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Expression patterns of eight
RNA-modified regulators
correlating with immune
infiltrates during the
progression of osteoarthritis

Ziyi Chen †, Wenjuan Wang † and Yinghui Hua*

Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
Background: RNA modifications in eukaryotic cells have emerged as an exciting

but under-explored area in recent years and are considered to be associated with

many human diseases. While several studies have been published relating tom6A

in osteoarthritis (OA), we only have limited knowledge of other kinds of RNA

modifications. Our study investigated eight RNA modifiers’ specific roles in OA

including A-to-I, APA, m5C, m6A, m7G, mcm5s2U, Nm andY together with their

relationship with immune infiltration.

Methods: RNA modification patterns in OA samples were identified based on

eight-type RNA modifiers and their correlation with the degree of immune

infiltration was also methodically investigated. Receiver operating characteristic

curves (ROC) and qRT-PCR was performed to confirm the abnormal expression

of hub genes. The RNA modification score (Rmscore) was generated by the

applications of principal component analysis (PCA) algorithm in order to quantify

RNA modification modes in individual OA patients.

Results:We identified 21 differentially-expressed RNAmodification related genes

between OA and healthy samples. For example, CFI, CBLL1 and ALKBH8 were

expressed at high levels in OA (P<0.001), while RPUSD4, PUS1, NUDT21, FBL and

WDR4 were expressed at low levels (P<0.001). Two candidate RNA modification

regulators (WDR4 and CFI) were screened out utilizing a random forest machine

learning model. We then identified two distinctive RNA modification modes in

OA which were found to display distinctive biological features. High Rmscore,

characterized by increased immune cell infi l tration, indicated an

inflamed phenotype.

Conclusions: Our study was the first to systematically reveal the crosstalk and

dysregulations eight-type of RNAmodifications in OA. Assessing individuals’ RNA

modification patterns will be conductive to enhance our understanding of the

properties of immune infiltration, provide novel diagnostic and prognostic

biomarkers, and guide more effective immunotherapy strategies in the future.

KEYWORDS

osteoarthritis (OA), RNAmodification regulators, immune infiltration, m7Gmethylation,
alternative polyadenylation (APA), m6A methylation
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Introduction

Osteoarthritis (OA) is the most common arthritis leading to

ache, joint destruction, and eventually handicap; women and the

aged are disproportionately affected by this disease (1–3). The

combined effects of an aging global population, the increasing

incidence of obesity and numbers of joint trauma have led to this

disease becoming much more prevalent, with a minimum of 500

million people estimated to be affected by OA worldwide (1, 2). This

disease imposes a substantial health burden on the individuals,

health-care systems and socioeconomic system (4). Clinical

diagnosis involving a combination of basic symptoms and a brief

physical examination is the gold standard for confirming OA (1);

sometimes, a plain radiograph is needed for diagnosis if the clinical

manifestation is atypical (5). However, effective diagnostic criteria

at early stage are missing. Nowadays typical treatment is

characterized as palliative and reactive, rather than proactive and

preventive (1). Joint replacement surgery can be applied when OA

advances into end-stage but is accompanied by high mortality,

complications and the risk of symptom reservation (6–9).

Altogether considering the increased number of individuals

affected by OA, the lack of an option to diagnose OA early, the

absence of effective treatments, there is a clear and urgent need to

figure out novel biomarkers in diagnosing OA.

Despite the lack of early diagnosis and a limited understanding

of the OA pathogenic mechanisms, a growing body of clinical and

experimental evidence has shown how crucial immune cells and

immunological-related pathways are to the development of OA

(10). Studies demonstrated that excessive inflammatory response

participates in the progression of OA with innate immune cells

taking part in the early inflammatory response and adaptive

immune cells contributing to the chronic and relapsing course of

inflammation (11–13). Therefore, analyzing the important roles

played by immune cells and immunological-related pathways in the

development of OA may offer a potential avenue for OA patients’

diagnosis and care.

