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Technology, Shenzhen, China
Background: Sjögren’s syndrome (SS) is a systemic autoimmune disease that

affects about 0.04-0.1% of the general population. SS diagnosis depends on

symptoms, clinical signs, autoimmune serology, and even invasive

histopathological examination. This study explored biomarkers for SS diagnosis.

Methods: We downloaded three datasets of SS patients’ and healthy pepole’s

whole blood (GSE51092, GSE66795, and GSE140161) from the Gene Expression

Omnibus (GEO) database. We used machine learning algorithm to mine possible

diagnostic biomarkers for SS patients. Additionally, we assessed the biomarkers’

diagnostic value using the receiver operating characteristic (ROC) curve.

Moreover, we confirmed the expression of the biomarkers through the reverse

transcription quantitative polymerase chain reaction (RT-qPCR) using our own

Chinese cohort. Eventually, the proportions of 22 immune cells in SS patients

were calculated by CIBERSORT, and connections between the expression of the

biomarkers and immune cell ratios were studied.

Results: We obtained 43 DEGs that were mainly involved in immune-related

pathways. Next, 11 candidate biomarkers were selected and validated by the

validation cohort data set. Besides, the area under curves (AUC) of XAF1, STAT1,

IFI27, HES4, TTC21A, and OTOF in the discovery and validation datasets were 0.903

and 0.877, respectively. Subsequently, eight genes, including HES4, IFI27, LY6E,

OTOF, STAT1, TTC21A, XAF1, and ZCCHC2,were selected as prospective biomarkers
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and verified by RT-qPCR. Finally, we revealed the most relevant immune cells with

the expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2.

Conclusion: In this paper, we identified seven key biomarkers that have potential

value for diagnosing Chinese SS patients.
KEYWORDS

Sjogren ’s Syndrome, machine learning, potential biomarker, immune cell
disturbance, CIBERSORT
1 Introduction

Sjögren’s syndrome (SS) is a systemic autoimmune disease that

causes inflammation in exocrine glands, such as salivary and

lacrimal glands (1, 2). It may also induce fatigue, musculoskeletal

discomfort, disturbance of liver, lung, kidney, nervous system, and

lymphoma (3, 4). Studies imply that genetic and environmental

variables may be important, even if the pathophysiology of SS is yet

unknown (5). The prevalence of SS in different countries is 0.03%-

5%, and in China, the prevalence of SS is about 0.33%-0.77% (6, 7).

The standard mortality ratio (SMR) of patients with SS ranged from

1.61 to 4.66 in reports from other countries (8–10), and in a

previous report, the SMR of patients with SS in China was 3.63

(11). According to the 2016 American College of Rheumatology -

European League Against Rheumatism (ACR-EULAR)

classification criteria, patients who satisfy the criteria may

undergo an invasive procedure—labial gland biopsy (12), which is

an arduous and time-consuming invasive examination. In order to

reduce the patients’ pain, it is necessary to search for novel non-

invasive biomarkers for SS. Taking into account ethnic

heterogeneity (13), we would validate the diagnostic value of

biomarkers in the Chinese population.

Currently, the diagnosis of SS is a combination of symptoms,

clinical signs, histopathology, and autoimmune serology (14, 15).

Common diagnostic markers of SS include anti-Ro/SSA and anti-

La/SSB antibodies, antinuclear antibodies, and rheumatoid factor,

etc. (16, 17). Previous studies have provided a number of new

putative serum, salivary and histological biomarkers, such as

CXCL13, cathepsin S, IL-4, IL-5, and some type-I and type-II

IFN-inducible genes (16, 17). Nevertheless, there is no single

clinical, laboratory, pathological, or radiological characteristic that

can be considered the “gold standard” for diagnosing SS (18).

Researchers are still looking for new disease biomarkers in order

to develop simpler, faster methods of diagnosing SS.

