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Background: Rheumatoid arthritis (RA) and depression are prevalent diseases that

have a negative impact on the quality of life and place a significant economic

burden on society. There is increasing evidence that the two diseases are closely

related, which could make the disease outcomes worse. In this study, we aimed to

identify diagnostic markers and analyzed the therapeutic potential of key genes.

Methods: We assessed the differentially expressed genes (DEGs) specific for RA

and Major depressive disorder (MDD) and used weighted gene co-expression

network analysis (WGCNA) to identify co-expressed gene modules by obtaining

the Gene expression profile data from Gene Expression Omnibus (GEO)

database. By using the STRING database, a protein–protein interaction (PPI)

network constructed and identified key genes. We also employed two types of

machine learning techniques to derive diagnostic markers, which were assessed

for their association with immune cells and potential therapeutic effects.

Molecular docking and in vitro experiments were used to validate these

analytical results.

Results: In total, 48 DEGs were identified in RA with comorbid MDD. The PPI

network was combined with WGCNA to identify 26 key genes of RA with

comorbid MDD. Machine learning-based methods indicated that RA combined

with MDD is likely related to six diagnostic markers: AURKA, BTN3A2, CXCL10,

ERAP2, MARCO, and PLA2G7. CXCL10 and MARCO are closely associated with

diverse immune cells in RA. However, apart from PLA2G7, the expression levels

of the other five genes were associated with the composition of the majority of

immune cells in MDD. Molecular docking and in vitro studies have revealed that

Aucubin (AU) exerts the therapeutic effect through the downregulation of

CXCL10 and BTN3A2 gene expression in PC12 cells.
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Conclusion:Our study indicates that six diagnostic markers were the basis of the

comorbidity mechanism of RA and MDD and may also be potential therapeutic

targets. Further mechanistic studies of the pathogenesis and treatment of RA and

MDD may be able to identify new targets using these shared pathways.
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Introduction

Rheumatoid arthritis (RA) is a prevalent chronic autoimmune

disease, which affects around 0.5–1% of the world’s population (1). RA

is primarily characterized by joint inflammation and symmetrically

active polyarthritis. These conditions affect the metacarpophalangeal

joints and result in stiffness, pain, and swelling of the joints (2). It is well

known that inflammatory cascades of patients with RA can be initiated

or exacerbated by genetic and certain environmental factors (3).

Inflammation in patients with RA can lead to systemic responses,

including endothelial dysfunction (4). Therefore, RA shares a tight

relationship with a number of illnesses, such as diabetes, depression,

and myocardial infarction (5, 6). Depression is a common mental

illness, affecting 1.5–19.0 in 1,000 adults (7). According to

epidemiological research, the proportion of RA patients who also

experience comorbid depressive symptoms is 13–20%, which is

around three times greater than that of the general populace (8).

Another study revealed that the likelihood of developing RA was 1.7

times higher in patients with depression than in controls (9). There is

strong evidence that RA and depression are related by mutually

influencing each other; RA can lead to MDD and MDD can

exacerbate RA. The emergence of a large number of controlled

clinical trials of psychotherapy for RA has demonstrated that treating

depression is an effective way to improve RA independent of drug

treatment (10). Therefore, screening and treatment of depression in

patients with RA has important clinical significance.

Similar to many other chronic pain diseases, pain and physical

impairment in people with RA as the chronic disease progresses are

often cited as the cause of Major depressive disorder (MDD) (11).

However, patients with RA experience substantially more

symptoms of depression than patients with osteoarthritis, even

though pain and dysfunction are similar between the two

diseases. This difference may be related to cytokine-related

neuroimmunobiological mechanisms (12). Many cytokines,

including IL-1, TNF-a, and IL-6, are secreted during the

pathological process of RA. These cytokines have been linked to

neuroinflammation in the brains of individuals with depression

(13–15). Abnormal activation of monoamine neurotransmitters is

now recognized as playing a decisive role in the pathogenesis of

depression. Cytokines access the brain directly or indirectly, disrupt

the metabolism of monoamine neurotransmitters, alter the body’s

mental and cognitive activities, and lead to depression (16).

Proinflammatory cytokines activate serotonin- and tryptophan-

degrading enzymes while increasing the creation of glutamate-N-
02
methyl-D-aspartate receptor agonists in the humoral immune

system, resulting in serotonin deficiency and glutamate acid

overproduction, both of which contribute to depression (17).

Furthermore, by reducing the levels of neurotrophic factors in the

brain, inflammatory factors may influence neurogenesis and

neuroplasticity (18).

RA is highly inheritable, with approximately 60% heritability

observed in twin studies (19). Approximately 100 loci that are

significantly associated with RA have been identified in the genome.