As is well-known, the epigenetic modification plays a significant

role in directing and maintaining distinctive cellular phenotypes

(14). With advances in multiple sequencing technology, the role of

RNA modifications in the happening and progression of many

diseases such as multiple cancers, cardiovascular disorders,

metabolic diseases, mitochondrial-related defects and so on has

been increasingly elucidated (15). Particularly, it has been suggested

that inflammatory diseases including OA may be related to RNA

modification (16). Up to now, more than 170 types of RNA

modifications have been detected in eukaryotes; many of these

have been shown to be strongly related to various diseases (17). N6-

methyladenosine (m6A), N1-methyladenosine (m1A), 5-

methylcytidine (5mC), 7-methylguanosine (m7G), alternative

polyadenylation (APA), 2′-O- methylation (Nm), uridine-to-

pseudouridine (Y), adenosine-to-inosine transition (A-to-I), and

5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) have all been

commonly investigated over recent years for their respective roles in

the progression of disease (14, 18–20). Previous research found that

targeted inhibition of m6A regulator—METTL3 could attenuate the

senescence of synovial fibroblasts and limit OA progression (21).
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However, there is a lack of similar studies relating to other types of

RNA modifications.

Molecular classifications of OA could accelerate the

development of pre-diagnosis and individual-based target

therapeutics for patients. For example, Yuan et al. grouped OA

patients into four subpopulations with different biological and

clinical features (glycosaminoglycan metabolic disorder, collagen

metabolic disorder, activated sensory neuron and inflammation)

according to the unsupervised clustering analysis of the cartilage

transcriptome (22). Lv et al. also proposed the novel knee OA

(KOA) molecular classification that was able to make a diagnosis of

early KOA patients, predict high-risk KOA individuals, select

individual-based appropriate therapy and assess therapeutic

efficacy (23). However, as yet, nothing is known about the

molecular modification of OA based on RNA modification.

Therefore, we are the first to identify RNA modification

patterns in OA patients, comprehensively explore their

correlation with immune infiltration and establish a specific

rating system to quantize individuals’ pattern. Our study

emphasized the significance of RNA modification in OA and

offered potential therapy for OA patients in the future.
Materials and methods

Data source and differentially expressed
genes acquirement

We downloaded the GSE51588 dataset containing 30 OA and

10 normal sub-chondral samples from the Gene Expression

Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/).

Our study selected nine types of RNA regulators that have been

widely analyzed (14, 18, 19). The nine gene sets of 109 RNA

modification regulators were previously identified by Mao et al.

(14) and Chen et al. (19), and are listed in Table S1. Finally, a gross

of 44 RNA regulators, belonging to eight types of RNA

modifications (m6A, APA, m5C, Nm, m7G, Y, A-to-I and

mcm5s2U) were included in our study. These modifiers consisted

of 4 erasers, 8 readers and 32 writers.

Differentially-expressed RNA modification regulators between

OA and normal were screened out by the application of the “limma”

package of R software (version 4.1.1) with the criteria setting as a |

log fold change (FC)| >1 and P<0.05 (24, 25). The chromosomal

localization of eight types of RNA modification regulator genes was

visualized using the R circos package (26).
Random forest analysis and the screening
of feature genes

To anticipate the risk and severity of OA, we constructed a

training model adopting both support vector machine (SVM) and

RF methods. After comparing the accuracy of the two models, the

RF method was then selected to screen candidate RNAmodification

regulators using the R library “randomForest” with “mtry” and

“ntree” setting to 3 and 500, respectively (27). The best “ntree” was
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selected according to the minimum cross-validation error of 10-fold

cross-validation, and the significance between the differentially

expressed RNA modification regulators and the best “ntree” were

evaluated. We then constructed a nomogram using the ‘rms’

package (28, 29) and performed three kinds of analyses to

evaluate the efficacy of our model.
Hub genes identification

With the aid of box plots, hub gene expression levels in OA and

healthy individuals were evaluated. The pROC package in R was

used to generate the receiver operating characteristic (ROC) curve

and the area under the ROC curve (AUC) was calculated in order to

assess the diagnostic performance of each candidate gene.

