses in the context of

chronic inflammation. To offer Scanpy users the ability

to annotate their cells of interest by means of manual

selection, we developed scSELpy (single cell SELection python).

In addition to selecting cells of interest by drawing polygons

around them, it supports further downstream analysis and the

generation of publication-ready plots. Our data show that

our tool is useful to analyze immune cell heterogeneity in IBD

in scRNA-seq beyond conventional clustering and might

therefore become an important application for future single cell

transcriptomic analyses.
Materials and methods

scSELpy

scSELpy was developed as a Scanpy extension and solely uses

libraries required by Scanpy such as matlibplot (21) and numpy

(22) (Table 1). It allows the scSELpy user to select cells by drawing

polygons on top of scatter plots or on either of the following

dimension-reduced representations: UMAP (23), TSNE (24), PCA

or other Scanpy-supported embeddings, limited to 2 dimensions.

The selected cells will be annotated according to the names given to

the drawn polygons that they are located within, separated by

comma. Subsequently, this cell annotation will be stored as

observations in the Anndata object (25). The coordinates of the

polygon itself will be stored as unstructured data. Polygons are

denominated as integers by default, converted to string. A scSELpy

function allows the user to easily convert the default names saved in

the annotations to custom names.

The invocation function of scSELpy mimics Scanpy’s plotting

function to make it easy for the user to switch between using Scanpy

and scSELpy. The scSELpy tool accepts all Scanpy parameters,

except for the “Layer” parameter and offers additional parameters

for fine tuning and re-plotting of polygons.

Upon invocation of scSELpy, it will determine if the user is

running Python in a shell or in a notebook environment. For

scSELpy to work on a notebook, it switches to an interactive

matplotlib plotting backend. After the cell selection has been
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conducted, it will switch back to the default matplotlib plotting

backend. On a Python shell such as ipython, a backend switch will

not be conducted.

Afterwards, scSELpy will call Scanpy to create a plot of the

specified embedding. While the plot is open, matplotlib’s function

“ginput” is called, which will catch the coordinates of all

mouseclicks on the plot. When the user is finished selecting the

coordinates of a single polygon, the coordinates are sent to the plot

function of matplotlib.pyplot, in order to draw the polygon on the

Scanpy generated plot. After all polygons are drawn, scSELpy will

switch back to a static backend if necessary. Subsequently it will call

Scanpy and Matplotlib again to generate a final image for output.

For each polygon the contains_points function of Matplotlib is

called, in order to determine which cells are located within which

polygon. This function tests if a given cell coordinate of the passed

embedding is located within the given polygon. The output are x

boolean lists, where x is the amount of drawn polygons. These

boolean lists are converted by scSELpy to a single list that contains,

which cell is located in which polygon. The list is assigned to an

observation in the anndata object, which is updated in place.

Additionally, scSELpy has a three functions for calculating the i)

percentage of cells in each cluster or region, ii) percentage of cells

expressing a given gene in each cluster or region, iii) transcripts per

million (TPM) of a given gene in each cluster or region (Table 2).

These functions can be used on any observation of the Anndata

object and is therefore not exclusive to scSELpy generated regions.
Frontiers in Immunology 03
Data analysis

We analyzed two scRNA-seq datasets in this manuscript, which

have been previously published under GSE162624 (26) and

GSM6346300. The data were preprocessed and normalized in the

same way as in the original study of GSE162624. The entire analysis

was conducted on Jupyter notebook v6.4.12. Cells were selected and

annotated using scSELpy. All plots were generated using Matplotlib,

Scanpy and scSELpy. All data imputations were conducted by

MAGIC (27). T cell receptor analyses were performed with

Scirpy (28).
Gene enrichment calculation

Assuming that one Unique Molecular Identifier (UMI)

represents one detected mRNA transcript, the transcripts per

million (TPM) for a given gene were calculated by dividing all

UMIs of this gene in a specific population by all UMIs in the same

population, multiplied by one million.

TPM = (
UMI count for given gene

Total UMI count
)*10

6

The enrichment for a given gene was calculated by dividing the

TPM of a gene within a specific population by the TPM withing all

cells outside that population.
TABLE 2 Supported read-outs for manual cell selections with scSELpy – example from Figure 2B.

