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Weichao Li1, Qiuzhong Long1, Xinyu Dai1, Hongtao Wang1*

and Gang Du1*

1Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University,
Nanning, China, 2Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi
Medical University, Nanning, China, 3Department of Gastrointestinal and Gland Surgery, The First
Affiliated Hospital of Guangxi Medical University, Nanning, China
Background: The spindle and kinetochore associated (SKA) complex, which

plays important roles in proper chromosome segregation during mitosis by

maintaining the stabilization of kinetochore-spindle microtubule attachment

during mitosis, has recently been reported to exert regulatory effects on the

initiation and progression of various human cancer types. Nevertheless, the

prognostic significance and immune infiltration of the SKA family across

cancers have not been well elucidated.

Methods: Using data from three large public datasets, including The Cancer

Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus

databases, a novel scoring system (termed the SKA score) was developed to

quantify the SKA family level across cancers. We then evaluated the prognostic

impact of the SKA score on survival and assessed the effect of the SKA score on

immunotherapy at the pan-cancer level usingmultiomics bioinformatic analyses.

The correlation of the SKA score and the tumor microenvironment (TME) was

also explored in depth. Potential small molecular compounds and

chemotherapeutic agents were assessed by CTRP and GDSC analyses.

Immunohistochemistry was performed to verify the expression of the SKA

family genes.

Results: Our results demonstrated a close correlation between the SKA score

and tumor development and prognosis in multiple cancers. The SKA score was

positively related to cell cycle pathways and DNA replication across cancers,

such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles

and DNA repair. Additionally, the SKA score was negatively related to the

infiltration of various immune cells with antitumor effects in the TME. In

addition, the potential value of the SKA score was identified to predict

immunotherapy response for melanoma and bladder cancer. We also

demonstrated a correlation between SKA1/2/3 and the response to drug

treatment across cancers and the promising potential of the SKA complex and

its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated

that the expression differences of SKA1/2/3 were significant between the breast

cancer group and the paracancerous group.
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Conclusion: The SKA score plays a critical role in 33 cancer types and is highly

related to tumor prognosis. Patients with elevated SKA scores have a clear

immunosuppressive TME. The SKA score may serve as a predictor for patients

receiving anti-PD-1/L1 therapy.
KEYWORDS
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Introduction

SKA1, along with SKA2 and SKA3, constitutes the spindle- and

kinetochore-associated subunit complex. The SKA family is an

indispensable element that stabilizes spindle microtubules

attaching to the kinetochore (KT) and ensures the completion of

the mitosis process (1–4). Notably, dysregulated expression of

SKA1/2/3 was involved in the tumorigenesis and progression

of multiple cancer types such as liver cancer, breast cancer,

cervical cancer and other malignant tumors (5–7), which in turn

can affect the prognosis of cancer patients. High SKA1 expression

contributed to the development and progression of hepatocellular

carcinoma and reflected unfavorable prognosis (3). In breast cancer

(BC), SKA2 is highly expressed and serves as a useful biomarker in

both tumor initiation and progression (4). In addition, a high level

of SKA3 was closely related to the cellular growth, proliferation,

invasion and metastasis of cervical cancer cells and thus linked to

poor prognosis (5). To date, however, most studies on SKA1/2/3 in

cancers are based on a single tumor or single gene. The potential

value for the clinical application of SKA1/2/3, especially in the area

of prognosis and the functional role of pan-cancer, remains to

be explored.

Around or inside the malignant tumor, stromal cells,

endothelial cells, intrinsic cells, lymphocytes and their secreted

active mediators exist, which can interact with malignant tumor

cells, together forming a unique tumor microenvironment (TME)

(8). There is a growing body of studies supporting the important

role of the TME in tumorigenesis, tumor progression, and

treatment efficacy (9, 10). Other studies have shown that immune
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cell infiltration in the TME is associated with the immunotherapy

response (11). For instance, tumor-associated macrophages

(TAMs) can serve as a cancer promoter and reflect an adverse

prognosis for cancers by secreting molecules stimulating tumor

growth (12, 13). In contrast, CD8+ and CD4+ T cells in the TME

exert antitumor effects by recognizing and clearing dysplastic cancer

cells, which are highly related to survival outcomes and

immunotherapeutic responses in cancer patients (14). In addition,

immune checkpoint inhibitors (ICIs) have recently been shown to

be a promising therapy method in advanced cancer patients (15–

17). Inhibition of immune checkpoint targets, including PD-1/PD-

L1, is clinically effective in a variety of cancers (18). However, ICI

therapy only benefits a small portion of cancer patients due to its

low response rates. Therefore, the identification of reliable

biomarkers for screening immunotherapy candidates and

therapeutic targets in cancers is challenging and promising.

