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Lipid metabolism-related gene
signature predicts prognosis and
depicts tumor microenvironment
immune landscape in gliomas
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Background: Glioma is the most common primary brain tumor in adults and

accounts for more than 70% of brain malignancies. Lipids are crucial components

of biological membranes and other structures in cells. Accumulating evidence has

supported the role of lipid metabolism in reshaping the tumor immune

microenvironment (TME). However, the relationship between the immune TME

of glioma and lipid metabolism remain poorly described.

Materials and methods: The RNA-seq data and clinicopathological information of

primary glioma patients were downloaded from The Cancer Genome Atlas (TCGA)

and Chinese Glioma Genome Atlas (CGGA). An independent RNA-seq dataset from

the West China Hospital (WCH) also included in the study. Univariate Cox regression

and LASSO Cox regression model was first to determine the prognostic gene

signature from lipid metabolism-related genes (LMRGs). Then a risk score named

LMRGs-related risk score (LRS) was established and patients were stratified into high

and low risk groups according to LRS. The prognostic value of the LRS was further

demonstrated by construction of a glioma risk nomogram. ESTIMATE and

CIBERSORTx were used to depicted the TME immune landscape. Tumor Immune

Dysfunction and Exclusion (TIDE) was utilized to predict the therapeutic response of

immune checkpoint blockades (ICB) among glioma patients.

Results: A total of 144 LMRGs were differentially expressed between gliomas and

brain tissue. Finally, 11 prognostic LMRGs were included in the construction of LRS.

The LRS was demonstrated to be an independent prognostic predictor for glioma

patients, and a nomogram consisting of the LRS, IDH mutational status, WHO grade,

and radiotherapy showed a C-index of 0.852. LRS values were significantly associated

with stromal score, immune score, and ESTIMATE score. CIBERSORTx indicated

remarkable differences in the abundance of TME immune cells between patients with

high and low LRS risk levels. Based on the results of TIDE algorithm, we speculated

that the high-risk group had a greater chance of benefiting from immunotherapy.
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Conclusion: The risk model based upon LMRGs could effectively predict prognosis

in patients with glioma. Risk score also divided glioma patients into different groups

with distinct TME immune characteristics. Immunotherapy is potentially beneficial

to glioma patients with certain lipid metabolism profiles.
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Introduction

Glioma is the most common primary brain tumor in adults and

accounts for more than 70% of brain malignancies (1). According to

the latest 2021 World Health Organization (WHO) Classification of

tumors of the central nervous system, gliomas are classified into 4

grades (1–4) and their diagnoses rely more on unique molecular

biomarkers since which was first introduced in 2016 (2, 3). The grade

4 glioblastoma (GBM) represents the most lethal and malignant

glioma with an incidence about 3.2 per 100000 population (4).

GBMs are notorious for resistance to therapy. Despite surgical

intervention and combined radio-chemotherapy, the median overall

survival (OS) of patients with GBM is usually less than 2 years (5).

Molecular therapies targeting oncogenic pathways or immune

checkpoints in gliomas have been extensively studied, but very few

concrete advances have been made to significantly improve patient

outcome (6, 7).

Lipids, including phospholipids, fatty acids, triglycerides,

sphingolipids, cholesterol, and cholesteryl esters, are crucial

components of biological membranes and other structures in cells

(8). Moreover, lipids are used in energy storge and metabolism and

play important roles in cellular signaling pathway. Lipid metabolism

dysregulation is among the most prominent metabolic alterations in

cancer development (9). For example, tumor cells can increase

lipogenesis, fatty acid (FA) uptake, and FA oxidation for energy

production and lipid accumulation (10). Emerging evidence also

indicates that cancer stem cells undergo lipid metabolism

reprogramming, which helps maintain the properties of cancer

stem cells (11, 12). Meanwhile, targeting the lipid metabolism

regulating pathway has been regarded as a novel anti-cancer

strategy (8).

Metabolism reprogramming occurs not only in cancer cell

initiation and progression, but also in immune cells from tumor

microenvironment (TME) (13, 14). Accumulating evidence has

supported the role of lipid metabolism in shaping the TME. Recent

studies revealed that lipid metabolism influences T cell differentiation,

survival, and effector functions (15). Su et al. found accumulations of

lipids in tumor-associated macrophages (TAMs) was crucial for their

differentiation and function in tumor progression (16). Lipid

metabolites also help modify the TME and affect the recruitment

and of tumor-related immune cells (17). Kobayashi et al. reported that

increasing lipid metabolism impaired the function of natural killer

(NK) cells (18). Dysregulation of lipid metabolism in TME also

influences the tumor-related immune response, which in most cases
02
is presented as immunosuppressive effects (19). Nevertheless, the

relationships between glioma and lipid metabolism remain

largely unexplored.