Percentage of cells Percentage of cells expressing TPM of

CCR7 SELL CCR7 SELL

Selection 62.57 61.21 57.77 267.51 284.72

Other cells 37.43 19.38 25.19 61.81 107.08
TABLE 1 Version list.

Name Language Version scSELpy import

scselpy Python 1.0.0 –

scanpy Python 1.7.2 Yes

numpy Python 1.21.1 Yes

matplotlib Python 0.11.6 Yes

pandas Python 1.2.4 No

scipy Python 1.6.2 No

jupyter Python 6.4.12 No

rpy2 Python 3.4.5 No

scirpy Python 0.11.2 No

magic-impute Python 3.0.0 No

sklearn Python 1.0.2 No

scran R 1.14.6 No
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Enrichment =
TPM of all cells in specific population

TPM of all other cells outside of the population
Gaussian mixture model

Cells were divided into groups using a gaussian mixture model

with k-means as initializer based on the normalized mRNA-derived

UMI count of two marker genes. This was done in Python with

sklearn, using the GaussianMixture function from sklearn.mixture

and the Kmeans function from sklearn.cluster.
Availabilty of scSELpy

scSELpy is available for download at https://github.com/

MarkDedden/scSELpy together with installation instructions, the

data analysis pipeline and a link to the documentation, which

includes a tutorial.
Results

Single cell selection in Python

To overcome the problem that standard scRNA-seq analysis

pipelines, for example based on Scanpy, do not include tools to

support manual cell selection from scatter or dimension reduction

plots for further downstream analysis, we developed scSELpy as

detailed in the Methods section.
Positive selection with scSELpy

To explore and to demonstrate the functionality of scSELpy, we

reanalyzed data (GSE162624) from a previous study (26), where

CD3+CD4+CD45RO+a4+b7+ gut-homing memory T cells from the

peripheral human blood were purified by fluorescence-activated cell

sorting (FACS) and submitted to single cell transcriptomics.

Based on a UMAP expression plot for CX3CR1 generated by

Scanpy, we selected a region high in cells expressing CX3CR1

(Figures 1A–D). Indeed, a more than 90-fold increase in CX3CR1

TPM were detected in the selected cells compared to the non-

selected cells (Figure 1E, Table 3). Importantly, the region high in

CX3CR1 selected by the polygon gate was different from the clusters

generated by the Leiden community detection algorithm with a

resolution of 0.5 (Figure 1F) and the enrichment of CX3CR1

transcripts in the manual selection compared with non-selected

cells was higher than when comparing Leiden clusters with high vs.

low CX3CR1 expression (Figure 1G), where the enrichment was

only below 40-fold increase in CX3CR1 TPM. To investigate if

further unsupervised subclustering would lead to an enrichment

comparable to manual selection, we subclustered cluster 6

(Figure 1H) and calculated the enrichment for each subcluster.

Even when combining the three subclusters (6,0, 6,2, 6,4) with the
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highest enrichment, we obtained only a 50.74-fold increase in

CX3CR1 TPM. Collectively, these data suggested that in specific

scenarios, polygon gates drawn with scSELpy result in more specific

positive selection of cell populations enriched for a certain gene

than conventional clustering.
Negative selection with scSELpy

In a next step, we aimed to show that our application is also

useful for the negative selection of cells of interest. Specifically, we

sought to analyze T cell subsets relevant in the inflamed mucosa in

IBD. Thus, since the dataset comprised peripheral blood memory T

cells expressing the gut-homing marker a4b7, we aimed to identify

T cells homing to the lamina propria by excluding central memory

T (TCM) cells, which home to the gut-associated lymphoid tissue

(29). To this end, we used polygon gates to mark regions high in

expression of the TCM markers CCR7 and SELL (CD62L) on

UMAP plots (Figure 2A). The overlay of regions, where both

genes were expressed in high levels was removed to obtain the

cells equipped for access to the inflamed lamina propria (Figure 2B)

as evident by a low prevalence of cells expressing CCR7 and/or

SELL and low expression of these genes in the retained region

(Table 2). The remaining cells were further re-analyzed from raw

data, creating a new UMAP plot (Figure 2C).