Additionally, a number of RA susceptibility genes have been linked

to disease severity (20). Many alleles are weakly associated with RA,

but the cumulative effects are observed in the presence of multiple

risk alleles (21). It is important to investigate the multi-omics

correlation in RA patients with depression, however, there have

been no genomic studies on RA associated with depression. It is

worth noting that Azathioprine, a Rac1 inhibitor, which is an

immunosuppressant commonly used as adjunctive therapy for

RA, have been reported to increase the risk of depression (22).

Recently, there have been increasing reports of the use of natural

products for the treatment of RA combined with depression.

Morinda officinalis is often used in China because of its anti-

osteoporosis, antidepressant, anti-Alzheimer disease, anti-

rheumatoid, anti-oxidation, anti-inflammation, and anti-fatigue

effects. The crude extracts and pure compounds of this plant are

mainly composed of polysaccharides, anthraquinones, iridoid

glycosides, and oligosaccharides. More than 100 chemical

compounds have been isolated from M. officinalis that have been

shown to have promising therapeutic effect on depression,

osteoporosis, fatigue, and RA (23). Xinfeng Capsule (XFC) is an

new effective natural medicine for the treatment of RA (24). In

clinical studies, disease activity indexes, number of joint swelling/

tenderness, joint morning stiffness duration, and all apoptosis-

related indicators were reduced in the XFC group and the

leflunomide group after treatment. However, XFC, which is

composed of natural products, showed greater improvement on

the self-rated depression scale than the leflunomide group (25).

In this study, we explored the common genes between RA and

depression to reveal the underlying biological processes in RA

combined with depression. This study aimed to explore the

common genes of RA and depression to reveal the underlying

biological processes in RA combined with depression. Diagnostic

markers were identified from common genes to study their

association with immune infiltration and their potential as

diagnostic biomarkers and therapeutic targets.
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Materials and methods

Data processing and analysis

We downloaded the GSE55235 (26), GSE55457 (26), and

GSE77298 (25) RA datasets from the Gene Expression

Omnibusdatabase (https://www.ncbi.nlm.nih.gov/geo/) using RStudio

software (version 4.0.2; URL: https://www.r-project.org/). All dataset

processing and analysis were performed in RStudio. The GSE55235

dataset (GPL96 platform), which was uploaded in 2014, contains

transcriptome analyses of synovial tissue from 10 RA patients and 8

individuals with healthy joints. The GSE55457 dataset (GPL96

platform) identified 13 synovial membrane samples from patients

with RA and 10 normal control synovial membrane samples. The

samples in GSE55235, GSE55457 datasets were obtained from patients

with RA for more than ten years. The RA dataset GSE77298 (GPL570

platform) contained a total of 23 synovial samples, which were

obtained from 16 RA patients and 7 healthy individuals. In this

dataset, the synovial samples were obtained from early RA at the

Department of Rheumatic. Depression-associated transcriptomes

(GSE98793) were obtained from the GEO database. In the

GSE98793 dataset (27) (GPL570 platform), whole blood from 128

patients with MDD samples and 64 healthy individuals was collected.

MDD was defined as CORE score >=8. According to the different

sources of the samples, we categorized the samples into the RA group,

depression group, and normal group, respectively. A simplified

workflow of the current investigation is presented in Figure 1.
Differentially expressed gene analysis

We used the limma package (version 3.44.0) of R (version 4.0.2)

to standardize and correct all gene expression profiling microarray

data and annotated the gene names. The SVA package (version

3.36.0) was used to remove batch effects. The RA gene expression

profiling dataset, which contained 27 normal control samples and

39 RA samples, was used to analyze the differentially expressed

genes (DEGs). The MDD gene expression profiling dataset was

preprocessed in the same manner. A conservative threshold

(|log2FC| > 1.0, p < 0.05) was used to screen for DEGs in patients

with RA or MDD. The intersection genes between the DEGs of RA

and MDD were generated using an online Venn diagram generator

(version 2.1.0; https://bioinfogp.cnb.csic.es/tools/venny).
Construction of co-expressed
gene modules

Based on the DEGs of RA and MDD, which were screened using

the threshold, we further applied weighted gene co-expression

network analysis (WGCNA) to define functional transcriptomic co-

expression modules shared by RA and MDD. To identify co-

expression modules, the WGCNA package (28) (version 1.71) in R

was used to create unsigned co-expression networks. To begin with,

the flashClust program in R was used to perform a hierarchical

clustering analysis of the samples to discover and eliminate outliers.
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Second, a “soft” thresholding power (b), generated by the WGCNA’s