With the rapid improvement of multiomic databases and tools

that extract TME composition from bulk tumor transcriptomic data,

we are now able to explore how dysregulation of lipid metabolism

pathways associate with glioma progression and TME immune

characteristics. In the current study, based on RNA-sequencing, we

conducted a comprehensive and rigorous bioinformatic analysis to

elucidate the prognostic ability of lipid metabolism-related genes

(LMRGs) in patients with glioma, and disclosed its association with

TME immune landscape.
Materials and methods

Data sources

The RNA-sequencing fragment per kilobase million (FPKM)

transcriptome data and corresponding clinicopathological

information of primary glioma patients were downloaded from The

cancer Genome Atlas (TCGA, https://www.cancer.gov/) (20) and

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/)

(21), respectively. Recurrent gliomas and patients with incomplete

survival data were excluding from the current research. A total of 666

patients from TCGA and 229 patients from CGGA were included in

current study.

Another cohort from West China Hospital (WCH) which

contains 78 patients with glioma were also included in the current

research. After initial treatment of surgery, the patients were followed

up every 3-6 months for evaluating prognosis. Overall survival (OS)

was defined as the duration from the date of operation to death or the

end of the observation period. The clinicopathological information of

cohorts was list in Table 1.
RNA extraction, sequencing, and
differential analysis

Frozen glioma and adjacent brain tissue samples from West

China Hospital were homogenized, and total RNA was isolated

using Trizol reagent (Invitrogen, USA). After checking RNA

quality, 2 mg RNA per sample was used as input material for the

RNA sample preparations. mRNA was purified from total RNA by
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using poly-T oligo-attached magnetic beads. PCR products were

purified (AMPure XP system). The mRNA was reverse-transcribed

into a cDNA library and was sequenced on Illumina Novaseq S6000

platform to generate 150 bp paired-end reads. Clean reads were

mapped to the hg19 genome and counted using STAR (2.6.0c).

Differential expression analysis was conducted using R package

limma. Genes with adjusted p value below 0.05 were defined as DEGs.
Screening of lipid metabolism-related genes

The LMRGs were obtained from the Molecular Signature

Database (MsigDB, v7.5.1, https://www.gsea-msigdb.org/) (22),

including the following pathways: glycerophospholipid metabolism,

adipocytokine signing pathway, PPAR signaling pathway, glycerolipid

metabolism, regulation of lipolysis in adipocytes, fatty acid

metabolism, arachidonic acid metabolism, sphingolipid metabolism,

cholesterol metabolism, fatty acid degradation, ether lipid

metabolism, steroid hormone biosynthesis, fatty acid elongation, fat

digestion and absorption, biosynthesis of unsaturated fatty acids,

steroid biosynthesis, linoleic acid metabolism, alpha-linolenic acid

metabolism, primary bile acid biosynthesis (Table S1). The LMRGs

were further filtered by intersecting with DEGs between glioma and

brain tissue samples in the TCGA dataset.
Prognostic lipid metabolism-related risk
score construction and validation

An LMRGs-related risk score (LRS) was performed to establish a

prognostic assessment method based on the expression of LMRGs.

First, glioma patients from TCGA were randomly divided into a

training group and a validation set with a ratio of 6:4. In the training

group, the screened LMRGs were included in the univariate Cox

regression to preliminarily filter for prognostic genes. Then least

absolute shrinkage and selection operator (LASSO) Cox regression

model was further used to select the strongest prognostic signature

through minimizing the risk of over-fitting using “glmnet” R package.

One hundred LASSO Cox-regression models were generated using

different random number seeds. LMRGs with non-zero coefficients in

over 50 models were selected to build a final Cox regression model.

Finally, the LRS was calculated with the following algorithm:

LRS =  o
i=1
bi*Expi

In the formula, Exp and b represent the expression level and

coefficient of each prognostic LMRG in the final Cox regression

model, respectively. The “survminer” R package was utilized to

determine an optimal cutoff value to divide the specific cohort into

two risk group. Based on the optimal cutoff value of LRS, glioma

patients were divided into low-risk group (LRS value <optimal cutoff

value) and high-risk group (LRS value ≥optimal cutoff value).

Next, the prognostic ability of LRS was verified in training group

and validation group respectively, and patients from CGGA and

WCH were used as external group for further validation. In each

cohort, the patients were divided into two risk group using the

surv_cutpoint function from the survminer package. The function
TABLE 1 Clinicopathological characteristics of glioma patients in TCGA,
CCGA, and WCH cohort.

Glioma Patients TCGA
cohort

CGGA
cohort

WCH
cohort

Sample size 666 229 78

Normal Brain 5 - 16

Age 46 (14-89) 43 (10-79) 46 (14-77)