In this study, we conducted a comprehensive analysis of SKA1/

2/3 at the pan-cancer level, including gene alterations (mutation,

copy number, methylation), expression, prognostic value, pathway

enrichment, effects on the tumor microenvironment (TME) and

immunotherapy. We further established a scoring system (termed

the SKA score) across cancers to provide more accurate prognostic

information for individual patients. Our study specifically focuses

on the possible impact of the SKA score in cancer and sheds new

light on the biological roles of the SKA complex and the potential of

the SKA score as a therapeutic response indicator and target for

anticancer treatment.
Materials and methods

Data collection

Public data, including the RNA-seq matrix and corresponding

clinical information of The Cancer Genome Atlas (TCGA) and

Genotype-Tissue Expression (GTEx), were downloaded from the

UCSC Xena website (https://xenabrowser.net/datapages/) (19).

Immune infiltration data were collected from the Immune Cell

Abundan c e I d en t ifi e r ( ImmuCe l lA I ) ( 2 0 ) ( h t t p : / /

bioinfo.life.hust.edu.cn/ImmuCellAI#!/) and TIMER2 databases

(21) (http://timer.cistrome.org/) and matched with the clinical

informat ion downloaded from the UCSC Xena. The

immunotherapy-related independent datasets GSE91061 and

IMvigor210 were obtained from the Gene Expression Omnibus
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(GEO) database (https://www.ncbi.nlm.nih.gov) and the website

based on the Creative Commons 3.0 license (http://research-

pub.Gene.com/imvigor210corebiologies).
Differentially expressed gene analysis

First, we investigated the expression heterogeneity of SKA

family-related genes between tumor and nontumor tissues in 31

types of cancers by the “limma” package (22). The obtained results

are displayed in a heatmap, with P >= 0.05 set as white, red for high

expression, blue for low expression, and numerical values

representing logFC values. A functional protein association

network was constructed for SKA1/2/3 using the STRING tool

with high confidence (23).
Somatic copy number alteration and
mutation analysis

To investigate the correlation between the mRNA expression and

genomic alterations of the SKA family, we performed Spearman’s

rank correlation analysis based on the Gene Set Cancer Analysis

(GSCA) database (24) (http://bioinfo.life.hust.edu.cn/GSCA/#/).

GSCA is an integrated database analysis platform that supports the

visualization of genomic and immunogenomic gene set cancer

analysis. Data including single nucleotide variation (SNV),

amplification, homozygous and heterozygous deletion and

amplification were adopted for the assessment and analysis of the

gene mutation status of SKA family genes. Spearman’s correlation

analysis was performed to determine the strength of associations.
DNA methylation analysis

By mining the UCSC database, we obtained DNA methylation

(Illumina Human Methylation 450) data from 33 different types of

tumors for further analyses. For some tumors, Infinium Human

Methylation 450 data were lacking. Differential methylation of 13

pairs of cancerous tissues and normal tissues was analyzed by the

Wilcoxon rank test. Genes with a P-value < 0.05 and logFC < 0 were

regarded as hypomethylated, and those with a P-value < 0.05 and

logFC > 0 were regarded as hypermethylated. Spearman’s

correlation analysis was performed to determine the strength of

the association between methylation and gene expression levels. P <

0.05 was considered significant. All results were generated from the

GSCA online database and presented as dot plots.
Establishment of the SKA score

To assess the prognostic value of the SKA family, the R (version

4.1.1) “GSVA” package was used to perform single-sample gene set

enrichment analysis (ssGSEA) (25) to calculate the SKA score of

each sample across 33 cancer types. The following is the basic

principle of the specific SKA score generation: ssGSEA is a function
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in the R package “GSVA”. For the pan-cancer gene expression

matrix, ssGSEA first sorted the expression levels of all genes in the

sample to obtain its rank among all genes. Then, for the input SKA

family gene set (includes SKA1, SKA2 and SKA3), the genes present

in the expression data are found from the gene set and counted, and

the expression levels of these genes are summed. Then, based on the

abovementioned evaluation, the enrichment score of each gene in

the pathway was calculated, and the gene sequence was further

disrupted to recalculate the enrichment score, which was repeated

1000 times. Finally, the enrichment score was generated according

to the empirical cumulative distribution function (ECDF), that is,

the SKA score. Each sample in pan-cancer has an SKA score value.