To confirm that the selected region was also enriched for cells

co-expressing CCR7 and SELL, we employed scSELpy on scatter

plots to “gate” for cells highly expressing CCR7 and SELL

(CCR7+SELL+), highly expressing CCR7 or SELL (CCR7+SELL-,

CCR7-SELL+) and expressing CCR7 and SELL at low levels or not

at all (CCR7-SELL-; Figure 2D). Subsequently, we depicted the

presence of the cells from these four categories in density plots

(Figure 2E). Here, the vast majority of CCR7+SELL+ cells were

located in the removed region, while most of the CCR7-SELL- cells

plotted to the region that was kept, indicating that our tool had

helped to correctly eliminate TCM cells.

As scRNA-seq suffers from drop-out events, where mRNA-

transcripts that are present in a cell might not be detected, we

employed data imputation using MAGIC (27) to verify that the

selections made with scSELpy are not excluding cells falsely

negative for CCR7 and/or SELL. We overlayed the polygons of

Figure 2A on the imputed data (Figure S1A) and further depicted

the imputed data in a scatter plot and density plots (Figures S1B, C).

Indeed, the enrichment of CCR7+SELL+ in the overlap of the

polygons was maintained, supporting the notion that manual

selections predominantly include false negative cells (which is

intended), but do not exclude them to a relevant degree.
scSELpy allows for subphenotyping
of T cells

To confirm that the cells remaining after negative selection

(Figure 2C) included tissue-homing TEM cells relevant in IBD and

to characterize them, we explored the expression of TBX21 and

RORC as key transcription factors for TH1 and TH17 cells,
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respectively (30, 31). TBX21 and RORC were expressed in

overlapping regions that were manually selected by polygons

(Figure 3A) resulting in the four populations of TBX21-RORC-,

TBX21+RORC- , TBX21-RORC+ and TBX21+RORC+ cells

(Figure 3B). Interestingly, this matched well to Leiden clustering

at a resolution of 0.5 (Figure 3C). Again, data imputation with

MAGIC retrospectively supported the chosen manual selection

(Figure S1D).

To validate enriched expression of TBX21 and RORC in the

selected populations, we calculated the TPM of the two genes.

Indeed, mRNA expression of both transcription factors was
Frontiers in Immunology 05
substantially increased in the selected cell clusters (Figure 3D).

This was consistent with the notion that TBX21+RORC-, TBX21-

RORC+ and TBX21+RORC+ cells corresponded to TH1, TH17 and

TH1/17 cells (a subset that has been described in the gut of patients

with CD (32)), respectively. Thus, we further aimed to corroborate

successful T helper cell subset identification by our tool and

analyzed chemokine receptor expression in these three datasets.

As expected based on previous reports (33), TBX21+RORC- cells

were CXCR3high, but CCR4low and CCR6low, TBX21-RORC+ cells

CCR6high and CCR4high, but CXCR3low and TBX21+RORC+ cells

were CXCR3high and CCR6high, but CCR4low (Figure 3E).
A B

D

E F

G H

C

FIGURE 1

Positive selection of cell subsets on a Scanpy-generated UMAP plot with the scSELpy tool. (A) UMAP expression plot of CX3CR1. Regions with high
CX3CR1 expression were manually selected using scSELpy. (B–D) The cells located in the selected region can be highlighted (B), removed (C), or
isolated (D) in downstream analysis. (E) Barplot with CX3CR1 transcripts per million transcripts (TPM) for the selected cells versus all other cells.
(F) Leiden clustering of the dataset with a resolution of 0.5. (G) Barplot with CX3CR1 TPM for cluster 6 and all the other clusters together.
(H) Subclustering of the leiden cluster 6 from (E).
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Moreover, to further compare the capability of scSELpy to select

cells enriched for a certain gene with another technique that is

independent of spatially represented clusters or regions, we applied

a Gaussian mixture model clustering with K-means as initializer for

TBX21 and RORC on the cells obtained in Figure 2C. However, in

this case, the algorithm was not able to identify a specific regions

enriched for TBX21 and/or RORC (Figure S2A), strongly

contradicting the impression supported by Leiden clustering and

scSELpy selection that T helper cell populations cluster in defined

regions. Thus, this scenario identified another situation, where

scSELpy was better suited than established alternative solutions.