Sex

Female 282 87 31

Male 382 142 47

NA 2 0 0

Histology

Astrocytoma 343 84 22

Oligodendroglioma 168 60 21

Glioblastoma 155 85 35

WHO Grade

G2 216 94 29

G3 237 50 14

G4 155 85 35

NA 58 0 0

IDH mutation status

Mutant 424 116 42

WT 237 112 36

NA 5 1 0

1p19q codeletion status

Codel 168 54 19

Non-codeletion 491 172 44

NA 7 3 15

TERT promoter mutation
status

-

Mutant 341 - 30

WT 157 - 24

NA 168 - 24

MGMT promoter methylation status

Methylated 473 99 36

Unmethylated 160 116 13

NA 33 14 29

ATRX mutation status -

Mutant 194 - 23

WT 461 - 53

NA 11 - 2
TCGA, The cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China
Hospital; WHO, World Health Organization; IDH, isocitrate dehydrogenase; TERT, telomerase
reverse transcription; MGMT, O6-methylguanine-DNA methyltransferase; ATRX, alpha
thalassemia/mental retardation syndrome X-Linked protein/gene; WT, wild; NA, not available.
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set an optimal cutoff of LRS between its 10% and 90% percentile by

maximizing the log-rank statistics. Patients with LRS below the

cutoffs were stratified into LRS low risk groups, while those with

LRS above the cutoffs were stratified into the LRS high risk groups.

Time-dependent receiver operating characteristic (ROC) curves of the

LRS were constructed at 1, 2, and 3 years.
Construction and validation of nomogram
for predicting prognosis

To understand the prognostic value of LRS in the context of other

clinical and pathological factors. We conducted univariate and

multivariate Cox regression analysis to screen for independent risk

factors among a panel of variables including the LRS, age, sex, WHO

grade, Karnofsky Performance Scale (KPS), IDH mutational status,

1p/19q codeletion status, chemotherapy, and radiotherapy. Variables

with a p value <0.1 were included in multivariate Cox regression for

further analysis, and variables with a p value <0.05 in multivariate

Cox regression analysis were deemed as independent risk factors and

were used to constitute the prognostic nomogram using the “rms” R

package. Performance of the nomogram was assessed by calibration

curve. Nomogram were built and evaluated in the TCGA, CGGA, and

WCH cohort respectively.
Functional analysis of DEGs between LRS
high and low risk groups

Differentially expressed genes between LRS high- and low-risk

groups with adjusted p value below 0.05, and log (Fold Change)

greater than 0.5 or below -0.5 were defined as LRS-associated DEGs.

Functional over-representation and Gene-Set Enrichment Analysis of

DEGs between the LRS high- and low-risk groups were performed

and visualized by using the “clusterProfiler” R package. Gene set

variation analysis (GSVA) were conducted using the “GSVA” R

package. Differentially expression of gene sets was conducted using

R package limma. The KEGG, Gene ontology (GO), and

HALLMARK gene sets curated in the msigdbr package were used

as the gene set database for the functional analysis.
Genetic alterations in LMRGs

Genetic alterations including deletion, amplification, and

mutations of gliomas in the TCGA cohort were downloaded from

cbioportal (https://www.cbioportal.org). We used the Genomic

Identification of Significant Targets in Cancer (GISTIC) score data

from the cbioportal to represent copy number variations. The

mutational landscape of LRS low- and high-risk groups were

presented using “maftools” R package.
Immune-related analysis based on LRG
signatures

Estimation of Stromal and Immune cells in Malignant Tumor

tissues using Expression data (ESTIMATE, https://bioinformatics.
Frontiers in Immunology 04
mdanderson.org/) is a tool for predicting tumor purity and the

presence of infiltrating stromal/immune cells based on gene

expression data (23). Three scores included stromal score (presence

of stroma in tumor tissue), immune score (infiltration of immune

cells in tumor tissue), and ESTIMATE score (related to tumor purity)

were generated through the algorithm. The tumor purity data were

computed as described by D.Aran et al. with the formula (23):

Tumour purity=cosine(0.6049872018 + 0.0001467884 ×

ESTIMATE score).

CIBERSORTx (https://cibersortx.stanford.edu/) provide an

estimation of the abundances of member cell types in a mixed cell

population by using gene expression data (24). Furthermore,

correlations between risk groups and expression of immune check

points (ICP) were analyzed.
Therapeutic response prediction

Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.

dfci.harvard.edu/) was utilized to predict the immune checkpoint

blockade (ICB) response in treating gliomas based on the functional

status of cytotoxic T lymphocytes (25). In addition, TMZ sensitivity in

treating glioma patients was assessed using “pRRophetic” R

package (26).
Statistical analysis

R software (version 3.6.1) and the above-mentioned package were

used to handle the RNA-sequencing relevant data. K-M analysis was

conducted to evaluate prognosis of specific glioma groups using log-

rank test. A two-sided p<0.05 was regarded as statistically significant

and * indicated p<0.05, whereas ** p<0.01, *** p<0.001, **** p<0.0001

in the current study.
Ethics statement

This study was approved by the Ethical Committee of Sichuan

University and conducted according to the principles expressed in the

Declaration of Helsinki (Ethic number: 2018.569). All patients and their

authorized trustees were informed before surgery and signed their

informed consent to using their clinical data for research purposes.
Results

LMRGs determination in gliomas

The workflow of the current study was illustrated in Figure 1. A

total of 471 LMRGs were downloaded from the MSigDB (Table S2).