Furthermore, a distinct external dataset was used to validate the

hub genes’ expression levels and diagnostic utility (GSE55457).

In situ synovial tissues from 3 patients with meniscal injuries and

OA were collected through arthroscopy in Huashan hospital. The

study followed the guidelines of the 1975 Declaration of Helsinki and

was approved by the ethics committee of Huashan Hospital

(KY2020-060). Using Trizol, total RNA was extracted from

synovial tissue samples (Thermo, California, USA). Following

quality checks, PrimeScriptTM RT Master Mix was used to

reverse-transcribe total RNA to complementary DNA (cDNA)

(TaKaRa, Tokyo, Japan). SYBR Green Master Mix (Thermo,

California, USA) and cDNA were used in accordance with the

manufacturer’s instructions to perform qRT-PCR for pertinent

genes. Table S2 displays the target genes’ primer sequences. Genes

were adjusted to GAPDH’s value. Using the 2–DDCT approach, the

relative expression of mRNA was determined. Each experiment was

carried out three times as technical replicates.
Identification of RNA modification clusters

Unsupervised consensus clustering was conducted applying the

‘ConsensusClusterPlus’ package to identify RNA modification

(RM) clusters based on 44 RNA modification regulators (30). The

principal component analysis (PCA) was conducted to verify the

results (31).
Single-sample gene-set enrichment
analysis

The ssGSEA method was performed to assess the infiltration of

23 immune cells in the two distinct RM clusters (32).
Functional enrichment analysis of DEGs
between RM distinct phenotypes

Gene Ontology (GO) analysis (www.geneontology.org/) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
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(www.genome.jp/kegg/pathway.html) of DEGs between the two

RM clusters were conducted using the ‘clusterProfiler’ and

‘enrichplot’ packages of R (25). The P value < 0.05 was regarded

as significantly enriched.
Generation of RNA modification score

We then generated gene clusters applying consensus clustering

based on the DEGs between two RM clusters. DEGs between OA

and normal subjects were then selected to construct a scoring

system using PCA. Each principal component 1 was added for

score calculation.

Rmscore =oPC1i
Correlation between an RNA modification
gene signature and immune filtration and
other related biological processes

We analyzed the correlation between gene clusters and RNA

modification, Rmscore, immune filtration and senescence process.

The infiltration of 23 immune cells in the two RNA modification

gene clusters was assessed using the ssGSEA method to further

demonstrate the connection between the RNA modification gene

signature and immune cells. The gene expression of some OA-

related inflammatory cytokines and senescence cytokines in the two

gene clusters and the two RM clusters was then identified

and visualized.
Statistical analysis

All statistical analyses in our study were conducted with R

software, version 4.1.1. The Wilcoxon test was performed for

groups comparisons, and an adjusted P < 0.05 was defined as a

significant difference. For all figures: * represents p < 0.05, **

represents p < 0.01, and *** represents p < 0.001.
Results

The relationships between eight-type RNA
modification regulators and OA

To elucidate the RNA modification changes associated with

OA, differential expression analysis was performed using data in the

GSE51588 dataset. Then, we extracted a gross of 21 RNA

modification DEGs in OA patients (n=30) and normal subjects

(n=10). Figure 1A demonstrated the distribution of DEGs between

OA patients and healthy subjects. Analysis showed that METTL3

(P<0.05), FTP (P<0.05), ZC3H13 (P<0.01), CFI (P<0.001), CBLL1

(P<0.001) and ALKBH8 (P<0.001) expressed higher in OA. In
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contrast, NOP2 (P<0.05), IGFBP3 (P<0.05), PUS3 (P<0.05),