As is well known, the immunopathogenesis of SS involves the

activation of T and B lymphocytes (19, 20). Many studies reported

that dendritic cells, T-helper cells, natural killer (NK) cells showed

changes during the development of SS (18, 19, 21). Finding

disordered cell subsets associated with pathogenesis can help us

better understand the pathogenesis of SS and develop an

appropriate therapeutic strategy.
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Herein, we downloaded three expression matrix files of SS

patients’ and healthy people’s blood samples from the Gene

Expression Omnibus (GEO) database. Then, we merged the

three expression matrix files into one metadata, and took

about 80% of the samples as the discovery cohort (nSS = 522,

nnormal = 46). Next, we identified the differentially expressed

genes (DEGs) between SS and controls. Subsequently, we

screened the diagnostic biomarkers of SS through three

machine learning algorithms. Following that, we validated the

expression of the identified diagnostic biomarkers by using the

validation data (about 20% of the metadata cohort, nSS = 150,

nnormal = 15), and investigated the logistic regression model by

the receiver operating characteristic (ROC) curve. Beyond that,

we used our own Chinese cohort (nSS = 14, nnormal = 10) to

val idate the expression of the candidate biomarkers .

Furthermore, we applied the algorithm of CIBERSORT to

calculate the ratio of 22 immune cells in blood samples of SS

patients and healthy people. Finally, we investigated the

connection between the expression of the identified biomarkers

and the ratios of immune cells in blood samples of SS patients. A

workflow chart summarizing our work is shown in Figure 1.
2 Materials and methods

2.1 GEO datasets download and
data processing

Three expression matrix files (GSE51092, GSE66795, and

GSE140161) of SS blood samples were obtained from GEO

database. The GSE51092 data set contained 190 SS and 32

healthy controls, the GSE66795 data set contained 131 SS and

29 healthy controls, and the GSE140161 data set contained 351

SS. After batch corrections using the R package “SVA”, the three

files GSE51092, GSE66795, and GSE140161 were performed

principal component analysis (PCA), which contained the SS

patients and healthy controls. Then, the three files were combined

into a metadata cohort (nSS = 672, nnormal = 61), in which about

80% of the samples were used as the discovery data set (nSS = 522,

nnormal = 46) and the rest as the verification data set (nSS = 150,

nnormal = 15).
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2.2 Identification and functional
enrichment analysis of DEGs

The DEGs were identified from the discovery data set using the R

package “limma”, and displayed with a volcano plot. The heat map was

drawn using the R package to show the expression of DEGs. Then, gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway were conducted to analyze the functions of the

DEGs in the DAVID database online. The gene set enrichment analysis

(GSEA) was used to pick the most important pathway between SS and

controls. The gene set “c2.cp.kegg.v7.0.symbols.gmt”was selected as the

reference gene set from the Molecular Signatures Database (MSigDB).
2.3 Screening of the candidate
diagnostic biomarkers

The least absolute shrinkage and selection operator (LASSO)

logistic regression, support vector machine-recursive feature
Frontiers in Immunology 03
elimination (SVM-RFE), and random forest (RF) were used to

screen the potential SS diagnostic markers. To prevent overfitting

the data set, the LASSO analysis was performed using the R package

“glmnet”, and based on support vector machine, the SVM-RFE was

used to find the optimum variables. The candidate diagnostic

markers selected by the three algorithms were overlapped, and

the resulting intersection genes were further studied. Then, the

candidate diagnostic biomarkers’ expressions were verified in the

verification data set.
2.4 The ROC curve for diagnostic
capability of biomarkers in SS

To investigate the diagnostic capability of the candidate

markers, ROC curves were plotted according to the discovery

data set and the validation data set. Combined ROC curves were

also produced to assess the combined diagnostic utility of

candidate markers.
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FIGURE 1

Workflow of the study.
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2.5 Sample collection and reverse
transcription quantitative polymerase chain
reaction validation

In total, the whole blood of 14 SS samples and 10 control

samples was obtained from Shenzhen People’s Hospital. All

participants volunteered to enter this research. Patients who were

included in the study were confirmed SS patients according to ACR-

EULAR classification criteria, and the clinical manifestations of

them were sorted out in Table 1. The age of the patients ranged

from 29 to 66, and the control group ranged from 26 to 37. The

anti-SSA antibodies were positive in 92.9% of the patients, and the

anti-SSB antibodies were positive in 57.1% of the patients. 78.6%

and 85.7% of the patients had xerostomia and xerophthalmia,

respectively. Five patients met the criteria of Schirer’s test ≤

5mm/5 min in at least 1 eye. This study was approved by the

Ethics Committee of Shenzhen People’s Hospital (LL-KY-2019514).