The corresponding R code is provided in the Supplementary

Material (Table S1).
Prognostic analysis of SKA score

To analyze the effect of the SKA score on the survival outcomes of

patients, such as overall survival (OS), disease-specific survival (DSS),

disease-free interval (DFI), and progression-free interval (PFI), we

performed univariate Cox regression (UniCox) analyses across 33

cancer types based on the R “survminer” and “survival” packages. We

performed Cox proportional hazards regression analyses and

determined the hazard ratio (HR) with 95% confidence intervals

and corresponding P-values to estimate the prognostic value of the

SKA score in each cancer. The results were represented by a heatmap

using the R “ggplot2” package. The Kaplan–Meier (KM) method was

used to investigate the prognostic value of the SKA score in human

cancers using the R packages limma, survival, and survminer. P < 0.05

was considered significant.
Gene enrichment analysis

To investigate the biological functions of SKA1/2/3 and its role

in 33 cancer types, the R “GSVA” package (26) was used to perform

gene set variation analysis (GSVA) enrichment analysis to assess the

association between the SKA score and 50 HALLMARK pathways

in 33 cancer types according to the MSigDB database (27) (http://

software.broadinstitute.org/gsea/msigdb/index.jsp).
Tumor microenvironment analysis

The TME score, including stromal score, immune score,

ESTIMATE score, and tumor purity score, was computed for

each patient in 33 cancer types using the R “ESTIMATE”

package. In subsequent analysis, we further explored the

correlation between the SKA score and these scores. For further

validation, we obtained TME-related pathways from a previous

study (28), which have been widely used in omics data analysis, and

then calculated corresponding pathway scores to explore the

correlation of the SKA score with immune cell infiltration at the

pan-cancer level. The obtained results were displayed using a

heatmap with the help of the R “ggplot2” package.
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Drug sensitivity analysis

To assess the correlations between the SKA family genes and

small-molecule drugs, we computed the Pearson correlation

coefficients between SKA1/2/3 and the drug sensitivity percentage

using the Genomics of Drug Sensitivity in Cancer (GDSC-https://

www.sanger.ac.uk/tool/gdsc-genomics-drug-sensitivity-cancer/)

(29) and Cancer Therapeutics Response Portal (CTRP-https://

portals.broadinstitute.org/ctrp/) datasets.
Immunohistochemistry

We obtained five breast cancer (BC) or five gastric cancer (GC)

and five paracancerous samples from The First Affiliated Hospital of

Guangxi Medical University for immunohistochemistry. All

patients were diagnosed as BC or GC by pathology.

Clinicopathological data, such as sex and age, were collected. The

study was conducted in accordance with the Declaration of

Helsinki. This study was approved by ethics committee of the

First Affiliated Hospital of Guangxi Medical University, Nanning,

People’s Republic of China. Anti-SKA1/2/3 antibody were

purchased f rom Abcam webs i t e (Cambr idge , MA) .

Immunohistochemical staining method followed the instructions

of manufacturers. Ten visual fields(Scale bar=200mm) were

randomly selected, and two researchers independently read the

images. Hematoxylin stained the cell nucleus blue, and positive

expression of diaminobenzidine (DAB) is brownish yellow.
Statistical analysis

All data are expressed as the mean ± standard deviation (SD)

unless indicated otherwise. Student’s t-test or analysis of variance

(ANOVA) was used to determine the differences among groups. For

patients with the same ID, those ending in -01 are tumor tissues,

and those ending in -11 are paired normal tissues. The method used

is the paired t-test. The R software package (version 4.1.1, https://

www.r-project.org/) was used for the statistical analysis. All

correlations were performed with Pearson’s correlation r, unless

otherwise stated, and the results are mainly displayed in the

heatmaps. The differences were considered statistically significant

when P < 0.05 and were reported as follows: ****P < 0.0001, ***P <

0.001, **P < 0.01, *P < 0.05.
Results

mRNA level and prognostic value of the
SKA family

First, based on the TCGA and GTEx databases, for each SKA

family gene, we explored the differential expression across 33 cancer

types. Table S2 lists the 33 cancer types, their abbreviations and

sample size for each cancer type. Because normal tissue for UVM
Frontiers in Immunology 04
and MESO was absent in TCGA and GTEx, these two cancer types

for which differential analysis was not performed are not shown in

the heatmap. The expression of 3 SKA family genes differed among

31 cancer types, as shown in Figure 1A. From this figure, we know

that the SKA genes were highly expressed in the 30 cancer types,

except for LAML. We speculate that SKA gene expression in LAML

in this cancer type is quite different from that in other tumor types,

which may be due to its hematological disease. Further analysis of

TCGA pan-cancer data revealed a correlation between SKA family

genes (Figure 1B). In Figure 1C, we preliminarily predicted the

protein interactions of SKA1/2/3 through the String website. After

reviewing the related literatures, we had learned some of the

functions of these genes related to SKA family genes in cancer.