Collectively, these data showed that our tool had indeed

identified TEM cells and was also able to further sub-cluster well-

defined T helper cell subsets, which are relevant in IBD.
scSELpy analysis confirms the phenotype
of vedolizumab-resistant regulatory T cells

In a next step, we wanted to find out, what kind of cells were

represented in the TBX21-RORC- cluster. Since, regulatory T (Treg)

cells are another important gut-homing T cell population and play an

important role in the resolution of intestinal inflammation (8, 10), we

explored the expression of the key Treg transcription factor FOXP3.

Not very surprising, we detected markedly enriched FOXP3

expression and manually selected the subset for downstream

analysis (Figure 4A). In further support of the Treg nature of these

cells, several other Treg-associated molecules were expressed to

significantly higher levels than in the other T cell subsets (Figure 4B).

Since the dataset consisted of sorted cells binding or not binding

the anti-a4b7 integrin antibody vedolizumab, which is used for

clinical therapy of IBD (34, 35), and we had previously shown in

that dataset that a subset of Tregs is enriched for vedolizumab-

resistant cells (26), we now explored whether scSELpy-based analysis

comes to the same conclusion. Thus, we depicted vedolizumab

binding cells and vedolizumab non-binding cells in our Treg

population. Consistent with our previous analysis, a majority of

Tregs did not bind vedolizumab (Figure 4C). Moreover, ITGB1 and

PI16, two genes that had been found to mark those vedolizumab-
Frontiers in Immunology 06
resistant Tregs were clearly enriched in the Treg fraction that did not

bind vedolizumab (Figure 4D, E). Taken together, these data showed

that scSELpy is able to reproduce earlier findings and is, thus, a valid

tool for advanced analyses of single cell transcriptomics in general

and in the context of IBD in particular.
scSELpy helps analyzing protein expression
and TCR sequencing data

To demonstrate that scSELpy is able to analyze protein

expression identified by antibody-oligo capture, we analyzed the

dataset GSM6346300 with scSELpy (36). In that dataset, PBMCs

from four patients were isolated from the blood and sequenced on a

10x Chromium controller. This included V(D)J single-cell T cell

receptor (TCR) sequencing and Feature Barcoding to capture the

protein expression of CD4, CD8 and CD45RA. We loaded the TCR

data using Scirpy, merged it with the scRNA-seq dataset and

removed all cells that had no TCR detected using the “has_ir”

observation created by Scirpy. We proceeded under the assumption

that the remaining subset consists of only T cells. We used Leiden

clustering with a resolution of 0.5 to assign clusters on a two

dimensional UMAP plot (Figure 5A).

Using scSELpy, we drew a gate for CD8+ cells and a gate for

CD4+ cells on a scatter plot of raw CD8 and CD4 antibody

interaction-derived UMI counts with a logaritmic axis

(Figure 5B). We highlighted the CD3D (Figure 5B), CD8A, CD8B

and CD4 mRNA-dervied UMI count (Figure S2B) to show that the

mRNA expression of CD8 and CD4 is enriched in their respective

gates. The CD4+CD8-, CD4-CD8+, CD4+CD8+ and CD4-CD8-

populations were now mapped back to the initial UMAP plot

(Figure 5C, Figure S2C). Interestingly, in this case, these

populations were well aligned with those identified by the

gaussian mixture model clustering with K-means as initializer

(Figure S2D). To demonstrate that this is a feasible starting point

for further downstream analyses and that scSELpy can also assist in

understanding TCR sequencing data, we manually selected a region

of cluster 5 enriched for CD8+ T cells with scSELpy (Figure 5C).

Building on the Scanpy-based library for T cell receptor-sequencing

data analysis, Scirpy, we now plotted all other cells sharing a

clonotype with any of the cells in this area and found that these

cells mainly map to the clusters 1, 3, 4 and 8 (Figure 5D).

To further demonstrate the potential to use scSELpy for

analyzing combined TCR and scRNA sequencing data, we used

Scirpy’s repertoire_overlap function to plot the T cell repertoire

overlap between the CD4+CD8- gate and the CD4+CD8+ cells.