When the whole blood samples were obtained, the peripheral

blood mononuclear cells (PBMCs) were collected after being diluted

with an equal volume of phosphate-buffered saline (PBS) and Ficoll

and centrifuged at 2000 rpm for 20 min, and the red blood cell was

lysed with red blood cell lysis buffer (Beyotime, C3702). Finally, the

PBMCs were mixed with 1mL Trizol (Beyotime, R0016) and stored

at -80 °C.

According to the manufacturer’s instructions, total RNA was

extracted from PBMCs. The transScript all-in-one first-strand

cDNA synthesis superMix for qPCR (One-step gDNA removal)

kit (TransGen Biotech, AT341-02) was utilized for the reverse

transcription of mRNA. Following that, the RT-qPCR tests were

undertaken by the PerfectStart Green qPCR SuperMix kit

(TransGen Biotech, AQ601-02). The list of primers is showed in

Table 2. All of the primers used in our study were synthesized by the

Sangon Biotech Company. The housekeeping gene GAPDH was

used as an internal reference gene. The relative expressions of genes

were analyzed by the 2-DDCT method. A combined ROC curve was

made to predict the combined diagnostic capacity of

the biomarkers.
Frontiers in Immunology 04
After the RT-qPCR validation, SLE biomarkers screened from

the public database that we have previously published were

compared, in order to further confirm the diagnostic value and

specificity of the diagnostic markers we screened in SS patients.
2.6 Immune cell composition and immune
cell analysis of diagnostic markers

The CIBERSORT algorithm was used for the immune cell

analysis of the expression matrix of SS patients and healthy

people. We edited an R language script to run CIBERSORT.

CIBERSORT is used to estimate the cell composition of a single

sample. The script reads the mixed gene expression data to be

analyzed from the file system, normalizes and fits the mixed

expression data using support vector machine, and then outputs

the estimated relative content of each cell subset in the mixture after

loading the necessary packages and functions. The script includes

three functions: CoreAlg, doPerm, and CIBERSORT. The CoreAlg

function defines the core algorithm, which accepts one cell type

gene expression data and one mixed gene expression data, uses the

support vector machine model to train and normalize the mixed

data, and returns the relative content of each cell subset based on

the model in the mixed cells. The main function is CIBERSORT,

which accepts two file locations (unit-type gene expression data and

mixed gene expression data), the number of permutations, and a

Boolean value indicating whether quantization normalization is

applied. The R package “vioplot” was adapted to visualize the ratios

of 22 immune cells in SS and control groups (The ratio of cell

represented the proportion of the number of a specific subtype

immune cells in the blood cells of SS patients or healthy controls).

The “corrplot” package was used to draw the heat map, which

presented the quantitative correlation between different immune

cells in SS patients. Additionally, the R package “ggplot2” was

applied to investigate the relationship between the expression of the

diagnostic markers and the ratios of immune cells using the

Pearson method.
TABLE 1 The clinical manifestations of the 14 SS patients and 10 healthy people in our study.

SS (n=14) Healthy people (n=10)

Sex, Female(percentage) 14 (100%) 9 (90%)

Age (year), median (range) 46 (29-66) 31 (26-37)

Xerostomia (percentage) 11 (78.6%) NA

Xerophthalmia (percentage) 12 (85.7%) NA

Anti-SSA (percentage) 13 (92.9%) NA

Anti-SSB (percentage) 8 (57.1%) NA

MSG biopsy (percentage) 3 (21.4%) NA

Schirmer’s test ≤ 5mm/5 min in at least 1 eye (percentage) 5 (35.7%) NA

IgG (g/L), median (range) 18 (12.36-26.06) NA

RF (IU/ml), median (range) 39 (8.4-122.1) NA
SS, Sjögren’s syndrome; MSG, Minor salivary gland; RF, Rheumatoid factor; NA, not applicable.
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3 Results