“pickSoftThreshold” algorithm, was utilized to design a physiologically

important scale-free network according to the scale-free topology

criterion. Third, a dynamic tree-cutting technique was used to create

a topological overlap matrix (TOM) based on the adjacency matrix to

detect gene modules. Fourth, gene significance (GS) and module

membership (MM) were determined for linking modules to clinical

features. Finally, we constructed the eigengene network.
Protein–protein interaction
network analysis

The STRING database (29) (version 11.0; https://string-db.org/)

was used to construct a protein–protein interaction (PPI) network of

co-expressed gene modules in RA with comorbid MDD. The

parameter settings for the network construction were as follows:

organism, Homo sapiens; combined score threshold, 0.7. The PPI

network was visualized using the Gephi software (version 0.9.2; https://

gephi.org/). Key genes (highly connected genes) were selected using the

Cytoscape (30) (version 3.7.1; https://cytoscape.org/) plugin network

analyzer (31). The network level (average shortest path length and

betweenness centrality) and node level (network degree value and

closeness centrality) topological features of the network were

calculated. The four network properties reflect the importance of

each protein node in the network, we screened out the shared

proteins of RA and MDD, which were the top 50 proteins in the

PPI network’s four network properties. Shared protein-coding genes

are the key genes for RA associated with MDD.
Functional enrichment analysis of
core genes

The core gene set of RA associated with MDD was composed of

DEGs and key genes obtained from PPI network analysis. The

primary goals of this research were to identify the comorbidity

mechanisms that link RA and MDD as well as to reveal the

underlying molecular biological processes of the disease core

genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were used to

identify the characteristic biological and functional attributes (32,

33). GO and KEGG analyses were performed using the

clusterProfiler package (34) (version 3.14.3) in R. A p-value of <

0.05 and a q-value of < 0.05 were reserved, and a higher Gene Ratio

was considered more significant.
Machine learning methods for the
discovery of diagnostic markers

We used a machine learning approach to predict disease-

associated genes based on the core genes of RA with comorbid

MDD. In this study, two types of machine learning approaches were

applied in the process of feature selection and model training: the

LASSO regression model and support vector machine (SVM)
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method. The SVM algorithm was implemented using the caret

package (version 6.0-86), kernlab package (version 0.9-29), and

e1071 package (version 1.7-9). Ten-fold cross-validation was

applied to calculate the misclassification error of our model

within the training cohort. To calculate the misclassification error

in the training cohort, a ten-fold cross-validation was applied to

obtain the accuracy of the model algorithm. We first obtained the

diagnostic markers in the RA and MDD datasets, and the

overlapping part of the diagnostic markers of the two diseases

represented the diagnostic markers in patients with RA and MDD.
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Diagnostic core genes and immune cell
correlation analysis

The single sample Gene Set Enrichment Analysis (ssGSEA) was

applied to explore the relationship between different infiltration degrees

of immune cell types and the diagnostic markers of RA with comorbid

MDD using the R package “GSVA” (version 1.44.0). By comparing the

differences between the groups and the correlation between diagnostic

marker expression and immune cell content, we aimed to investigate

the link between diagnostic markers and immune cells.
FIGURE 1

The complete research workflow.
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Molecular docking analysis

Eucommia ulmoides Oliver (EUO) has a long history of

medicinal use in China. As a medicinal plant used for tonifying

kidney, strengthening bones, relieving pain, and enhancing

immunity, EUO is also widely used in the treatment of RA,

depression, and osteoporosis. The aqueous extract of EUO has

been demonstrated to have a cartilage-protecting effect in a rat

model of osteoarthritis, potentially by inhibiting chondrocyte

apoptosis and improving cartilage metabolism (35). Aucubin

(AU), an iridoid glycoside that is an active constituent of EUO,

has been extensively studied for the management of neurological

diseases (36). However, a comprehensive review of its effects and

mechanisms is currently unavailable. Therefore, in this study, we

investigated the therapeutic potential of AU. The utilization of

molecular docking, a technique commonly employed in virtual

screening studies, was carried out to identify potential therapeutic

targets for AU (37).

Primarily, the cheminformatics of Aucubin (AU) was obtained

from the PubChem database (38) (https://pubchem.ncbi.nlm.nih.gov/),

which included chemical name, molecular formula, CAS, PubChem

CID, canonical SMILES, and SDF files. The ACD/Labs software

(https://www.acdlabs.com/), SwissADME online system (39) (http://

www . sw i s s adme . ch / ) and ADMETl ab 2 . 0 (h t t p s : / /

admetmesh.scbdd.com/) (40)were used to evaluate the

pharmacokinetics and safety profile of AU, including absorption,

distribution, metabolism, excretion, and toxicity. PyMOL software

(version 1.7.0; https://pymol.org/) converted AU’s 3D structure,

which was downloaded from the PubChem database (41) (http://

www.rcsb.org/), from an SDF file to a PDB file while minimizing the

energy of small molecules and then saved it as a PDBQT format file.