RPUSD3 (P<0.05), TETE2 (P<0.01), TET3 (P<0.01), METTL1

(P<0.01), RPUSD4 (P<0.001), PUS1 (P<0.001), NUDT21

(P<0.001), FBL (P<0.001) and WDR4 (P<0.001) were expressed at

low levels in OA. Boxplots were used to display the differences in

gene expression for each type of RNA modification between groups;

circos plots were also used to show the position of genes on the

chromosomes (Figures 1B–I).
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The construction of predictive models for
OA using the SVM and RF methods

Boxplots of residuals (Figure 2A), reverse cumulative distribution

of residuals (Figure 2B), and ROC curve analysis (Figure 2C) revealed

that RF exhibited significantly high predictive capability. According

to the minimum cross-validation error in 10-fold cross-validation,

the best ‘ntree’ was selected (Figure 2D). In total, we identified 21
B C

D E

F G

H I

A

FIGURE 1

Expression characteristics and gene localization of RNA modification regulators. (A) Heat map showing the expression characteristics of RNA
modification regulators in OA tissues and normal tissues. Red shows high expression levels while blue shows low expression levels; (B–I) box plot
showing differences in the expression of A-I, APA, m5C, m6A,m7G, mcm5s2U, Nm and Y modification regulators in OA and normal tissues, and the
position of their genes on the chromosome, respectively. (for all figures: * represents p <0.05, ** represents p <0.01 and *** represents p <0.001).
OA, osteoarthritis, A-I, adenosine-to-inosine; APA, alternative polyadenylation.
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RNA modification regulators and ranked them according to their

importance (Figure 2E).

To predict the probability of OA, we constructed a nomogram

evaluation mode based on 2 RNA modification regulators (WDR4

and CFI) (Figure 2F). Calibration curves (Figure 2G), decision curve

analysis (DCA) (Figure 2H) and clinical impact plots (Figure 2I)

proved the nomogram to be an ideal model for OA.
Identification of hub gene expression levels
and diagnostic value

In contrast to healthy controls, OA tissues had significantly

greater levels of CFI and lower levels of WDR4 (Figure 3A). The

expression levels of these four hub genes were then further verified

in the GSE55457 external dataset (Figure 3B).

The two hub genes’ AUC values were compared for ROC curve

analysis in order to evaluate their sensitivity and specificity for the

diagnosis of OA. AUC values > 0.6 for all hub genes indicated their
Frontiers in Immunology 05
relatively good diagnostic value for OA (Figure 3C). The diagnostic

value of the four hub genes listed above was further confirmed in

the GSE55457 dataset to ensure their generalizability (Figure 3D).

In our qRT-PCR analyses, we also found that CFI were more

highly expressed in OA, while WDR4 was higher in healthy

controls (Figure 3E).
Identification of two distinct RM clusters

We identified two RM clusters (RM cluster A and RM cluster B)

based on 21 RNA modification regulators (Figure 4A). Figure 4B

displayed differentially expressed genes in the two RM clusters.

Specifically, the boxplot showed that CBLL1 (P<0.05) and IGF2BP3

(P<0.5) expressed higher in RM cluster A, while NKAP (P<0.05),

FBL (P<0.05), WDR4 (P<0.05), FTO (P<0.001), METTL1,

(P<0.001), PUS3 (P<0.001) and CFI (P<0.001) in RM cluster B

(Figure 4C). PCA verified the two RM clusters to be

reasonable (Figure 4D).
B C

D E F

G H I

A

FIGURE 2

SVM and RF methods were used to construct OA predictive models. (A, B) Boxplot of the residual distribution (A) and reverse cumulative distribution
of residuals (B) as a function of the values of observed sensitivity between RF and SVM. (C) ROC curves showing predictions for the SVM and RF
models. (D) RF prediction error curves based on 10-fold cross-validation. (E) The importance of the 21 RNA modification regulators based on the RF
model. (F) Nomogram of the predictive model based on two RNA modification regulators. (G) Calibration curves showing that the nomogram model
may be an ideal predictive model for OA. (H, I) DCA (H) and clinical impact plots (I) were used to determine the clinical utility of the risk prediction
nomograms. SVM, support vector machine; RF, random forest; OA, osteoarthritis; ROC, receiver operating characteristic; DCA, decision curve
analysis; RM, RNA modification.
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Immune infiltration in RM clusters