Using scSELpy on this plot, we selected clonotypes that are

present in cells of both gates (Figure 5E) and plotted them in the

CD8 versus CD4 scatterplot (Figure 5F), keeping the gates as set in

Figure 5B, and in the UMAP plot (Figure 5G) as potential starting

points for further selection and analysis procedures.

Collectively, these approaches demonstrated that scSELpy can

be used as a convenient and flexible tool helping in the exploration

and analysis of multi-dimensional single cell sequencing data.
TABLE 3 Enrichment of CX3CR1.

Cluster Enrichment [fold]

6 38.3

6,0 45.3

6,1 1.2

6,2 13.7

6,3 4.3

6,4 16.6

6,0 + 6,2 + 6,4 50.7

scSELpy selection 91.1
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1027346
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dedden et al. 10.3389/fimmu.2023.1027346
Discussion

Single cell RNA sequencing has revolutionized immunological

research and has helped to substantially increase the resolution of

immune cell phenotyping (14). However, this comes at the cost of

complex in silico analyses to be performed.

Here, we introduce a new tool called scSELpy designed to enable

the manual selection of cells analyzed by single cell transcriptomics

in scatter plots or dimension reduction representations to allow

further downstream analysis. As such, it is inspired by the “gating”
Frontiers in Immunology 07
used in multicolor flow cytometry as the most widely used

technique to interrogate protein expression on single cell level

(37). In flow cytometry, such gating serves to select certain cell

populations in a hierarchical manner and to determine the

abundance and phenotype of cell subsets in this way (38).

Manual cell selection in scatter plots visualizing the expression

of two different genes per cell as offered by scSELpy comes most

closely to this function. However, the high number of parameters

analyzed by single cell RNA sequencing also imposes the necessity

to include dimension reduction techniques to appropriately
A

B

D E

C

FIGURE 2

Selection and removal of central memory T cells from the dataset using scSELpy to obtain effector memory T cells. (A) Selection of regions enriched
for cells expressing CCR7 and SELL (CD62L, L-Selectin) on UMAP plots. (B) Identification and removal of the cells located in both the CCR7 and SELL
polygon as selected in A (green). (C) Re-analysis of the remaining cells from raw data. Normalization and UMAP dimension reduction is performed
anew. (D) Scatter plot of all cells from the dataset with normalized CCR7 and SELL expression on the x-axis and y-axis, respectively. On this scatter
plot, scSELpy was employed to categorize cells with or without expression of CCR7 and/or SELL. (E) UMAP density plots highlighting the cells
belonging to the categories created in (D). The parameter “vmin” to control the lower limit in the color scale was set to 0.05.
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visualize and analyze relationships between the single cells (23, 24).

Consistently, scSELpy also offers manual cell selection on

dimension-reduced UMAP or t-SNE plots. Yet, it needs to be

considered that in this case “gating” will not result in the binary

selection of cells with and without expression of one or more genes

(or high or low expression), but only in the selection of a population

enriched in cells expressing those genes. This population will also

include closely related cells, in which expression of the gene has not

been detected, which might be due to absent expression or
Frontiers in Immunology 08
expression below the detection threshold of single cell RNA

sequencing (39). Our findings with imputed data further support

this notion, since the polygons drawn before data imputation

captured the majority of false-negative cells and missed only few

of them. Taken together, these aspects emphasize that, while similar

in handling, “gating” on scRNA-seq data, is clearly different from

flow cytometry gating.

Importantly, scSELpy also supports the analysis of single cell

data including TCR sequencing or sequencing of surface proteins
A

B

D

E

C

FIGURE 3

Identification and analysis of effector memory T cell subsets with scSELpy. (A) Selection of regions enriched in cells expressing the T cell
transcription factors TBX21 or RORC among effector memory T cells in the cells obtained in Figure 2C. (B) UMAP plot with cells annotated by
scSELpy based on the selections made in (A). (C) Clustering of the cells based on the leiden algorithm with a resolution of 0.5. (D) Barplot showing
the TBX21 and RORC transcripts per million transcripts (TPM) for the populations identified in (B). (E) CXCR3, CCR6 and CCR4 TPM in the indicated
regions.
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detected by antibody-oligo reaction. Thus, in the specific case of

protein expression analysis, scSELpy can actually be used for binary

gating of surface expression markers very similar to flow cytometry.