The 3D structures of potential targets were downloaded from the PDB

database (http://www.rcsb.org/). PyMOL software removed water

molecules and hetero-ions from the PDB file of the target protein.

The protein ligands then underwent hydrogenation and the charge was

added in AutoDockTools (42) (version 1.5.6) software. Finally, the data

were saved as a PDBQT file. The docking box parameters were

determined based on the binding region of the protein receptor and

original ligand, and the box size was set to 30Å × 30 Å × 30 Å.

AutoDock Vina (version 1.1.2; http://vina.scripps.edu/) software

performs refined the semi-flexible molecular docking and

calculated the affinity (kcal/mol) of all potential key targets for AU.

Generally, the lower the affinity value, the stronger the binding of the

small molecule to the receptor. Discovery Studio Visualizer (https://

www.3ds.com/) was used to visualize the 2D schemes of the AU-target

protein interaction.
Cell culture and MTT assay

Rat adrenal pheochromocytoma cells (PC12) and human

rheumatoid fibroblast-like synoviocytes (HFLS) were obtained

from iCell Bioscience Inc. and JENNIO Biological Technology,

respectively. PC12 cells were cultured in 1640 basal medium

containing 10% fetal bovine serum (FBS) and 1% Penicillin-
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Streptomycin, while HFLS cells were cultured in DMEM basal

medium with the same supplements. The cells were incubated at

37°C in an atmosphere containing 5% CO2. PC12 cells were seeded

at a density of 2x104 cells/well and incubated for 24 hours before

exposure to AU. Different concentrations of AU (ranging from 0 to

160 mM) were then added to the wells and incubated for an

additional 24 hours. MTT solution (10 mM) was added to each

well and incubated for a further 4 hours. The medium was then

removed and DMSO (200 ml) was added to dissolve the formazan

crystals formed by the viable cells. The absorbance at 490 nm was

measured using a microplate reader. To evaluate the effect of AU on

cell proliferation ability, different concentrations of AU ranging

from 0 to 5 mM were prepared and tested.
Quantitative real-time PCR

Logarithmically growing cells in a stable state were seeded in

six-well plates at a density of 1 × 106 cells per well. HFLS cells were

divided into two groups: a control group without treatment and a

group treated with 16 µM AU solution. PC12 cells were divided into

three groups with different concentrations of AU treatment: 10 µM,

500 µM, and 5 mM, as well as a control group. All groups were

incubated for 24 hours. Total RNA was extracted from the cells in

each group using TRIzol Reagent (Cwbio, China) and reverse

transcribed into cDNA using the SYBR Green Master Mix kit

(TransGen Biotech, China). Human GAPDH was used as an

endogenous control, and the primer sequences are listed in

Table 1. Data were analyzed using the comparative Ct method

(2-△△Ct).
Statistical analysis

R version 4.0.2 and GraphPad Prism 8.0 software were used for

statistical analysis and visualization. One-way ANOVA was used to

compare groups of samples in multiple groups, with the assumption

of normality and homogeneity of variances. The significance level

was set at a = 0.05, and a P value < 0.05 was considered

statistically significant.
Results

Identification of DEGs

The RA datasets from the GEO dataset contained 12403 genes

in 64 synovium samples from 39 RA patients and 25 healthy

individuals. A total of 576 genes were identified as RA-related

DEGs in the datasets, of which 201 were downregulated and 375

were upregulated, as shown in a heatmap (Figure 2A). We obtained

1127 MDD-related DEGs in the GSE98793 dataset, of which 477

genes were downregulated and 650 genes were upregulated, as

shown in a heatmap (Figure 2B). The 48 common genes between

RA- and MDD-related DEGS are indicated by the Venn

diagram (Figure 2C).
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Identification of co-expression
gene modules

We performed WGCNA to identify co-expressed gene profiles

in 39 RA datasets, 128 MDD datasets, and 91 healthy individual

datasets. First, we divided the dataset samples from different sources
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into two groups with no detected outliers according to disease type:

disease group (RA or MDD) and healthy control group (HC). Then,

8 and 5 were chosen as the optimal soft-threshold power b for the

RA and MDD datasets, respectively, based on the scale

independence of R2 greater than 0.9 and the mean connectivity

tending to 0 to ensure a biologically meaningful scale-free network

(Figures 3A, B).