We then identified 6849 DEGs between glioma and normal brain

samples according to the cutoff of false discovery rate (FDR) <0.05

(Figure 2A; Table S3), including 3494 upregulated genes and 3355

downregulated genes. Among these DEGs, a total of 144 LMRGs were

in overlap with genes curated in the lipid metabolism related gene sets

in the MSigDB (Figure 2B).
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Development and validation of the
prognostic lipid metabolism risk score

After randomly splitting the TCGA cohort into training and

validation set at a ratio of 6:4, we conducted univariate Cox regression

analysis using the 144 LMRGs. In the training set, we found 96

candidate LMRGs were significantly associated with patient survival.

Next, these candidate genes were filtered using repeated LASSO

regression. A total of 11 LMRGs (Figure 2C) were selected to build

the lipid metabolism-related risk score (LRS). Among the 11

prognostic LMRGs, 5 of them predicted better prognosis while the

other 6 predicted worse prognosis (Figure 2D). Expression levels of

the 11 prognostic LMRGs in tumor tissues and normal brains were

shown in Figure 2E.

The LRS of glioma patients were calculated as follows: LRS=

0.250*GNAI3+0.116*ACACB+0.107*ADCY3+0.084*GLB1

+0.038*G6PC3+0.022*PAFAH2-0.001*NEU4-0.010*LCAT-

0.019*HADHA-0.051*SGPL1-0.150*ACADSB. Consistently, the

protein expression of GNAI3 was higher in the more aggressive

high-grade gliomas in the Human Protein Atlas immunohistology

study (Figure S1A), while that of ACADSB exhibited a reverse trend

(Figure S1B). Based on the optimal cutoff of LRS, the TCGA-training

group was divided into high-risk group and low-risk group (range

-2.058-4.738, optimal cutoff 0.947, Figure S1C). Otherwise, CGGA

(range 2.938-19.828, optimal cutoff 8.352, Figure S1D) and WCH

(range -0.078-1.244, optimal cutoff 0.553, Figure S1E) cohorts were

divided into two risk groups based on the same algorithm. In the

TCGA cohort, the LRS risk stratification showed profound prognostic

value in both the training group and validation group (Figures 3A, B).

The prognostic capability of LRS was also evaluated in CGGA
Frontiers in Immunology 05
(Figure 3C) and WCH (Figure 3D) cohort. Then univariate

(Figure 3E) and multivariate (Figure 3F) Cox regression analysis

was conducted to further demonstrated that LRS was an independent

prognostic predictor (HR 1.44, 95%CI 1.11-1.88, p=0.025) among

other clinical and pathological factors in the TCGA cohort. In TCGA

validation group (Figure 4A), the AUC of 1-, 2-, 3-year survival ROCs

were 0.849, 0.908, 0.901 respectively. The AUCs of 1-, 2-, 3-year

survival were 0.764, 0.847, 0.889 in the CGGA cohort (Figure 4B),

while in the WCH cohort (Figure 4C), they were 0.761, 0.708, 0.662,

which indicated LRS was a robust and strong prognostic predictor. In

TCGA va l ida t ion group , when compared wi th other

clinicopathological variables, we found 3-year survival ROC curve

of LRS possessed maximum AUC (Figure 4D), which was consistent

in CGGA (Figure S2A). In WCH, the AUC of the LRS was 0.688,

which was smaller than IDH mutation and 1p19q codeletion (0.747

and 0.709, Figure S2B).
Nomogram construction for predicting
prognosis of glioma patients

In the multivariate Cox analysis combining the LRS and

clinicopathological factors, LRS, along with WHO grade, IDH

mutation status, and radiotherapy were found to be independent

prognostic factors. To find out if the LRS and these variables could be

integrated to accurately predict the survival risks of glioma patients, a

nomogram was established to predict 1-, 2-, and 3- years survival rates

in the TCGA, CGGA, and WCH cohort (Figures 4E, S2C, D).

Compared with LRS alone, the multivariate nomogram showed

superiority in predicting prognosis (C-index 0.835 vs. 0.852 in
FIGURE 1

Flow chart of the current study. LASSO, least absolute shrinkage and selection operator; ROC, receiver-operator characteristics; IDH, isocitrate
dehydrogenase; TERT, telomerase reverse transcription; MGMT, O6-methylguanine-DNA methyltransferase; ATRX, alpha thalassemia/mental retardation
syndrome X-Linked protein/gene; CNV, copy-number variation; CAFs, cancer-associated fibroblasts; MDSCs, myeloid-derived suppressor cells; TAMs,
tumor-associated macrophages; TMZ, temozolomide.
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TCGA; 0.774 vs. 0.788 in CGGA), but in the WCH cohort, the C-

index of the multivariate model was 0.710 and 0.717 for LRS alone.