3.1 PCA and DEGs screening

After batch corrections using the R package “SVA”, we

performed PCA on three datasets (GSE51092, GSE66795, and

GSE140161) from GEO (Figure 2A). The result showed that each

sample of the data set presented a uniform distribution, indicating

that the normalization was performed appropriately. Then, we

combined these three data sets into one data set (672 SS patients

and 61 healthy people), and took about 80% of the samples from

this data set as the discovery set. As a consequence, we obtained a

total of 43 DEGs (Figure 2B) by comparing SS patients with healthy

people (P < 0.0001, fold change > 1.5), and showed the expression of

the DEGs in each healthy person and SS patient by a heat map

(Supplementary Figure S1). Then, we discovered enrichment of

response to type I interferon signaling pathway, innate immune

response, and Epstein-Barr virus infection through the enrichment

analysis of the DEGs (Figures 2C–F). Moreover, GSEA analysis

revealed that pathways including cytoplasmic DNA sensing

pathway, JAK STAT signaling pathway, proteasome, RIG-I-like

receptor signaling pathway, and systemic lupus erythematosus

were enriched in SS group compared to healthy group.

Furthermore, compared with the healthy group, the SS group’s

core genes are up-regulated (Figures 2G, H).
Frontiers in Immunology 05
3.2 Identification and validation of
diagnostic biomarkers for SS

To explore the biomarkers of SS, we applied the LASSO

regression, the SVM-RFE algorithm and RF algorithm. As a

result, 20 probable biomarkers were picked out by the LASSO

regression algorithm, 22 by the SVM-RFE algorithm, and 21 by the

RF algorithm (Figures 3A–C). Subsequently, we overlapped the 20,

22 and 21 probable biomarkers to obtain 11 genes, including

BATF2, HES4, IFI27, IFITM3, LY6E, OTOF, STAT1, TTC21A,

XAF1, ZCCHC2, and MYOM2 (Figure 3D). To verify the accuracy

of the results, we conducted validation of the 11 genes using the

verification data set. As seen in Figures 3E–O, the expression trend

of the 11 genes was found to be consistent in both discovery and

validation data sets, while MYOM2 had no statistical significance.

On this account, we chose BATF2, HES4, IFI27, IFITM3, LY6E,

OTOF, STAT1, TTC21A, XAF1, and ZCCHC2 for the

following analysis.
3.3 The diagnostic capability of 12
biomarkers for SS

Thereafter, we showed the ROC curves of 10 biomarkers, from

which we could see the AUC values of BATF2, HES4, IFI27,

IFITM3, LY6E, OTOF, STAT1, TTC21A, XAF1, and ZCCHC2 in

the discovery data set. In Figures 4A–J, we observed these genes

with the AUC value of 0.820, 0.807, 0.856, 0.827, 0.828, 0.818, 0.832,

0.783, 0.849, and 0.730, respectively. Then, we combined these

genes into one signature and found that the combination of XAF1,

STAT1, IFI27, HES4, TTC21A, and OTOF resulted in a relatively

high AUC value of 0.903 (Figure 4K).

Likewise, we drew the ROC curves of 10 biomarkers based on

the validation data set. The AUC value of BATF2, HES4, IFI27,

IFITM3, LY6E, OTOF, STAT1, TTC21A, XAF1, and ZCCHC2 was

0.725, 0.834, 0.759, 0.685, 0.763, 0.802, 0.760, 0.745, 0.769, and

0.723, respectively (Figures 5A–J). When we combined XAF1,

STAT1, IFI27, HES4, TTC21A, and OTOF as one signature, the

AUC value reached 0.877 (Figure 5K).
3.4 The validation of the potential
diagnostic markers using our own
Chinese cohort

Based on the above results in the discovery data set and

validation data set, we selected eight candidate biomarkers for

RT-qPCR validation in 14 Chinese SS patients and 10 Chinese

healthy controls (the result of the Ct values was shown in

Supplementary Table S1). After analysis, we found that the

mRNA expression levels of HES4, IFI27, LY6E, OTOF, STAT1,

TTC21A, XAF1, and ZCCHC2 were consistently higher in SS

patients than in healthy controls (Figures 6A–H). However,

STAT1 did not show statistical significance. The AUC value of

the combined ROC curve of HES4, IFI27, LY6E, OTOF, TTC21A,
TABLE 2 The primers’ list.