Genes in the RA dataset were clustered into four modules, and

the MDD dataset was clustered into five modules through

hierarchical clustering analysis and dynamic branch cut methods

for the gene dendrograms (Figures 3C, D). To identify the key

modules related to RA and MDD, GS and MM were calculated to

relate the modules to clinical traits. MM was defined as the

correlation between gene expression values and module eigengene

(ME). GS was defined as the correlation between genes and samples,

as shown in Figures 3E, F. Figures 3E–G shows four RA modules

and five MDD modules obtained using WGCNA. Two MDD-

related modules (MDD-MEturquoise and MDD-MEblue) and

RA-MEyellow shared 19 and 12 genes, respectively. Most DEGs

(65%) found in RA and MDD were concentrated in these modules.

Therefore, these modules can be considered as co-expressed gene

modules closely related to RA with comorbid MDD.
The PPI network key genes

The interaction data of 943 genes that were composed of all

genes in the co-expressed gene modules (RA-MEyellow and MDD-

MEturquoise) were obtained from the STRING database and

imported into Cytoscape to visualize the PPI network

(Figure 4A). Similarly, a total of 644 genes in the co-expressed

gene modules (RA-MEyellow and MDD-MEblue) were merged,

and the interaction data were imported into Cytoscape to visualize

the PPI network (Figure 4B). Based on the four network properties,

we removed the relative nodes (network degree value < 5). All

remaining nodes were screened to obtain the top 50 important

nodes for each network property in the two PPI networks. Finally,

we obtained 17 top genes of the co-expressed gene modules (RA-

MEyellow and MDD-MEturquoise) and 22 top genes of the co-

expressed gene modules (RA-MEyellow and MDD-MEblue) at the

intersection of the Venn diagram. Twenty-six top genes as hub

genes of RA with comorbid MDD based on PPI network analysis

were obtained after the merger, as shown in Figures 4C, D.
GO and KEGG pathway
enrichment analysis

Based on the 48 DEGs shared by RA andMDD, we added the 26

key genes obtained from the PPI network analysis and finally

obtained 55 genes as the core genes for RA associated with MDD.

GO enrichment was analyzed using the clusterProfiler package in R

(Figures 5A–C). The results of these analyses showed that 705 GO

entries were obtained in this study, including 611 biological process

(BP), 54 molecular functions (MF), and 39 cellular components

(CC). Regarding BP, the core genes were mainly enriched in
TABLE 1 Primer sequence.

Primer Sequence (5’-3’)

human-AURKA-F GGGTGGTCAGTACATGCTCC

human-AURKA-R GGCTCCCTCTGTTACAAAGTCA

RAT-AURKA-F GCGAATGCTTTGTCCTACTGC

RAT-AURKA-R CATCCGACCTTCAATCATCTCC

human-BTN3A2-F GGCAGGTGGTGAACGTGTATG

human-BTN3A2-R ACTTCGACGTGAAGATTAGAACCC

rat-BTN3A2-F TAGGCACCAACGGCATTTC

rat-BTN3A2-R CAACATAGGCCCAATACCCAC

human-CXCL10-F TAGAACTGTACGCTGTACCTGC

human-CXCL10-R TGTAGCAATGATCTCAACACG

rat-CXCL10-F CTGCACCTGCATCGACTTCC

rat-CXCL10-R CTTCTTTGGCTCACCGCTTTC

human-ERAP2-F GCTGCTGAACTCTTCTCCC

human-ERAP2-R TCCTGATGCTTGCTCGTT

human-MARCO-F GGGACAATTTGCGATGACGA

human-MARCO-R GGCCCTTCCTTTGGAGTAAC

rat-MARCO-F GCACGTCCCAAAACACACAT

rat-MARCO-R ACTTGCTGACGCAGTTGCTC

human-NeuN-F GCCCGAGTGATGACCAACAAGAAG

human-NeuN-R GTGGCGCAGCCCGAAATGTA

rat-NeuN-F CCGTTTGCTTCCAGGGTCG

rat-NeuN-R GCCGATGGTATGATGGTAGGGAT

human-MAP-2-F GCCAGGCAGTGATTACTATGA

human-MAP-2-R GATGGATAACTCTGTGCGAGA

rat-MAP-2-F CTTGCCTATGTCTTGCCTTGA

rat-MAP-2-R TCCATCGTTCCGCTAGTGTT

human-bIII -tubulin-F GCCACGCTGTCCATCCACCA

human-bIII -tubulin-R CGAAGCCGGGCATGAAGAAGT

rat-bIII -tubulin-F CATCAGCAAAGTGCGTGAGGAG

rat-bIII -tubulin-R GACAGGGTGGCGTTGTAGGG

human-GAPDH-F AATCCCATCACCATCTTCCA

human-GAPDH-R AAATGAGCCCCAGCCTTCT

rat-GAPDH-F GGAAAGCTGTGGCGTGAT

rat-GAPDH-R TCCACAACGGATACATTGGG
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lymphocyte differentiation (GO:0030098), leukocyte migration