CENPF could promote the progression of papillary thyroid

carcinoma by affecting cell proliferation and apoptosis and the

high expression (30) of CENPF was associated with the poor

prognosis of breast cancer and bone metastasis (31). Kodama

et al. found that SPDL1 can be regulated by MRTFB to inhibit

the development of colorectal cancer (32). Zeng et al. found that the

expression level of NDC80 in human glioblastoma cells was

significantly higher than that in normal cells and that NDC80

could promote the proliferation and invasion of human

glioblastoma cells (33). Qin et al. also found that BUB1B is highly

expressed in nasopharyngeal carcinoma and that BUB1B can

promote tumor progression by regulating the cell cycle (34). Zhu

et al. found that BUB1 promoted the proliferation of liver cancer

cells by activating the phosphorylation of SMAD2 (35). The above

results shown that these genes also played potential roles in some

types of cancer and the specific pathways or functions involved in

these genes deserved further exploration in the future. In addition,

we conducted a univariate analysis of each SKA family gene in 33

tumors (Figure 2A). Three genes in the SKA family were shown to

be risk factors in tumors, including ACC, KICH, PCPG, MESO,

KIRP, LGG, and LUAD. Kaplan–Meier curve analyses showed that

the overexpression of SKA family genes in multiple cancer types,

such as ACC, KICH, LGG, and LUAD, was related to a poor

prognosis (Figure 2B).
Gene alterations of the SKA family

To explore the mutation status of SKA family genes in various

cancer types, we investigated the SNV profile using GSCALite (24).

SKA3 was identified as a deleterious mutated gene with the highest

frequency in UCEC according to the heatmap of SNV percentage

(Figure 3A). We next assessed the copy number variants (CNVs) of

SKA1/2/3 across cancers. The distribution proportion for the

different CNV types, including heterozygous amplification,

heterozygous deletion, homozygous amplification, and

homozygous deletion, was computed with each SKA family gene

across 33 cancer types (Figure 3B). The landscape of CNVs of the

three SKA family genes is heterozygous amplification and

heterozygous deletion. Figure 3C shows a positive relationship

between the CNV of SKA2 and its mRNA value in 22 of 33

cancer types. The mRNA level of SKA family genes was positively
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related to the CNV of homozygous or heterozygous amplification

but negatively related to the CNV of homozygous or heterozygous

deletion (Figures 3D, E). Furthermore, Figure 4A shows the

methylation landscape of SKA1/2/3 in 33 cancer types. We found

that the methylation levels of SKA1/2/3 differed among 13 cancer

types (Figure 4A). Studies have generally confirmed that the DNA

methylation level of genes is negatively correlated with the mRNA

expression of genes (36, 37). A general negative correlation was

observed between the methylation levels of SKA1/2/3 and their

mRNA levels (Figure 4B). Our results also confirmed

this phenomenon.
Frontiers in Immunology 05
Survival analysis according
to the SKA score

Considering the individual heterogeneity and complexity of

SKA family genes, based on ssGSEA, we constructed a scoring

system to quantify the SKA gene modification pattern of individual

patients in each cancer type in the TCGA cohort, termed the SKA

score. As shown in Figure 5A, TGCT had the highest SKA score,

while KICH had the lowest SKA score. In addition, the SKA score

was found to be elevated in cancer tissues, including BLCA, BRCA,

CESC, CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD,
B

A

FIGURE 2

Univariate Cox (uniCox) analysis and prognostic value of the mRNA expression of distinct SKA family members across cancers. (A) Heatmap
depicting the uniCox results of SKA family members across cancers. (B) Kaplan–Meier curve analyses showed that the overexpression of SKA family
genes in multiple cancer types was associated with poor prognosis. For univariate Cox regression analysis results, P > 0.05 are all gray; p < 0.05,
HR > 1 is defined as “Risky”, and p < 0.05, HR < 1 is defined as “Protective”. For Kaplan–Meir analysis results, P > 0.05 are all gray; p<0.05, poor
prognosis is defined as “Risky”, good prognosis is defined as “Protective”.
B
C

A

FIGURE 1

mRNA expression of SKA1/2/3 across cancers. (A) Heatmap depicting the differential expression information (including Log fold-change and P value)
of SKA1/2/3 at the pan-cancer level. (B) The Spearman correlation between SKA1, SKA2, and SKA3 is shown in the heatmap. The darker is the red
color, the stronger is the correlation between genes. (C) The protein–protein interaction (PPI) networks among SKA1/2/3 proteins.
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LUSC, PCPG, PRAD, READ, STAD, THCA, and UCEC, compared

with the cancer adjacent tissues (Figure 5B).