More significant infiltration of activated B cells (P<0.01),

activated CD8+ T cells (P<0,001), eosinophils (P<0.01), immature

B cells (p<0.01) and natural killer (NK) T cells (p<0.01) was

detected in RM cluster A (Figure 4E). Moreover, we analyzed the

correlation between gene expression of the 21 RNA modification

regulators and immune infiltration (Figure 4F). Specifically,

NUDT21 was positively related to gamma delta T cells (P<0.01),

regulatory T cells (P<0.05), T follicular helper cells (P<0.01) and

type 2 T helper cells (P<0.001), and negatively related to neutrophils

(P<0.05) (Figure 4G).
Function enrichment analyses of
RM clusters

Venn diagram analysis identified 398 DEGs between the two

RM clusters (Figure 4H). GO annotation and KEGG pathway

analyses were performed based on the DEGs between the two RM

clusters to perform gene functional enrichment analysis. Biological

process (BP) analysis showed that the DEGs were markedly

enriched in extracellular matrix organization, extracellular
Frontiers in Immunology 06
structure organization, external encapsulating, structure

organization, ossification, leukocyte migration, myeloid leukocyte

migration, granulocyte migration, positive regulation of leukocyte

migration and lymphocyte migration. With regards to the

molecular function (MF) of GO terms, DEGs were mostly

connected with collagen-containing extracellular matrix,

endoplasmic reticulum lumen, collagen trimer, distal axon,

basement membrane, voltage-gated potassium channel complex,

complex of collagen trimers, glial cell projection, fibrillar collagen

trimer and banded collagen fibril. With regards to cellular

components (CC), the DEGs were significantly related to receptor

ligand activity, signaling receptor activator, extracellular matrix

structural constituent, cytokine activity, G protein-coupled

receptor binding, integrin binding, extracellular matrix, structural

constituents, conferring tensile strength frizzled binding and

chemokine activity (Figures 4I, J). The KEGG results exhibited

that the DEGs were primarily connected with cytokine-cytokine

receptor interaction, human papillomavirus infection, protein

digestion and absorption, rheumatoid arthritis, ECM-receptor

interaction, the Wnt signaling pathway, breast cancer, chemokine

signaling pathways, the IL-17 signaling pathway, viral protein

interaction with cytokine and cytokine receptor and the NF-

kappa B signaling pathway (Figure 4K).
B

C D

E

A

FIGURE 3

Validation of hub genes in the gene expression level and diagnostic value. (A) Validation of hub genes in the GSE51588. CFI were significantly more
highly expressed in OA compared with healthy controls, while WDR4 was significantly lower expressed in OA tissues compared with healthy
controls. (B) Validation of hub genes in the GSE55457 and the results were the same as the results of the GSE51588. (C) Validation of hub genes in
the GSE51588. ROC curves and AUC statistics are used to evaluate the capacity to discriminate OA from healthy controls with excellent sensitivity
and specificity. (D) Validation of hub genes in the GSE55457 and the results were similar to the results obtained from GSE51588. (E) The relative
mRNA expression of WDR4 and CFI were displayed. For all figures: * represents p <0.05, ** represents p <0.01 and *** represents p <0.001. OA,
osteoarthritis; ROC, receiver operating characteristic; AUC, area under the curve.
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FIGURE 4