(GO:0050900), T cell activation (GO:0042110), immune response-

activating cell surface receptor signaling pathway (GO:0002429),

and immune response-act ivat ing signal transduct ion

(GO:0002757). As for the MF, the core genes were mainly

enriched in cytokine receptor binding (GO:0005126), peptide

binding (GO:0042277), amide binding (GO:0033218),

phosphatase binding (GO:0019902), G protein-coupled receptor

binding (GO:0001664). Finally, regarding CC, the core genes were

mainly enriched in the external side of the plasma membrane

(GO:0009897), membrane raft (GO:0045121), membrane

microdomain (GO:0098857), membrane region (GO:0098589),

and plasma membrane signaling receptor complex (GO:0098802).

A KEGG pathway analysis was performed (Figure 5D). The core

genes were mainly focused on 89 pathways. The pathways in the

KEGG enrichment analysis were related to Epstein-Barr virus

(EBV) infection (hsa05169), Th17 cell differentiation (hsa04659),

Th1 and Th2 cell differentiation (hsa04658), tuberculosis

(hsa05152), PD-L1 expression, and the PD-1 checkpoint pathway

in cancer (hsa05235). We found that RA and MDD share many

molecular mechanisms.
Receiver operating characteristic curve
analysis of diagnostic markers

Based on the 55 core genes of RA associated with MDD, the

LASSO regression model and SVM-based method were used to
Frontiers in Immunology 07
screen diagnostic markers related to disease diagnosis. As shown in

Figures 6A–C, following the 10-fold cross-validation procedure,

LASSO regression identified 16 diagnostic core genes of RA in the

model. The other 44 diagnostic core genes of RA were screened by

SVM-based method. As shown in Figures 6D–F, 15 and 27 MDD

diagnostic core genes from the core genes were also identified by

LASSO regression and SVM, respectively. The common diagnostic

core genes of these two diseases are considered diagnostic markers for

RA with MDD. As shown in Figure 6G, six diagnostic markers were

obtained:AURKA, BTN3A2, CXCL10, ERAP2,MARCO and PLA2G7.

We drew the receiver operating characteristic (ROC) curve of

the diagnostic markers in RStudio to determine their diagnostic

value. The results showed that most of diagnostic markers

(Figure 7) had significant diagnostic value in the disease

classification. However, their prediction performance in the RA

dataset was much better than in the MDD dataset, which may be

attributed to the fact that MDD is a mental disease that rarely leads

to organ lesions or inflammation.
Immune cell correlation analysis

The results of ssGSEA showed that in RA, the scores of immune

cell content were higher in most RA groups but lower in the control

group, and 20 out of 28 immune cells (activated B cells, activated

CD4 T cells, activated CD8 T cells, activated dendritic cells, CD56

bright natural killer cells, CD56 dim natural killer cells, Gamma

delta T cells, immature B cells, MDSCs, macrophages, monocytes,
B

C

A

FIGURE 2

RA and MDD DEGs analysis. (A) A heat map of RA DEGs analysis results based on the merged GSE55235, GSE55457, and GSE77298 datasets. (B) A heat
map of MDD DEGs analysis results based on the GSE98793 dataset. (C) Identification of 48 overlapping genes between the DEGs of RA and MDD.
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natural killer T cells, natural killer cells, regulatory T cells, T

follicular helper cells, type 1 T helper cells, type 17 T helper cells,

effector memory CD4 T cells, memory B cells, and central memory

CD4 T cells) were significantly different between the two groups, as

shown in Figures 8A, C. However, the immune cell content scores

were lower in most MDD groups, except for activated B cells,

activated dendritic cells, macrophages, natural killer cells, type 1 T

helper cells, central memory CD4 T cells, and central memory CD8

T cells. There was no significant difference in the number of other

immune cells between the two groups, as shown in Figures 8B, D.

We found that the levels of six immune cell types (activated B

cells, activated dendritic cells, macrophages, natural killer cells, type

1 T helper cells, and central memory CD4 T cells) were significantly

different in both RA and MDD, as shown in Figures 8E, F. In RA,

CXCL10 and MARCO are closely related to the content of various

immune cells, while in MDD, except for PLA2G7, the expression

levels of the other five diagnostic markers are correlated with the

content of most immune cells.
Frontiers in Immunology 08
In silico validation of the targets using
molecular docking

According to the ADMET evaluation, AU exhibits many of the

qualities of an ideal reagent for drug-like qualities (Lipinski), water

solubility (solubility), lipophilicity (LogP), and other parameters.