Primer Name Sequence 5’ – 3’

F-GBP1 AACCATCAACCAGCAGGCTAT

R-GBP1 TTGTCCATCTGCTTCCAAGTC

F-HES4 CGCTCAGCTCAAAACCCTCATCC

R-HES4 AGGTGTCTCACGGTCATCTCCAG

F-IFI27 TCTGCAGTCACTGGGAGCAA

R-IFI27 CCCAATGGAGCCCAGGAT

F-LY6E TGATGTGCTTCTCCTGCTTGAACC

R-LY6E CCAAATGTCACGAGATTCCCAATGC

F-OTOF GTGCTGGAGATGGAAGACCTTGAC

R-OTOF CTGGCTTAGATCGCTTGTTGGAGAC

F-STAT1 AGCACCAGAGCCAATGGAACTTG

R-STAT1 GCAGGTTGTCTGTGGTCTGAAGTC

F-TTC21A CCACATTCAGACTCCAGCCAGAC

R-TTC21A CGCAGCCTCCATGTTAGCCTTC

F-XAF1 TTGATGTCAGAGCCCAAGCC

R-XAF1 AGCAGGATGCCACACTGAGA

F-ZCCHC2 GGCTCAGGTCCTTGTGGTTCTTG

R-ZCCHC2 CTCGGTACATTGGTCCAGGCATTG

F-GAPDH TGACTTCAACAGCGACACCCA

R-GAPDH CACCCTGTTGCTGTAGCCAAA
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and XAF1 of the validation cohort reached 1 (Figure 6I), which

showed an outstanding diagnostic effects to predict SS from HCs.

As a result, among the Chinese population, HES4, IFI27, LY6E,

OTOF, TTC21A, XAF1, and ZCCHC2 are more likely to be SS

biomarkers. Remarkably, HES4, OTOF, TTC21A, and ZCCHC2 are

novel discovered biomarkers for SS that have not been reported in

published articles.

In our previous article on SLE biomarkers (22), we downloaded

the SLE gene expression matrix from the public database. After
Frontiers in Immunology 06
screening and validation, six markers (ABCB1, EIF2AK2, HERC6,

ID3, IFI27, and PLSCR1) were obtained that had diagnostic value

for SLE (the SLE biomarkers were shown Supplementary Table S1).

By comparing with the seven biomarkers we screened in SS (HES4,

IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2), we found that

IFI27 had diagnostic value in both diseases. Additionally, LY6E and

XAF1 are also potential biomarkers in SLE reported by others (23,

24). As a result, HES4, OTOF, TTC21A, and ZCCHC2 were more

likely to be considered as specific diagnostic biomarkers of SS.
HG
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GSEA analysis of the SS and control samples.
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3.5 The ratio changes of immune cells in
SS Patients, and their correlation with the
expression of diagnostic markers

First, we used the CIBERSORT algorithm to examine the ratio

of 22 immune cells in healthy controls and SS patients of the

discovery data set. The finding revealed that the proportions of CD4

memory resting T cells and activated NK cells in SS were

considerably lower than those in the control group, while CD4

memory active T cells, follicular helper T cells, macrophages M1,

and activated dendritic cells were higher in SS (Figure 7A).
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Subsequently, we explored the relationships between the ratios of

the 22 different immune cell types in SS patients. From the heat

map, we found that the proportions of memory B cells and CD4

naïve T cells, the levels of activated dendritic cells and macrophages

M2, had a moderate positive link, respectively. Besides, the ratio of

neutrophils and CD8 T cells, the levels of memory B cells and naïve

B cells, the degrees of monocytes and CD4 naïve T cells,

macrophages M2, and activated dendritic cells had a negative

link (Figure 7B).

Eventually, we investigated the correlation between the

expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and
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ZCCHC2 in SS patients and the ratio of immune cell. As a result,

the expression of HES4 was positively correlated with the levels of

regulatory T cells (Tregs), macrophages M1, activated dendritic

cells, activated NK cells, and naïve B cells, and negatively correlated

with the ratios of CD4 naive T cells, CD4 memory resting T cells,

resting NK cells, macrophages M0, and CD4 memory activated T

cells (Figure 7C). The expression of IFI27 was positively linked with

the degrees of macrophages M1, activated dendritic cells, regulatory

T cells, plasma cells, naive B cells, and gamma delta T cells, and

negatively linked with eosinophils, macrophages M0, resting NK

cells, and CD4 memory resting T cells (Figure 7D). The expression
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of LY6E was positively correlated with the ratios of activated