With univariate Cox regression, we investigated the prognostic

value of the SKA score by analyzing the association of the SKA score

with the four survival outcomes OS, DSS, DFI and PFI. For the

univariate results in pan-cancer: (1) For OS, SKA score was a

significant risk factor in KIRP (HR=13.232), LGG (HR=7.961),

KIRC (HR=7.452), ACC (HR=11.988), KICH (HR=13.632), MESO

(HR=8.638), PCPG (HR=32.607), LUAD (HR=2.457), PRAD

(HR=12.535), PAAD (HR=4.311), SKCM (HR=2.374) and SARC

(HR=2.361), whereas a protective factor in THYM (HR=-6.703)

and LUSC (HR=-1.441) (Figure 6A); (2) For DSS, SKA score was a

significant risk factor in KIRP (HR=19.602), KIRC (HR=11.133),

LGG (HR=8.016), ACC (HR=11.790), KICH (HR=17.679), MESO

(HR=9.933), PCPG (HR=40.122), LIHC (HR=5.216), LUAD
Frontiers in Immunology 06
(HR=3.854), PRAD (HR=18.491), PAAD (HR=5.176), SKCM

(HR=2.730) and BRCA (HR=-2.378) (Figure 6B); (3) For DFI,

SKA score was a risk factor in KIRP (HR=18.135), THCA

(HR=19.885), LIHC (HR=3.018), SARC (HR=3.601), BRCA

(HR=2.347) (Figure 6C). The sample size with DFI information

in Figure 6C was smaller and therefore had fewer positive results;

(4) For PFI, SKA score was a significant risk factor in KIRP

(HR=15.805), KIRC (HR=8.527), ACC (HR=11.401), LGG

(HR=4.932), KICH (HR=15.216), MESO (HR=7.802), PRAD

(HR=6.752), LIHC (HR=3.014), PAAD (HR=5.138), PCPG

(HR=17.625), THCA (HR=10.452), SARC (HR=2.486), LUAD

(HR=1.778), SKCM (HR=1.725), BLCA (HR=2.134), and UVM

(HR=9.278) (Figure 6D). From these figures, we know that in terms

of prognosis, the SKA score can be used as a potential prognostic

risk factor in 11 cancer types, including KIRP, LGG, KIRC, ACC,
B

C

D

E

A

FIGURE 3

Gene alterations in SKA1/2/3 across 33 cancer types. (A) The frequency landscape of deleterious mutations in 33 tumor types. (B) The CNV
information of SKA1/2/3 in pan-cancer is summarized in the pie chart. (C) The relationship of CNV with the mRNA levels of SKA1/2/3. (D, E) The
percentage of homozygous (D) or heterozygous (E) CNV (including homozygous amplification, homozygous deletion, heterozygous amplification,
and heterozygous deletion) for each SKA member in pan-cancer.
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KICH, MESO, PCPG, LUAD, PRAD, PAAD, and SKCM. Taken

together, these findings revealed that the SKA score was a robust

risk factor for numerous cancer types and displayed a strong HR

value at the pan-cancer level.
GSVA of SKA score

We conducted a GSVA to investigate the potential pathways

likely affected by the SKA score according to 50 HALLMARK

pathways. Figure 7 shows the correlation of the SKA score with the

GSVA pathways. The obtained results showed that the SKA score

was positively correlated with cell proliferation-related pathways

and DNA replication in pan-cancer, such as E2F targets, G2M

checkpoint, MYC targets V1/V2, mitotic spindle and DNA repair,

which suggested that tumor cells might have a strong proliferation

ability through those signaling pathways. To better explore the

pathways SKA family genes may participate in, we also conducted

GSEA using R package “clusterprofiler.” We observed that SKA

family genes were mainly enriched in cell cycle related pathways in
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most tumor types, including ACC, GBM, LGG, LIHC, LUSC, and

UVM (Figures S1A–P). In the tumor microenvironment, these

pathways are involved in tumorigenesis by mediating

proliferation, migration, invasion, and metastasis. Additionally,

the obtained results indicated that the SKA score was negatively

related to immune-related pathways, such as the TGF beta signaling

pathway, IL6-JAK-STAT3 signaling pathway and p53 pathway.

Therefore, we speculate that patients in the high SKA score group

may exert weaker tumor immunity, which may be one of the

reasons for the poor prognosis of this group of patients.
Relationship between SKA score
and the TME

We further explored the relationship between the SKA score and

TME score (including stromal, immune and ESTIMATE scores) in

33 cancer types. We found that in most cancer types, the SKA score

was negatively related to the stromal score, immune score, and

ESTIMATE score but was positively associated with tumor purity
B

A

FIGURE 4

The methylation information of SKA1/2/3 in the indicated tumor types. (A) DNA methylation patterns in tumor and normal samples of 13 cancer
types. The bubble size represents the false discovery rate (FDR), and the bubble color represents the fold-change. The increased or decreased
methylation are presented with red dots or blue dots, respectively. A deeper color indicates a larger difference. (B) The relationship of methylation
with mRNA levels of SKA1/2/3. The darker is the color, the stronger is the correlation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1012999
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1012999
(Figure 8A). In the TME, the SKA score may suppress antitumor

immunity and promote tumor cell proliferation, survival, and

invasion. Next, we extracted and computed TME-related pathway

scores from a published paper (28). Then, we explored the

relationship between the SKA score and TME-related pathways.