The 1-, 2-, 3-year calibration curves for nomograms demonstrated the

accuracy of the multivariate nomograms in predicting the survival

time of patients in three cohorts (Figures 4F–H).
Associations between LRS and the clinical,
pathological, and molecular characteristics
of gliomas

To understand if high or low LRS was connected to certain

clinical, pathological, and molecular features of the gliomas, we

investigated the association between the LRS and available data in

the TCGA cohort. First, we analyzed the correlations between LRS

and clinicopathological parameters (Figure 5A). The results implied

that LRS was significantly related to WHO grade, IDH mutation

status, ATRX mutation status, MGMT promoter methylated status,

TERT promoter mutation status, 1p19q codeletion status, and

histology, but not sex (Figures 5B–I).
Frontiers in Immunology 06
Next, we evaluated the relationship between LRS and the genetic

aberrations of gliomas. We found that the 11 prognostic LMRGs had

low frequency of genetic alterations compared with the common

alterations in gliomas (n=644) like IDH-1 mutation, TP53 mutation,

and EGFR alterations (Figure 6A). By comparing the top 20 genes

with highest frequency of somatic mutations in low- (n=441) and

high-risk (n=203) group, we found that higher frequency of IDH,

ATRX, and CIC mutations in gliomas with low LRS risk (Figure 6B),

while mutations of EGFR, PTEN, and NF1 were more frequent in the

high-risk group (Figure 6C). Results of CNV analysis showed

amplification of chromosome 7 and loss of chromosome 10 in the

high-risk group, while loss of chromosome 1p and 19q were common

in the low-risk group (Figure 6D).
Functional enrichment analysis according to
risk groups

To further explore the biological differences between LRS high-

risk and low-risk groups, we investigated the functional annotation
A B

D

E

C

FIGURE 2

Screening of prognostic LMRGs. (A), DEGs between gliomas and normal brains in TCGA cohort; (B) Venn diagram for screening common genes in DEGs
and LMRGs; (C) LASSO Cox regression for screening reliable prognostic LMRGs; (D) Forest plot of 11 prognostic LMRGs; (E) Expression levels of 11
prognostic LMRGs in tumor tissues and normal brains. LMRG, lipid metabolism-related gene; DEG, different expression gene; LASSO, least absolute
shrinkage and selection operator. * indicated p<0.05, whereas ** p<0.01, *** p<0.001 in the current study.
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of differentially expressed genes (DEGs). The top 10 KEGG

pathways and Hallmark pathways were shown in Figures 7A, B.

In KEGG pathways, DEGs were significantly associated with focal

adhesion, immune-related pathways like antigen processing and

presentation, allograft rejection. While in Hallmark gene sets, DEGs

were enriched in EMT, KRAS signaling, G2/M checkpoint, Hypoxia,

and interferon-related pathways, which were more tightly related

to oncogenesis.

GSVA was conducted to present the pathway functional status

differences between two groups. In the Hallmark gene sets
Frontiers in Immunology 07
(Figure 7C), the results indicated that relevant pathways with high

expression level in the high-risk group were IL6-JAK-STAT3

signaling, allograft rejection, interferon gamma response, interferon

alpha response, TNFa signaling, coagulation, complement, apoptosis,

hypoxia, angiogenesis, epithelial-mesenchymal transition (EMT),

which were mainly involved in immune and inflammatory response

and tumor progression. GSVA based on KEGG pathway gene sets

suggests activation of anabolic pathways including DNA replication,

mismatch repair, and amino/nucleotide sugar metabolism in the

high-risk group (Figure S3A).
A B

D

E

F

C

FIGURE 3

Prognostic value of LRS. (A-D), K-M curves for assessing LRS in TCGA-training group, TCGA-validation group, CGGA, WCH cohort respectively; (E),
Univariate Cox regression of clinical variables in entire TCGA cohort; (F), Multivariate Cox regression of clinical variables with a p value <0.1 in univariate
Cox regression in entire TCGA. LRS, lipid metabolism risk score; K-M, Kaplan-Mier; TCGA, The cancer Genome Atlas; CGGA, Chinese Glioma Genome
Atlas; WCH, West China Hospital.
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GSEA was also performed in the DEGs between the low- and

high-risk groups to explore the cancer-related KEGG pathway

and cancer Hallmarks based on LRS. The top 5 KEGG pathways

and Hallmark pathways were list in Figures 7D, E. Among the KEGG

pathway, the DEGs were significantly enriched in cell cycle and focal

adhesion in the cancer Hallmark gene sets, they showed remarkable

enrichment in the G2/M checkpoint and EMT hallmarks.

In addition, GO enrichment analysis indicated that DEGs

enriched in neurogenesis, cell-cell signaling, biological adhesion,

neuron differentiation in GO biological pathways (GO-BP, Figure

S3B), signaling receptor binding, protein containing complex binding,

calcium ion binding, passive transmembrane transporter activity in

GO molecular function (GO-MF, Figure S3C), and synapse, intrinsic

component of plasma membrane, neuron projection, plasma
Frontiers in Immunology 08
membrane region, cell surface in GO cellular compartment (GO-