dendritic cells, macrophages M1, Tregs, plasma cells, naive B

cells, activated NK cells, and memory B cells, and negatively

correlated with CD4 memory activated T cells, eosinophils, CD4

memory resting T cells, resting NK cells, and macrophages M0

(Figure 7E). The OTOF expression was positively correlated with

the ratios of activated dendritic cells, macrophages M1, Tregs,

plasma cells, activated NK cells, and naive B cells, and negatively

correlated with CD4 memory activated T cells, eosinophils,

macrophages M0, resting NK cells, CD4 memory resting T cells

(Figure 7F). The expression of TTC21A was positively correlated
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with the ratios of activated dendritic cells, Tregs, macrophages M1,

naive B cells, neutrophils, and plasma cells, and negatively

correlated with CD4 memory activated T cells, monocytes, CD4

memory resting T cells, macrophages M0, resting NK cells, and

eosinophils (Figure 7G). The expression of XAF1 was positively

correlated with the ratios of activated dendritic cells, macrophages

M1, Tregs, plasma cells, memory B cells, neutrophils, naïve B cells,

and gamma delta T cells, and negatively correlated with eosinophils,

resting NK cells, CD4 memory resting T cells, and macrophages M0
Frontiers in Immunology 09
(Figure 7H). The expression of ZCCHC2 was positively correlated

with the ratios of activated dendritic cells, macrophages M1,

neutrophils, Tregs, memory B cells, gamma delta T cells, and

plasma cells, and negatively correlated with monocytes,

macrophages M0, eosinophils, CD4 memory resting T cells, and

resting NK cells (Figure 7I).

On the whole, the expressions of HES4, IFI27, LY6E, OTOF,

TTC21A, XAF1, and ZCCHC2 were most closely linked to the

ratios of activated dendritic cells, macrophages M1, and Tregs.
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The Diagnostic Capability of Potential Biomarkers for SS Based on The Verification Data Set. (A–J) The ROC curve of BATF2, HES4, IFI27, IFITM3,
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4 Discussion

SS is a systemic chronic autoimmune disease with complex

pathogenesis (25, 26). The diagnosis of SS relies on blood samples,

an evaluation of lacrimal and salivary gland function, and labial

salivary gland biopsies (26, 27), which is arduous and time-

consuming with an invasive way. Therefore, trying to identify

reliable and sensitive biomarkers can be used to diagnose SS.

In this study, we used three machine learning methods to screen

potential diagnostic biomarkers of SS. We used the same expression

matrix files (GSE51092, GSE66795, and GSE140161) to screen

biomarkers and verify the screening markers. The results showed
Frontiers in Immunology 10
that the expression trends of biomarkers screened in the discovery

data set were consistent with those in the validation data set,

indicating that our screening strategy was reliable. In addition,

HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2 were

found to be more suitable biomarkers for SS in the Chinese

population after validation in our own Chinese cohort (nSS =14,

nnormal =10). However, a larger cohort may be required for further

validation in future research. Due to the small sample size, there was

a quite difference in age between SS and healthy control. The

biomarkers we validated were somewhat impacted by the age

mismatch. Previous studies have also shown that the levels of

some indicators vary in different age groups. The elderly-onset of
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SS was associated with lower frequency of SS-related inflammatory

arthritis, anti-Ro/SSA and anti-La/SSB positivity, and lower levels of

RF, C3, and C4 (28). Hence, we hope to validate these potential

biomarkers we screen in the future using larger cohorts with better

cohort design.

Besides, the data set cohorts we downloaded from the GEO

database did not provide information about ethnicity, age, disease

duration, treatment, etc., which became a limitation in our study. In
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some extent, the absence of age and sex information may make it

impossible to judge the generalization ability of markers. The

biomarkers screened from patients of different age ranges or

different sex ratios may be different. In addition, disease duration

and treatment information may provide us with more useful hints.