We also found that the SKA score was closely positively correlated

with DNA replication, mismatch repair and DNA damage response

but negatively correlated with immune and stromal-related pathways,

including EMT1/2/3, CD8T effector, and immune checkpoint, in 33

cancer types (Figure 8B). Both analyses were similar.
Immune infiltrating analysis

The abovementioned results revealed that the SKA score was

closely associated with the immune score. Thus, we further
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investigated the relationship between the SKA score and immune

cells in the TME. The obtained results revealed that the SKA score was

negatively associated with most immune cells across cancers according

to the TIMER2 database, indicating an immune-suppressive TME

(Figure 9A). The results from the ImmuCellAI database revealed that

the SKA score was also generally connected to immune cell infiltration

in the TME at the pan-cancer level (Figure 9B). The results of the two

analyses are consistent and mutually verifiable.
The correlation of SKA score with
immunotherapy response

Immunotherapies targeting PD-1/PD-L1 have made great

clinical progress in immune checkpoint therapy (38–40). Elevated
B

A

FIGURE 5

Establishing a scoring system across cancers. (A) Rank-order plot of SKA scores from lowest to highest across cancers. (B) The difference analyses of
SKA score in tumor tissue samples vs. paired adjacent normal tissue samples in indicated cancer types. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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tumor mutation burden (TMB) or microsatellite instability (MSI)

values have emerged as strong markers in predicting the immune

checkpoint inhibitor (ICI) response (41–43). The correlation

between the SKA score and immunotherapy-related biomarkers

(TMB and MSI) was further explored. The obtained results revealed

that the SKA score was positively associated with TMB in 18 cancer

types as well as MSI in 8 cancer types (Figures 10A, B). A significant

correlation was observed between the SKA score and the TMB value

of SKCM and BLCA, and we speculate that patients with high SKA

scores are sensitive to immunotherapy in some cancer types.

To validate our hypothesis, we screened independent

immunotherapy-related datasets from the SKCM (GSE91061

cohort) and BLCA (IMvigor210 cohort) datasets and computed

the corresponding SKA score for each patient. We investigated

whether the SKA score could predict patients’ response to immune

checkpoint blockade therapy based on two immunotherapy
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cohorts. In this study, a total of 24 melanoma samples were

included in the GSE91061 cohort, and 348 BLCA samples were

included in the IMvigor210 cohort. In both the anti-PD-1 cohort

(GSE91061) and the anti-PD-L1 cohort (IMvigor210), patients with

high SKA scores exhibited a significantly prolonged clinical

response (Figures 11A, B) and markedly prolonged survival

(Figures 11C, D). The significant therapeutic advantages and

clinical response to anti-PD-1/L1 immunotherapy in patients with

high SKA scores compared to those with low SKA scores were

confirmed. Meanwhile, higher objective response rates were

observed in the patients with high SKA scores than in those with

low scores (Figures 11E, F). In addition, the predictive value of the

SKA score in patients treated with anti-PD-1/L1 immunotherapy

was superior to those of CTLA4 and PD-1/L1 (Figures 11G, H).

This was another confirmation that patients with relatively high

SKA scores were more suitable for immunotherapy. The
B

C D

A

FIGURE 6

The survival analysis of the SKA score. (A–D) Forest plots of the Cox analysis results of the SKA score across cancers. (A) OS, (B) disease-specific
survival, (C) disease-free interval, and (D) progression-free interval.
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abovementioned results of a series of observations and validations

implied that the SKA score may serve as a potential predictor of

immunotherapy efficacy and chemotherapy efficacy for

tumor therapy.
Immunohistochemistry

To further validate the results for SKA1/2/3 expression,

immunohistochemical staining was performed. The results

confirmed that SKA1/2/3 were higher in BC tissues than that in

adjacent normal tissues, and SKA2 and SKA3 were higher in GC

tissues than that in adjacent normal tissues (Figures 12A–J).
Identification of potential small
molecule drugs