However, as shown in Table 2, the intestinal absorption (GI

absorption) and oral availability (bioavailability) were low. Thus

far, there has been no noted toxicity (hERG, AMES Toxicity, Skin

Sensitization).In this study, we selected three target proteins

(AURKA, ERAP2, and PLA2G7) for molecular docking analysis to

predict their potential therapeutic effect on patients with RA

and MDD.

The total kollman charges for AURKA, ERAP2, and PLA2G7

were added as -130.535, -451.539, -190.286. The hydrogen atoms

and gasteiger charge for AU (0.0002) were added and saved in the

pdbqt format. In this paper, molecular docking took the binding

sites of the original ligands as the reference binding sites, and the
B

C D

E F

G

A

FIGURE 3

Weighted co-expression network related dataset construction and identification of related key modules in RA and MDD. (A, B) Analysis of network
topology for various soft thresholds (b). The left panel shows the scale-free fit index (scale independence, y-axis) as a function of the soft threshold
power (x-axis); the right panel displays the mean connectivity (degree, y-axis) as a function of the soft threshold power (x-axis). (C, D) Gene
dendrograms were obtained by average linkage hierarchical clustering. The colored row underneath the dendrogram shows the module assignment
determined by the dynamic tree cut method. (E, F) Module-trait relationships. Each row in the heatmap corresponds to an ME and each column to a
clinical trait. Each cell contains the corresponding correlation and p-value. (G) Number of intersecting genes in related key modules in RA and MDD.
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specific information was shown in Table 3. The docking scores

between AU and AURKA were -7.7 (kcal/mol). As shown in

Figures 9A, B, AU interacted with AURKA by forming a

hydrogen bond with Lys141, Asp274, Asn261, and interacted with

the surrounding residues by forming other bonds. The docking

scores of AU and ERAP2 were -8.4 (kcal/mol). As shown in

Figures 9C, D, AU interacted with ERAP2 by forming a hydrogen

bond with Gly334, His370, Glu200, and interacted with

surrounding residues by forming other bonds. The docking score

between AU and PLA2G7 was -6.0 (kcal/mol). As shown in

Figures 9E, F, AU interacted with PLA2G7 by forming a

hydrogen bond with Trp105, Lys109, Thr113, and interacted with

surrounding residues by forming other bonds.
In vitro validation of the targets using MTT
assay and qPCR

The results of the MTT assay indicated that the concentration of

the test drug had no toxic effect on the cells within the range of 0-

160 mM (Figure 10A). Upon adjusting the concentration range from

0-5 mM and reducing the cell density to 1 × 104 cells/well, the MTT

assay showed that AU significantly increased the proliferation of
Frontiers in Immunology 09
PC12 cells (Figure 10B). To further investigate the effect of AU at

various concentrations on the gene expression levels of six

diagnostic markers and MAP-2, bIII-tubulin, we examined the

expression levels of these genes in PC12 and HFLS cells after 24

hours of AU treatment. In HFLS cells, the expression levels of the

six diagnostic markers did not change significantly, but the

expression level of bIII-tubulin was significantly downregulated

(Figure 10C). In PC12 cells, the expression levels of CXCL10 and

BTN3A2 were significantly downregulated following AU

treatment (Figure 10D).
Discussion

Patients with depression have a 14–48% chance of developing

RA (43). Depression is the most common comorbidity associated

with RA. However, it is frequently neglected and under-treated in

clinical practice. Depression has various effects on the progression

of RA, including disease activity, other arthritis-related

comorbidities, pain levels, quality of life, and mortality, all of

which lead to worse clinical outcomes. Furthermore, RA and

depression initiate a vicious cycle that exacerbates the other

symptoms. This strong association between depression and RA is
B

C D

A

FIGURE 4

Based on the STRING database, 26 key genes were identified based on the two PPI network analysis in RA and MDD. (A) The left PPI network A is
composed of genes in RA-MEyellow module and MDD-MEturquoise module (degree shown by node size). (B) The right PPI network B is composed
of genes in RA-MEyellow module and MDD-MEblue module (degree shown by node size). (C) Screening of 17 key genes in the left PPI network A
based on ShortestPath, Betweenness, Closeness, and Degree. (D) Screening of 22 key genes in the right PPI network B based on ShortestPath,
Betweenness, Closeness, and Degree.
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already partly explained by the assumption of a model based on the

hypothesis of inflammation and crosstalk between the central,

peripheral, and immune systems. The management of individuals

with dual diagnoses should be closely monitored to avoid

undue distress.