Biomarkers for SS have been reported in some studies (17, 29,

30). In 2021, Li et al. revealed biomarkers of salivary glands in SS

patients (31). Compared with this report, our research has the
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FIGURE 7

The Ratio Changes of Immune Cells in SS Patients, and Their Correlation with The Expression of Diagnostic Markers. (A) The fraction of 22 types of
immune cells of SS patients (red) and healthy people (blue). (B) The heat map displaying the 22 different types of immune cells’ proportional
association in SS patients. (C–I) The correlation between the expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2 with the levels of
immune cells in SS. The size of the dots represented the correlation strength. The p value was represented by the color of the dots.
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following expansion and in-depth research: First, we use three

machine learning methods, which shows that our method has

stronger recognition ability of biomarkers compared with the

intersection method adopted by Li et al. Secondly, we use blood

samples, which are easier to obtain than salivary glands, non-

invasive to the patient and easier to repeat in later clinical

monitoring. Finally, we have a larger sample size, which makes

the markers we screen more reliable, accurate, and generic.

Additionally, the innate immune response, type I interferon

signaling pathway, and so on, which are common pathways

connected to immunological illnesses, are included in the

pathways we have enriched. This indicated that the biomarkers

we investigated in DEGs could be potential biomarkers of SS

for clinic. Furthermore, the biomarkers MS4A1, CD19, TCL1A,

CCL19, CXCL9, CD3G, and CD3D that were ultimately screened

from salivary glands did not overlap with the biomarkers that

we screened from blood samples in this research, which may

offer us a hint that the biomarkers from different tissues are

noticeably different.

Disruption the balance of immunity cells has been observed in

autoimmune diseases, such as multiple sclerosis (32), systemic

lupus erythematosus (33, 34), rheumatoid arthritis (35). Biological

abnormalities associated with B lymphocytes are a hallmark of SS

(36–38). The tissue-resident Fc Receptor-Like 4 (FcRL4)+ B cell

subset was recently reported to be a key driver in SS patients with

mucosa-associated lymphoid tissue (MALT)-lymphomas, and

FcRL4+ B cells are expanded in SS patients’ inflammatory tissues

(39, 40). Apart from B cells, T cells are also important players in SS

(41, 42). The normal balance of different subsets of CD4 +T cells,

such as Th1, Th2, Th17, follicular helper T cells (Tfh), and Tregs,

was found to be disrupted in SS patients (43, 44). It can be seen that

immune system disorder played an important role in immune

diseases. Thus, we explored the ratio changes of immune cells in

SS patients, and investigated their correlation with the expression of

diagnostic markers. Besides, we looked into the degree of

correlation between Tfh and plasma blast using publicly available

datasets, and we hypothesized that the lack of a positive result might

be due to the fact that these studies used various inclusion criteria,

sample processing techniques, data collection techniques, and data

quality control methods.

Consistent with our results, Kimoto’s team has reported that

IFI27 gene expression levels were considerably higher in the SS

patients when compared to healthy controls (45). The interferon

type I inducible genes LY6E and XAF1 were both increased in SS

patients, and the two genes were found to be closely related and

identified as the hub genes of SS (46, 47). HES4 has been reported to

promote T cell development in the presence of Notch1 signaling

(48). No previous study has reported that TTC21A is involved in

development of SS. However, increased level of TTC21A expression

was significantly associated with tumor status and lymph node

status (49). There were few studies on the ZCCHC2 gene in

the literature.

Interestingly, in our previous study of SLE based on the public

database (22), we found that IFI27 is also a candidate marker for

SLE. We concluded that IFI27 may be a biomarker for various

immune diseases. In addition, we found that LY6E and XAF1 have
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also been reported as potential markers in SLE (23, 24). To the best

of our knowledge, among the seven biomarkers of SS obtained in

this study, HES4, OTOF, TTC21A, and ZCCHC2 can be used as

specific diagnostic biomarkers of SS. Furthermore, in the

Supplementary Table S1, we summarized the functions of these

genes and their connections with SS or autoimmunity.
5 Conclusion

All in all, we identified seven genes (HES4, IFI27, LY6E, OTOF,

TTC21A, XAF1, and ZCCHC2) as prospective SS biomarkers,

which were more suitable for Chinese populations. In addition,

we observed quantitative changes in six different types of immune

cells in SS patients. Finally, we explored the relationship between

the expression of the seven genes and the proportion of different

immune cells. Our study provides potential biomarkers for Chinese

SS patients and elucidates the relationship between gene expression

and ratios of immune cells.
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