Identification of two distinct RM clusters, immune cell infiltration, and GO and KEGG pathway enrichment analyses. (A) Consensus clustering matrix
of OA samples for k=2. The OA patients were divided into two clusters: RM clusters A and B. (B, C) Boxplot (B) and heat map (C) showing differential
gene expression in the two RM clusters. (D) PCA was used to verify the two distinct RM clusters. (E) Box plot showing the infiltrating immune cells in
the two RM clusters. (F) Heat map of the correlation between the expression of the 21 RNA modification regulators and immune cells infiltration by
the ssGSEA method. (G) WDR4 was negatively correlated with activated B cells (P<0.05), immature B cells (P<0.05) and eosinophils (P<0.01) and
positively related to activated CD4+ T cells (P<0.05) and CD56 bright natural killer cells (P<0.05). (H) Venn diagram showing 398 differential genes
between the two RM clusters. (I) Bubble diagram showing the top 10 terms of GO categories for BP, MF and CC. (J) The circlize diagram showing
GO term analysis for BP, MF and CC. The first lap indicates the top 10 GO terms; the number of genes corresponds to the outer lap. The second lap
indicates the number of genes in the genome background and P values for enrichment of the differential genes for the specified BP, MF and CC
terms. The third lap indicates the number of selected genes for each GO term. The fourth lap indicates the enrichment factor for each GO term.
(K) Bubble diagram showing KEGG enrichment analysis of differential genes between the two RM clusters. (for all figures, * represents p <0.05, **
represents p <0.01 and *** represents p <0.001) RM, RNA modification; OA, osteoarthritis; PCA, principal component analysis; GO, gene ontology;
KEGG, Kyoto Encyclopedia of Gene and Genome; BP, biological process; MF, molecular function; CC, cellular component.
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Generation of RNA modification
gene clusters

To explore the correlation between immune infiltration

differences and expression patterns, unsupervised clustering was
Frontiers in Immunology 08
utilized based on the DEGs between the RM clusters. Clustering

results grouped the patients into two gene clusters (gene cluster A

and gene cluster B) (Figure 5A). A heatmap showing the DEGs in

gene clusters A and B (Figure 5B). Boxplot showed gene expression

differences of 21 RNAmodification regulators between the two gene
B

C D

E F

G

H

A

FIGURE 5

Construction of RNA modification regulator signatures. (A) Consensus clustering matrix of overlapping RNA modification regulators phenotype-
related genes in OA patients for k=2. The OA patients were classified into different genomic subtypes, termed as gene clusters A and B. (B) Heatmap
showing the RM cluster differential gene expression for the two gene clusters A and B. (C) Boxplot showing the expression of RNA modification
regulator differential genes between OA and normal samples. (D) Boxplot showing the infiltrating immune cells in the two gene clusters. (E) The
Rmscore in the two gene clusters and RM clusters. Kruskal-Wallis tests were applied for testing statistical differences. (F) Alluvial diagram showing
the changes of RM clusters, gene clusters and Rmscore. (G) Boxplot showing the immune-related gene expression in the two gene clusters and RM
clusters. (H) Boxplot showing the senescence-related gene expression in the two gene clusters and RM clusters. (for all figures, * represents p <0.05,
** represents p <0.01, *** represents p <0.001) OA, osteoarthritis; RM, RNA modification; Rmscore, RNA modification score.
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clusters (Figure 5C). METTL3, ZC3H13, CBLL1, TET2 and

ROUSD4 expressed higher in gene cluster A, while FTO,

METTL1, WDR4, RPUSD1 and CFI expressed higher in gene

cluster B.
Generation of RNA modification scores

We then constructed the Rmscore using PCA based on DEGs

between the two RM clusters to further evaluate individuals’ RNA

modification patterns and immune infiltration. Next, we found that

Rmscore correlated with RM (P=0.00053) and gene clusters

(P=0.00014); RM cluster A and gene cluster A showed higher

Rmscores (Figure 5E). The changes of individual patients in the

GSE51588 dataset were shown in Figure 5F.
Immune infiltration and other functional
annotations of RNA modification
gene signatures

Similar to RM cluster analysis, more significant infiltration of

activated CD8+ T cells (P<0,001), eosinophils (P<0.001), immature

B cells (p<0.001), NK T cells (p<0.05), T follicular helper cells

(P<0.01) and type 1 T helper cells (P<0.01) was detected in gene

cluster A (Figure 5D). A boxplot was used to show the differences in

gene expression of 6 OA-related inflammatory cytokines (IL13RA1,

IL13RA2, IL1B, TNF, IL17B, IL17RA) and senescence genes (SOX5,

CDK1, IGFBP4, IGFBP5, IGFBP6, MAPK12, RB1, GADD45A,

FOXO1 and TLN2) in the two gene clusters (Figures 5G, H).