With regard to TCR analyses, we show that scSELpy can identify

and plot clonotypes in various representations and might thus help

to explore their role and function. Again, this is not an exclusive

feature of scSELpy, since for instance clonotype overlap in different

cell types can also be identified using Scirpy’s clonotype_imbalance

function. Thus, it is important to understand scSELpy as a

complementary tool that can be used together with other

important approaches to reach a deeper understanding of the data.
Frontiers in Immunology 09
Several publicly available applications such as the Loup Browser

offered by 10x Genomics, CELLxGENE, the UCSC Cell Browser

(19, 20) or Shiny-based applications for scRNA-seq such as

SCHNAPPs (40) are graphical user interface platforms for single

cell analysis, of which the first three mentioned offer similar tools

for manual cell selection. However, while those applications are easy

to handle also for researchers without training in bioinformatics, a

limitation of them is that further downstream analyses are not

supported. Thus, scSELpy has been designed for use on the Scanpy

platform, one of the standard applications used for the analysis of

single cell RNA-seq data (17) and integrates a workflow to enable
A B

D

E

C

FIGURE 4

Selection and analysis of regulatory T cells with scSELpy. (A) Selection of the region enriched for FOXP3 expression, using the UMAP representation
presented in Figure 2C. The selections for RORC and TBX21 from Figure 3A are marked with dotted lines. (B) Violin plots of the expression of eight
genes associated with Tregs in the four regions determined based on TBX21 and RORC expression. (C) Depiction of cells binding vedolizumab or
not as determined by FACS sorting prior to sequencing on the population selected in (A). (D) Expression of ITGB1 and PI16 in the cell population
selected in (A). (E) Stacked violin plot of PI16 and ITGB1 expression for Vedolizumab-binding cells and cells that do not bind Vedolizumab.
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easy downstream phenotyping of selected cells such as further sub-

clustering, re-plotting or differential expression analysis.

A standard technique to identify specific cell populations on single

cell transcriptomic data is clustering according to the Leiden or

Louvain algorithm (41). Depending on the resolution used, these
Frontiers in Immunology 10
algorithms dissect the overall cell population into several clusters,

which can subsequently be extracted and further analyzed. It is

important to mention that scSELpy is not at all meant to replace

such clustering-based identification and selection of cell populations,

but as an additional tool that might be helpful in certain situations.
A B

D

E F

G

C

FIGURE 5

Applying scSELpy on T cell receptor (TCR) sequencing and antibody capture data. The single cell RNA sequencing data of PBMCs in blood from
patients treated with Immune checkpoint inhibitors was retrieved from GSM6346300. Only cells, for which a TCR is detected are used in these plots.
(A) UMAP plot of the cells; clusters are defined by leiden with a resolution of 0.5. (B) Scatter plot with the detected CD4 and CD8 antibody UMIs on
the x-axis and y-axis, respectively. Gates set with scSELpy split the data up into CD4+CD8+ double positive cells, single positive CD4+CD8- cells,
single positive CD4-CD8+ cells and CD4-CD8- double negative cells. The CD3D mRNA derived UMI count is highlighted in red. (C) Visualization of
the four groups defined in (A) on the UMAP plot. A group of cells is selected with scSELpy. (D) UMAP representation of T cells selected in (C)
(magenta) together with all other T cells also expressing one of the TCRs present in the selection (blue). Cells colored in grey do not have a
clonotype that matches a T cell in the selected region. (E) TCR repertoire of CD4+CD8- cells plotted against TCR repertoire of CD4+CD8+ cells for
each clone ID using Scirpy. Clone IDs that are present in both cell populations were selected using scSELpy. (F) Mapping of the cells selected in
(E) on the scatter plot of CD4 and CD8 antibody UMIs with the gates kept as in (B). (G) UMAP representation of the T cells selected in (E).
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One key difference to scSELpy is that Leiden or Louvain

clustering are unsupervised and thus unbiased. In consequence,

one might mention that scSELpy unnecessarily introduces bias into

single cell RNA sequencing analysis by allowing to select cells based

on one or more deliberately chosen genes. While this has to been

accepted as a potential limitation and to be kept in mind during

analysis, it is also important to note that conventional clustering

might not always perfectly capture biological processes that are not

dominating the phenotype of cell subsets or are shared between

subsets. For example, this might be processes of cell migration such

as gut homing. Consistently, our data show that manual cell

selection by scSELpy helps to increase the enrichment of specific

gene expression in the selected populations. This might be of

particular value in a time, where the re-analysis of previously

published datasets from a novel perspective is becoming more

and more important (42).