CC, Figure S3D).
Impact of LRS on immune TME landscape

To explore the relationship between LRS and TME immune

landscape, ESTIMATE and CIBERSORTx algorithm that based on

gene expression data were firstly applied. The results of ESTIMATE in

three cohorts consistently indicated that LRS values were significantly

correlated with stromal score, immune score, and ESTIMATE score,

which meant high-risk group had higher stromal score, immune

score, and ESTIMATE score (Figures 8A, C, E). Meantime, the results

revealed that tumor purity of high-risk group was significantly lower
A B

D E

C

F G H

FIGURE 4

Prognostic predictive performance of LRS and nomogram construction. (A–C), ROC curves for predicting 1-, 2-, 3-year overall survival in TCGA-validation
group, CGGA, and WCH cohort; (D), overall survival prediction based on clinicopathological variables in TCGA-validation cohort. (E), Nomogram
construction based on independent prognostic clinical variables; (F–H), Calibration curve for assessing the performance of nomogram in entire TCGA,
CGGA, and WCH cohort respectively. LRS, lipid metabolism risk score; ROC, receiver operator characteristic.
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than low-risk group (Figures 8B, D, F). Together, these results suggest

higher infiltration of non-tumor stromal and immune cells in the LRS

high-risk gliomas.

Analysis from CIBERSORTx indicated that high-risk group had

higher proportions of CD8 T cells, resting memory CD4 T cells, T

follicular helper cells, regulatory T cells (Tregs), resting NK cells, all

kinds of macrophages (M0, M1, M2), resting mast cells, and

neutrophils. While low-risk group had higher proportions of

plasma cells, naïve CD4 cells, activated memory CD4 cells,
Frontiers in Immunology 09
activated NK cells, monocytes, activated mast cells, and eosinophils

(Figure 8G). Correlation analysis between the predicted immune cells

fractions and expression of prognostic LMRGs revealed prominent

correlations of M2 and plasma cells with the expression of GNAI3,

GLB1, and ACADSB. (Figure S4A).

Representative immune checkpoint molecules including PD-1

(CD279), PD-L1 (CD274), CTLA-4 (CD276) were also investigated

for association with LRS in entire TCGA cohort. The results of

pairwise correlation relationship between the expression of ICPs
A

B D

E F G

H I

C

FIGURE 5

Relationship between LRS and clinicopathological variables. (A), waterfall plot depicted relationship between LRS, 11prgnostic LMRGs and
clinicopathological variables; Relationship between LRS and clinicopathological variables including gender (B), WHO grade (C), IDH mutation status
(D), ATRX mutation status (E), MGMT promoter status (F), TERT promoter status (G), 1p19q codeletion status (H), and histology (I). LRS, lipid metabolism
risk score; LMRG, lipid metabolism-related gene. ns, non-significant. *** p<0.001, **** p<0.0001 in the current study.
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and LRS were highly correlated (Figure 8H). Elevated LRS was

significantly related to higher ICP expression levels in the vast

majority of ICPs. Similar results were replicated in CGGA and

WCH cohort (Figures S4B, C).

The above results indicated that compared with low-risk group,

high-risk group a more immunosuppressive and complicated TME.
Therapeutic response prediction based on
LMRG risk group

Based on the results of the TIDE algorithm, we found that

compared with the low-risk group, the high-risk group possessed a
Frontiers in Immunology 10
larger proportion of glioma patients who were potentially more

sensitive to ICBs in TCGA (Figure 9A) and CGGA (Figure 9B)

cohorts. Same results emerged in WCH cohort (Figure 9C), but

there existed no significant difference between the two risk groups.

The second-generation alkylating agent temozolomide (TMZ) is

the first-line chemotherapeutic drug for glioma patients, which has

shown good performance in prolonging OS and delaying disease

progression (27). pRRophetic was implemented to assess the

sensitivity of TMZ for glioma treatment based on different risk

groups. The results indicated that glioma patients in low-risk group

was more sensitive to the treatment of TMZ in all 3 cohorts

(Figures 9D–F). In retrospective Kaplan-Meier analysis of patients

in the TCGA cohort who have received radiotherapy, the LRS low-
A

B

D

C

FIGURE 6

Genetic alterations of prognostic LMRGs in gliomas. (A), somatic mutations of 11 prognostic LMRGs; Top 20 genes with highest degree of mutations in low-
risk group (B) and high-risk group (C); (D) CNV analysis of low- and high-risk group. LMRG, lipid metabolism-related gene; CNV, copy number variation.
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risk gliomas had significantly better outcome compared to the LRS

high-risk gliomas. However, the survival benefit from TMZ was

significant in patients with LRS high-risk gliomas but not LRS low-

risk gliomas (Figure 9G).
Discussion

Transcriptome is a useful and practical tool in researching

metabolism-related issues in spite of the difficulty in measuring and
Frontiers in Immunology 11
investigating them in a direct way. In the current study, by utilizing RNA-

seq data from clinical specimens, we introduced an innovative lipid

metabolism-related gene signatures in gliomas and elucidated their

function in prognosis prediction and the association with TME

immune characteristics. Taking advantage of a huge amount of

bioinformation, we successfully depicted the prognostic and immune

landscape in glioma patients based on LMRGs. These reflected that lipid

metabolism reprograming in gliomas not only affect disease progression,

but also participated in the remolding of TME immune populations.
A B

D E

C

FIGURE 7

Functional enrichment analysis of DEGs from low- and high-risk groups. Top 10 over-represented KEGG pathways (A) and Hallmark pathways (B);
(C), Association between LRS and expression of Hallmark gene sets based on GSVA; Top 5 KEGG (D) and Hallmark gene sets (E) with highest normalized
enrichment score based on GSEA.
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A large amount of preclinical and clinical evidence over the years