IL1B, TNF and FOXO1were highly expressed in gene cluster A

and RM cluster A; in contrast, CDK1, IGFBP4 and IGFBP6

expressed higher in gene cluster B and RM cluster B. In

conclusion, RNA modification patterns correlated with an

inflamed phenotype.
Discussion

OA is a progressive and inflammatory disease issue in joint

deterioration (33). RNA modification serves as important post-

transcriptional regulators participates in the biological processes of

eukaryotes and plays a pivotal regulatory role in a variety of diseases

(34). However, the mechanisms underlying the relationship

between RNA modification and immune cell infiltration in the

occurrence and progression of OA have yet to be fully clarified. Our

study aimed to investigate the significant role of RNA modification

regulators in OA, particularly with respect to RNA modification

and immune infiltration, and construct models or scoring systems

to quantify RMmodification patterns in individuals with high levels

of accuracy (35, 36).

A total of 21 RNA modification DEGs between OA (n=30) and

normal subjects (n=10) were extracted using a gene expression
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matrix. Firstly, we detected the levels of 44 RNA modification

regulators for total RNAs in OA and normal tissues and found high

levels of mcm5s2U in OA tissues. In contrast, the levels of m5C,

m7G, Nm and Y levels were higher in normal tissues. As for m6A

level, METTL3, ZC3H13 and FTO expressed higher in OA, while

CBLL1 and IGFBP3 expressed higher in normal subjects. In the case

of APA level, CFI expressed higher in OA while NUDT21 expressed

higher in normal subjects. It was previously reported that m6A

participates in OA by controlling the over expression of IL-6 in

fibroblast-like synoviocytes (FLS), accelerating the senescence of

FLS, inhibiting levels of inflammatory cytokines induced by IL-

1band activating NF-kB signaling in chondrocytes (37, 38).

In the present study, we used SVM and RF methods to screen

out genes associated with risk. RF exhibited substantially high

predictive accuracy when compared to SVM. We established an

RM nomogram to anticipate the occurrence of OA in the light of

RNA modification. CFI and WDR4 were identified as hub genes.

RT-qPCR yielded consistent results, which confirmed our findings.

Different scores were distributed to risk genes such as WDR4 and

CFI. The factor scores were summed to obtain the total score. If the

gross score was no more than 50, the possibility of occurrence of

OA was no more than 0.1; and if the gross score was no less than 70,

the possibility of OA was no less than 0.9.

Two genes-WDR4 and CFI were identified as Rmr hub genes in

OA. M7G is a highly conserved RNA modification found in tRNA,

rRNA, mRNA 5′cap, and internal mRNA regions, and plays a

pivotal role in regulating RNA processing, metabolism, and

function (39). WDR4, a constituent of the human m7G tRNA

methyltransferase complex, has been found to cause impaired tRNA

m7Gmodification and be associated with multiple diseases (40–42).

Lin et al.’s research showed that METTL1/WDR4-mediated m7G

tRNA methylome is required for normal mRNA translation and

embryonic stem cell self-renewal and differentiation (42).METTL1/

WDR4 was reported to have a strong regulatory effect on cancer

(43). An essential post-transcriptional regulation mechanism

known as alternative polyadenylation (APA) transforms RNA

products based on signals from their 3′-untranslated region (3′-
UTR) (44). CFI (cleavage factors I) are made up of CFIm25,

CFIm59, and CFIm68, which bind upstream of the conserved

UGUA motif to facilitate the cleavage reaction. CFIm25 is also

known as NUDT21/nudix hydrolase 21/CPSF5. By looping out the

entire pA region and causing the choice of an APA site, CFIm

binding can act as a main determinant of pA sites (44). Human

haematological, immunological, neurological, and cancerous

illnesses all often modify poly(A) site use (45). For example,

immunodysregulation polyendocrinopathy enteropathy X-linked

(IPEX) syndrome is a primary immunodeficiency and the

dysfunction arises from mutations in FOXP3 leading to APA

(45). However, there is a significant lack of research relating to

WDR4 and CFI in OA; researchers should investigate the possibility

of WDR4 and CFI as a novel biomarker for OA in the future.