We first selected the top 30 small molecule drugs targeting SKA

family genes (|r|> 0.3). The obtained results revealed that the

expression of SKA1/2/3 was positively associated with six cancer

drugs but negatively correlated with the IC50 of 24 cancer drugs in

GDSC (Figure S2A). This finding suggested that SKA family genes

may be associated with tumor drug resistance in these six cancer

drugs, such as trametinib and selumetinib. Our CTRP results also
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showed that SKA3/1 was negatively correlated with the IC50 of 30

cancer drugs (Figure S2B). The lower was the IC50, the higher was

the sensitivity to the drugs. These findings suggested that SKA

family genes may be correlated with cancer sensitivity to

multiple drugs.
Discussion

Cancer is a multifactorial disease that is influenced by multiple

factors such as intracellular metabolism, evasion of immune

surveillance, dysregulation of the cell cycle and inflammation

(44). SKA1/2/3 contributes to the stability of mitotic metaphase

(45). Several studies have suggested that SKA1/2/3 are involved not

only in mitosis but also in apoptosis and tumor development. The

dysregulation of SKA1/2/3 expression is a common phenomenon in

malignant tumors, indicating that the SKA family is significantly

related to malignancy. Currently, the function and mechanisms of

SKA1/2/3 in the development and progression of certain cancers are

being increasingly studied. Nevertheless, an understanding of the

biological regulation of SKA family genes across cancers is lacking.

In this study, based on the ssGSEA method, we constructed the

SKA score to quantify the SKA gene modification pattern of

individual patients. We investigated the differential expression

and potential prognostic value of the SKA score at the pan-cancer
FIGURE 7

Gene set variant analysis of the SKA score. Heatmap of the relationship of the SKA score with the 50 HALLMARK pathway score across 33 cancer
types. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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level. In multiple cancer types, including BLCA, BRCA, CESC,

CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,

PCPG, PRAD, READ, STAD, THCA, and UCEC, the SKA score

was significantly elevated in tumor tissues compared with normal

tissues. Results of Immunohistochemistry shown that SKA1/2/3

proteins were highly expressed in BC or GC tissues. Subsequent

analysis showed that the SKA score was closely associated with

tumor development and served as a strong risk factor for four

survival outcomes (OS, DSS, PFI, and DFI) across 33 cancer types.

The precise molecular mechanisms of SKA family genes in the

development and progression of cancer are not completely clear

and require additional studies. Nevertheless, the association

between SKA family genes and some underlying tumor-related

pathways may provide several valuable clues to understand the

unique functional mechanisms in cancers. An in-depth analysis of

SKA family genes confirmed that the SKA score was positively

related to some cell cycle pathways and DNA replication in pan-

cancer, including E2F targets, G2M checkpoint, MYC targets V1/

V2, mitotic spindle and DNA repair. The cell cycle is an

evolutionarily conserved, highly coordinated process that is

essential to cell growth. Aberrations of the cell cycle are a

hallmark of cancer (46). Remarkably, cyclin-dependent kinase 1

(CDK1) is an important cell cycle regulator that is involved in the

progression of the cell cycle (47). Interestingly, a previous study

found that mutant SKA3 lacking CDK1 phosphorylation failed to

locate KT (48). These findings, combined with our observations,
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hint at the potential therapeutic target of the SKA family in

cancer treatment.

The TME plays a role in promoting tumor development,

metastasis, and resistance to chemotherapy and immunotherapy

(49, 50). Given the importance of the TME in cancer, we next

investigated the association between the SKA score and the TME,

and the obtained results revealed that both the immune score and

stromal score were negatively related to the SKA score, which

indicated that cancer tissues with high SKA scores had

significantly higher tumor purity and lower immune scores than

those with low SKA scores. To validate these findings, we further

analyzed the correlation of TME-related pathways with the SKA

score based on a published paper, and the obtained results also

showed that the SKA score was positively correlated with cell cycle

pathways, DNA replication and repair pathways but negatively

correlated with immune- or stromal-related pathways, which was

consistent with the abovementioned findings. We next explored the

association of the SKA score with immune cell infiltrates and

observed that in 33 cancer types, the SKA score was closely

associated with multiple immune cells, representing a state of

immune-suppressed TME. The abovementioned results showed

that patients with high SKA scores had poor immune cell

infiltration, which may have contributed to the worse prognosis

in cancer patients. Recent evidence from many studies has shown

that immunotherapy, such as anti-PD-1/L1 therapy, has emerged as

the most eye-catching treatment method for malignant tumors, and
B

A

FIGURE 8

Tumor microenvironment (TME) analysis of the SKA score. (A, B) Heatmap depicting the relationship of the SKA score with (A) TME scores (including
immune score, stromal score, ESTIMATE score, and tumor purity) and (B) TME-related pathways (including immune-related pathways, stromal-
related pathways, and DNA repair-related pathways) across 33 cancer types. *P < 0. 05, **P < 0.01, ***P < 0. 001, ****P < 0.0001.
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the low response rate in the clinic is a great obstacle to the