indicated that hyperactive lipid metabolism not only feed malignant

cancer cells with abundant material and energy supply, but also

participate in a crosstalk with oncogenic signaling pathways (28). In

gliomas, lipid metabolism reprogramming plays important roles in

tumorigenesis, progression, and drug-resistance (29, 30). As shown in
Frontiers in Immunology 12
the LRS formula, the expression of GNAI3, ACACB, ADCY3, and

ACADSB emerged as the most important LMRGs that contribute to

the risk signature of gliomas patients. Meanwhile, the LRS risk level

were found to be associated with differential epithelial/mesenchymal

cellular state in the functional enrichment analysis. These results led

us to hypothesize on a model in which reprogrammed lipid
A B

D

E F

G

H

C

FIGURE 8

Impact of LRS on TME immune landscape. ESTIMATE (A–F) and CIBERSORTx (G) algorithm for evaluating TME immune characteristics of glioma;
(H), Expression level of ICPs in low- and high-risk groups in TCGA cohort. ** p<0.01, *** p<0.001, **** p<0.0001 in the current study.
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metabolism supply a large amount of free fatty acids (FFA), acyl-CoA,

acetyl-CoA, and other downstream products to promote malignant

behaviors of tumor cells in the high-LRS gliomas (Figure S5).

Consistent with this hypothesis, Shakya et al. observed elevated

level of polyunsaturated fatty acids in the glioma stem cells

compared to the non-stem cells, which coincided with reduced lipid

droplet accumulation and neutral lipids (31). Additionally, our GSVA

and TMZ sensitivity prediction results also suggest that the lipid

metabolic shift with increasing LRS may contribute to the progression

and drug-resistance of gliomas by promoting synthesis, saturation

and plasticity of cell membrane, as well as histone acetylation of the

cancer genome (32, 33). Indeed, the Kaplan-Meier analysis here

found that under adjuvant radiotherapy plus TMZ, the LRS low-

risk gliomas had significantly better outcome than those in the LRS

high-risk group. However, when comparing patients receiving

adjuvant radiotherapy with or without TMZ, no significant
Frontiers in Immunology 13
difference was observed in LRS low-risk group. This could be

attributed to retrospective nature of the analysis where baseline risk

differences may exist between patients receiving adjuvant TMZ or not

for less aggressive gliomas, for example, comorbidity status and extent

of resection. Therefore, prospective randomized trials are need to

elucidate the confusion.

The impact of reprogrammed lipid metabolism is not restricted to

cancer cells, but also implies changes in other cell types in TME (34).

Specifically, accumulation of FFA in the TME could provide survival

advantage to cells that favor fatty acids as energy source (19). Besides,

growing evidence has shown that lipid metabolism causes transient

generation or accumulation of toxic metabolites which leads to

endoplasmic reticulum stress and then regulate the epigenetic

modification of immune checkpoints (35). Lipid metabolism can

also influence exosome transportation of checkpoints and the

degradation of checkpoints (35). In addition, immune cells in TME
A B

D E F

G

C

FIGURE 9

Therapeutic response prediction based on LMRG risk group. (A–C), TIDE algorithm for predicting therapeutic response of ICB for glioma patients in three
cohorts; (D–F), pRRophetic for evaluating the sensitivity of TMZ for glioma treatment in three cohorts; (G). K-M curves for evaluating prognosis patients in
LRS low- and high-risk groups receiving radiotherapy with or without TMZ. LMRG, lipid metabolism-related gene; TIDE, Tumor Immune Dysfunction and
Exclusion; ICB, immune checkpoint blocker; K-M, Kaplan-Mier; TMZ, temozolomide. ns, non-significant. *** p<0.001, **** p<0.0001 in the current study.
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like B cells (36), macrophages (37), infiltrating T cells (38), and NK

cells (39) are all undergo the above-mentioned regulation caused by

lipid metabolism, which is beneficial for tumor cells escaping

immunological surveillance. Cancer-associated fibroblasts also

involve in lipid secretion for cancer cell catabolism and lipid

signaling (40). The associations between the tumor immune and

lipid metabolism have been extensively studied in many cancers,

including lung adenocarcinoma (41), colorectal carcinoma (42),

hepatocellular carcinoma (43), etc. However, different to previously

identified LMRGs in other cancers, the functional implications of

gliomas LMRGs in the FFAmetabolism suggest that the FFA enriched

TME could be the potent ia l pr imary cu lpr i t for the

immunosuppressive TME of gliomas (Supplementary Figure 5).

In the current study, we found the representative ICP genes

expression PD-1, PD-L1, CTLA-4 were different in specific LMRG

risk group and the difference was significantly related to prognosis.