It is essential to underscore that in many situations (e.g. as

documented in Figure 3C or Figure S2D) there exist conventional

alternatives such as Leiden or Louvain clustering or k means

clustering that lead to similar results as manual cell selection with

scSELpy. Thus, in these situations, the benefits (fast, easy) and the

limitations (subjectivity) associated with the use of scSELpy must be

carefully weighed. However, as we show (Figure 1E-H, Figure S2A),

there are also scenarios, where scSELpy results in superior selection

of enriched populations. Similarly, one can also consider situations,

where the use of scSELpy is limited by very rare expression of a gene

or equal distribution over the dimensionality-reduced space and

alternative ways of cell selection will be more helpful. In

consequence, we think that scSELpy is a valuable part of the

toolbox in state-of-the-art single cell analysis that should

especially be used in situations, where conventional community

detection or cell type identification are not possible, sub-optimal or

very time-consuming or where the role of a gene regardless of the

association to a specific (sub-)community is explored.

We demonstrate the feasibility of our approach in a dataset

characterizing gut-homing memory T cells from the peripheral

blood, a cell population that is of particular interest for the

pathogenesis of IBD and has become a therapeutic target by

blocking its gut homing through the anti-a4b7 integrin antibody

vedolizumab (7). In addition to proving the suitability of scSELpy

for appropriate positive and negative selection strategies, we also

show that our tool is helpful in supporting the analysis of cell

populations such as TH1, TH17 or TH1/17 cells, all of which have

been demonstrated to crucially implicated in IBD (30–32). Thus,

scSELpy might help to obtain further insights into immune cell

regulation in IBD and other chronic inflammatory diseases in the

future. Moreover, in regulatory T cells our tool was able reproduce

the earlier finding that a4b7-expressing regulatory T cells are

enriched in cells “resistant” to vedolizumab and that b1 integrin

and PI16 are highly expressed in those cells (26). It might therefore

also be employed for future translational studies in the field of IBD

aiming at dissecting the mechanisms of state-of-the art treatment

options at higher resolution.

Taken together, to the best of our knowledge, scSELpy is the

first tool that can offer Scanpy-based manual cell selection. Based on

the data presented, we project that, when used intentionally, it
Frontiers in Immunology 11
might broadly support and facilitate single cell transcriptomic

analyses for many researchers in the field of immunology in

general and in IBD in special.
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SUPPLEMENTARY FIGURE 1

Visualization of how the previously set selections in Figures 2, 3 and look with
imputed data. (A) The same UMAP plot and selection as in Figure 2D, where
Frontiers in Immunology 12
now the imputed data is visualized. (B) Same scatter plot as in Figure 2D,
where now the imputed data is used. (C) UMAP density plots highlighting the

cells belonging to the categories created in (B). The parameter “vmin” to

control the lower limit in the color scale was set to 0.05. (D) The same UMAP
plot and selection as in Figure 3A visualizing the imputed data. The parameter

“vmax” to control the upper limit in the color scale was set to 0.12.

SUPPLEMENTARY FIGURE 2

(A) Guassian mixture model of RORC and TBX21 mRNA-derived UMI count

with the data from Figure 3, plotted on the same UMAP plot. (B) The same plot
as Figure 5A, with the modification that the CD8A (left), CD8B (middle) and

CD4 (right) mRNA derived UMI count is highlighted as indicated. (C) UMAP

plot with CD8 (right) and CD4 (left) antibody UMI counts highlighted in red.
(D)Guassianmixturemodel ofCD4 andCD8AmRNA-derived UMI count with

the data from Figure 5B, plotted on the same UMAP plot.
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