development of ICI therapy. In addition to PD-L1, high TMB and

high MSI have been shown to be useful biomarkers for better

immunotherapy response in cancer (41, 42, 51). High TMB levels

lead to an increase in tumor neoantigens, which may trigger the

immune system to attack the tumor. The reasons why high MSI and

high TMB predict the response to immunotherapy are probably

related because high MSI almost inevitably leads to a high TMB. To

explore the correlation of the SKA score with ICI response, we

conducted Spearman correlation analysis, and the obtained results

showed that the TMB of 18 types of cancers as well as the MSI of 7

types of cancers, including SKCM and BLCA, were all positively

correlated with the SKA score. Therefore, combining the

abovementioned information, we speculate that patients with high

SKA scores are sensitive to anti-PD-1/L1 treatment response. This
Frontiers in Immunology 12
hypothesis was validated in independent cohorts of BLCA

(IMvigor210) and SKCM (GSE91061) patients who received anti-

PD-L1/PD-1 therapy. Thus, our results confirm that a high SKA

score is closely related to the TME in a variety of cancers and that an

elevated SKA score may serve as a novel tool in patients receiving

anti-PD-1/L1 therapy, especially in patients with BLCA and SKCM.

At the same time, our study also demonstrated a close association of

SKA1/2/3 and drug sensitivity across cancers, suggesting a potential

of SKA family genes and related pathways of biological functions as

therapeutic targets.

Compared with previous studies on certain cancers, our study

has three strengths. First, previous studies aimed to develop and

validate a prognostic signature in certain cancers. Our study focused

on pan-cancer data, making the SKA scoring system more universal

and applicative. Second, compared with the studies assessing only
BA

FIGURE 10

Correlation between the SKA score and TMB and MSI values. (A, B) Radar plot of the correlation between the SKA score and (A) TMB or (B) MSI. *P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
B

A

FIGURE 9

Immune cell infiltrate analysis. (A, B) A strong relationship was observed between multiple immune cells and the SKA score based on the (A) TIMER2
database or (B) ImmuCellAI. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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one survival outcome (usually OS), the SKA score in our study did

not merely focus on four survival outcomes (OS, DSS, PFI, and DFI)

across 33 cancer types but displayed a strong HR value for cancers.

Third, we believe that this study was the first to explore the

correlation of the SKA score with immunotherapy response based

on the SKCM and BLCA cohort data, which had not been reported

in certain cancer types.
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Conclusion

Collectively, our results reveal that the SKA score is a robust risk

factor for multiple cancer types and plays central roles in tumor

development. A high SKA score was closely correlated with a variety

of immune cells of the TME across multiple cancer types. Moreover,

the SKA score can be used as a potential predictive biomarker for
B

C D

E F

G H

A

FIGURE 11

The association between SKA score and immunotherapy response. (A, E) Differences in the m6Ascore among distinct anti-PD-1/L1 clinical response
groups in the GSE91061 (A) and IMvigor210 cohorts (E). (B, F) Kaplan–Meier survival analysis of the SKA score in the GSE91061 (B) and IMvigor210
cohorts (F). (C, G) The percentage of responsive and progressive patients in the high- and low-SKA score groups in the GSE91061 (C) and IMvigor210
cohorts (G). (D, H) The predictive ability of the SKA score in patients receiving anti-PD-1/L1 therapy in the GSE91061 (D) and IMvigor210 cohorts (H).
CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease. *P<0.05, ***P<0.001.
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patients receiving anti-PD-1/L1 therapy. Our comprehensive

analysis highlighted the potential clinical value of SKA1/2/3-

related strategies for cancer treatment, which highlights their

significance for clinical practice and guidelines.
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FIGURE 12

Immunohistochemical results for SKA1 (A, B), SKA2 (C, D, G, H) and SKA3 (E, F, I, J). Hematoxylin stained the cell nucleus blue, and positive
expression of DAB is brownish yellow. DAB, diaminobenzidine; BC, breast cancer; GC, gastric cancer; Scale bar=200mm.
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SUPPLEMENTARY FIGURE 1

GSEA of SKA1/2/3 in TCGA pan-cancer. (A–P) The top 20 GSEA results of
SKA1/2/3 in indicated tumor types from TCGA.

SUPPLEMENTARY FIGURE 2

Associations between SKA1/2/3 and drug sensitivity. Associations

between SKA1/2/3 and drug sensitivity. (A, B) The relationship of drug
sensitivity of GDSC (top 30) and CTRP (top 30) with SKA1/2/3 mRNA

expression. Pearson correlation analysis was performed to obtain the

correlation between gene mRNA expression and drug IC50. The P-value
was adjusted by FDR. Blue bubbles represent negative correlations, red

bubbles represent positive correlations, and the deeper is the color, the
higher is the correlation.

SUPPLEMENTARY TABLE 2

Abbreviations and sample size for 33 cancer types.
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