For various tumor types, the PD-1/PD-L1 axis is the major speed-

limiting step of the anti-cancer immune response (44). In most cases,

tumors with high expression of PD-1 or PD-L1 have poor prognosis,

but part of them are sensitive to ICI inhibitor, the representative

example is triple negative breast cancer (45). Upregulation of ICP

gene expression could attenuate the activity of immune cells, allowing

cancer cells to escape immunosurveillance and improve their ability

in surviving and metastasis (46). The treatments of anti-PD-1/PD-L1

therapy target gliomas have started in recent years, which most focus

in GBM (47). Although there are many ongoing clinical trials

exploring the efficacy of PD-1/PD-L1 blockades like pembrolizumab

and nivolumab in primary or recurrent GBM, breakthroughs have not

been achieved in improving prognosis due to the relatively

immunosuppressive TME in central nervous system (6).

Consequently, screening and targeting specific TME immunological

patterns of GBMs or other malignant gliomas that are sensitive to

immunotherapies is crucial in future research. Although, we have

enough glioma samples and classify them into different subgroups

with specific TME immune characteristics based on lipid metabolism-

related genes enrichment, most of these patients in TCGA and CGGA

have not received immunotherapy and we cannot make further

analysis about drug susceptibility of these blockers. However,

considering the immunosuppressive features of aberrant lipid

metabolism, it might become therapeutic target in various tumors,

especially in the organs which have high metabolic rate of lipid.

Cutting off lipid supplies and blocking downstream lipid metabolism

are the most practical ways. For example, the combined treatment of

low toxic AMP-activated protein kinase (AMPK) activator and fatty

acid synthase inhibitor synergistically impeded ovarian cancer

peritoneal metastases (48).

There are still some limitations in our study. First, part of patients

was excluded from the research due to incomplete clinic data, which

might lead to selection bias. Second, due to the small number of

patients with recurrent glioma from TCGA and CGGA, we only

included primary gliomas in the research. This might weak the

reliability of current conclusion. Third, because ICIs have not

applied on a large scale in glioma patients, there lacks the relevant

data about immunotherapy, so we can’t make analysis to accurately

predict its therapeutic effects and responses on glioma patients.
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Fourth, it is not clear whether lipid metabolism or LMRGs are the

core driver of remodeling TME, and experimental validation is

needed to address this issue based on reasonable design.
Conclusion

In the current study, we found that the risk model based upon

expression program of lipid metabolism-related genes could

effectively predict prognosis in patients with glioma. A lipid-

metabolism risk score based on the model could divide glioma

patients into different groups with distinct clinical, pathological,

and TME immune characteristics. Our results indicate that

immunotherapy could be beneficial to certain glioma patients with

specific lipid metabolism profile.
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SUPPLEMENTARY FIGURE 1

(A, B), Representative immunohistochemical staining for GNAI3 (A) and
ACADSB (B) in high- and low-grade glioma from the Human Protein Atlas

(https://www.proteinatlas.org/). (C–E), Distributions and optimal cutoffs of LRS
in TCGA-training group (C), CGGA (D), and WCH (E) cohorts. TCGA, The cancer
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Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China
Hospital; LRS, lipid metabolism risk score.

SUPPLEMENTARY FIGURE 2

(A), Overall survival prediction based on clinicopathological variables in CGGA

cohort; (B, C), Nomogram construction in CGGA and WCH cohorts. CGGA,
Chinese Glioma Genome Atlas; WCH, West China Hospital.

SUPPLEMENTARY FIGURE 3

(A), GSVA in low- and high-risk groups based on KEGG pathway. (B-D), GO
enrichment analysis. Abbreviation: GSVA, gene set variation analysis; KEGG,

Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology; BP, biological

process; MF, molecular function; CC, cellular component.

SUPPLEMENTARY FIGURE 4

(A), LMRGs affected TME immune cells population; (B, C), Expression level of

ICPs in low- and high-risk groups in CGGA and WCH cohorts. LMRG, lipid
metabolism-related gene; TME, tumor microenvironment; ICP, immune

checkpoint CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital.

SUPPLEMENTARY FIGURE 5

Hypothetical mechanism models for the functional implications of LRS. The

elevated G-couple protein GNAI3 induces production of cAMP by Adenylate

Cyclase 3 (ADCY3), which promotes degradation of triglycerides (TG) and
diglycerides (DG) release of free fatty acids (FFA) from lipid droplets (LD). The

FFA were converted to acyl-CoA, acetyl-CoA, and other downstream products
to facilitate malignant behaviors of high LRS gliomas, or enter the tumor-

microenvironment (TME) to convey an immunosuppressive niche.

SUPPLEMENTARY TABLE 1

Lipid metabolism -related pathway retrieved from MSigDB. MSigDB, Molecular
Signature Database.

SUPPLEMENTARY TABLE 2

Lipid metabolism-related genes and corresponding lipid metabolism pathway.

SUPPLEMENTARY TABLE 3

DEGs between gliomas and normal brains in TCGA cohort. DEG, different

expression gene; TCGA, The cancer Genome Atlas.
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