We classified our OA patients into two Rmr clusters, gene

clusters and generated Rmscores for individuals. Most patients in
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RM cluster A were further divided into gene cluster A and high

Rmscore group; while patients in RM cluster B were classified into

gene cluster B and low Rmscore group. Our conclusions suggested

that RM cluster A significantly correlated with an inflamed

phenotype whereas cluster B was strongly correlated with a non-

inflamed phenotype. Following enrichment analyses of the two RM

clusters demonstrated that RM regulator expression modes

significantly correlated with biological processes related to

immuno-inflammatory regulation and tissue remodeling.

Significantly greater numbers of infiltrating activated B cells

(P<0.01), immature B cells (p<0.01), activated CD8+ T cells

(P<0,001), natural killer (NK) T cells (p<0.01) and eosinophils

(P<0.01) were found in RM cluster A. Cellular infiltration in

inflamed OA tissue has been reported to be characterized by

activated B cells, for example a study detected antibodies against

cartilage components, native G1 domain of aggrecan and

triosephosphate isomerase (TPI) in OA patients (46); these may

be important mechanisms in cartilage degeneration in OA. T cells

are involved in the pathogenesis of OA because significant T cell

abnormalities have been detected in peripheral blood, synovial fluid,

and synovial membrane of OA patients (47). In addition,

bioinformatic analysis has demonstrated that eosinophils may

participate in OA progression (48); however, the specific function

of eosinophils has yet to be fully elucidated (49). The classification

of OA patients into inflamed and non-inflamed groups based on

RNA modification regulators could be of benefit to early-diagnosis,

prognosis, the individual-based treatment of OA while also

enhancing our comprehension of the pathogenesis of OA and

facilitating the discovery of new targets for immunotherapy.

In addition, some senescence-related genes in OA were

compared in the two RM clusters and gene clusters. CDK1,

IGFBP4 and IGFBP6 expressed higher in gene cluster B and RM

cluster B, whereas FOXO1 was expressed at higher levels in gene

cluster A and RM cluster A. CDK1 is necessary for the normal

proliferation of chondrocytes; the deletion of it results in accelerated

chondrocyte differentiation (50). The effects of IGFBPs which is

independent of IGF includes cell adhesion, growth and apoptosis

(51). FOXO1 is an important regulator in cartilage growth and

tissue homeostasis and in aged tissue and OA cartilage its

expression is decreased (52). Individuals with an inflammatory

phenotype are in a metabolically active state that inhibits cells

from progressing into aging and death. Therefore, RM cluster A

featured an inflamed and a more senescence signature while RM

cluster B was associated with a non-inflamed and a less

senescence phenotype.

However, our study still has some limitations that need to be

illustrated. First, as the data source was a public database, the

sample number of control group and OA group didn’t equivalent,

and input mistakes could not be determined. Second, RT-qPCR was

used to confirm the distinct expression patterns between OA and

healthy samples. However, additional experiments like flow
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cytometry and single-cell sequencing are still required to elucidate

the mechanism in detail.

Our research was the first to systematically investigate the

crosstalk values for eight-type RNA modifiers in immune

landscape during the progression of OA. WDR4 and CFI were

distinguished as novel biomarkers and utilized to construct an OA

predictive model. Two different RNA modification modes and their

connection with immune infiltration were revealed, and a novel

scoring system to quantize RM modification modes in individuals

was constructed. Our study emphasized the importance of eight-

type RNA modifications in OA and offered a new perspective for

future studies of OA.
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