Gene expression variations and patterns shed light on the

mechanism of RA comorbidity with depression and may aid in

the identification of targets for therapeutic intervention. In this

study, we used WGCNA to construct network hierarchical

clustering trees and co-expression modules associated with RA

and depression. We obtained 26 key genes of RA that were

associated with MDD based on PPI network analysis. In

functional enrichment analysis, some of these shared molecular

mechanisms have been experimentally validated, and some of them,

such as tuberculosis, are reported for the first time.

It has been reported that Epstein-Barr virus (EBV) infection

promotes autoimmunity, and in many studies, the evidence for

whether EBV infection is causal of autoimmunity appears high (44).

A study published in 1970 showed that there were quantitative

differences in EBV protein antibodies in RA patients, and that the

route of EBV infection may be closely related to the occurrence and
Frontiers in Immunology 10
development of RA and MDD complications (45). EBV is a double-

stranded DNA virus belonging to the herpes family. The globally

prevalent EVB virus has significant effects on the immune system

and is considered an attractive candidate pathogen for RA. EVB can

be latent in the B lymphocyte and the salivary gland epithelium for a

long time, with a lifetime prevalence of 90%. Evidence of in vitro

EBV infection was observed in the lymphocytes of RA patients and

antibodies to EBV antigens were significantly increased in their

serum. As a polyclonal activator of B cells, EVB virus can induce

rheumatoid factor and autoantibody production in vitro and in

vivo. These immunopathological events may explain the link

between EVB virus and RA disease (46). Children with EBV

infection are at high risk of depression in adulthood (47).

Lymphopenic mice demonstrate that an adaptive immune

system composed of T cells and B cells can be a potential factor

in depression. T helper (Th) cells differentiate into different lineages

under the influence of cytokine environment, antigen stimulation,

and co-stimulation. A decrease in regulatory T cells and an increase

in Th17 cells were observed in patients with depression. The

discovery that Th17 cells are involved in depression evolves from

the classic theory that Th17 cells produce inflammatory cytokines
B

C D

A

FIGURE 5

GO and KEGG pathway annotation for RA and MDD 55 core genes merged from 48 DEGs and 26 key genes of PPI network. The size of the ball
represents the number of genes, and the color change of the ball corresponds to different p-values. (A) The first 20 significantly enriched GO
annotations of BP. (B) The first 20 significantly enriched GO annotations of MF. (C) The first 20 significantly enriched GO annotations of CC.
(D) The first 30 significantly enriched KEGG pathways.
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IL-17A and IL-6, which is required for differentiation, and

contribute to depression onset and maintenance (48). Increased

physiological levels of IL-7 affect joint inflammation,

osteoclastogenesis, and neovascularization associated with

autoimmune diseases. The increased content of IL-7 in the

synovial tissue and fluid of RA allows monocytes to enter the

inflamed joints to form macrophages and mature osteoclasts (49).

The chronic immune response in RA may be driven by

activated Th1 cells without sufficient Th2 cell differentiation to

downregulate inflammation. The combined effect of Th1 cell

activation-driven cascades and the inability of Th2 cell

differentiation to downregulate the inflammation is the

underlying mechanism of chronic immune responses in RA. Th1

cel ls infi l trat ing the synovium can secrete abundant

proinflammatory cytokines and induce macrophage and

neutrophil infiltration (50). PD-1 is an immunosuppressive
Frontiers in Immunology 11
molecule that inhibits inflammatory responses. It controls the

inflammatory activity of T cells by adjusting the immune system’s

response to human cells, helping to improve immunotolerance.

Therefore, impairment of the PD-1/PD-L1 pathway is considered to

play an important role in many immune-mediated diseases

including RA (51).

To further explore the diagnostic markers of RA complicated by

MDD, six diagnostic markers were obtained from 55 core genes

based on the two algorithms. AURKA encodes a cell cycle-regulated

kinase that appears to play a role in microtubule formation and/or

spindle pole stabilization during chromosome segregation. BTN3A2

is the gene most closely connected with treatment response

according to a genome-wide methylation analysis of DNA in RA

patients receiving anti-rheumatic therapy for the first time (52).

BTN3A2 has also shown a pleiotropic association with MDD (53).

TNF stimulates neurons to produce CCL2, CCL7, and CXCL10.
B C

D E F

G

A

FIGURE 6

Screening of core genes and validation based on machine learning methods in RA and MDD. (A) Coefficient profiles of variables in the LASSO
regression model in RA. (B) Ten-fold cross-validation for turning parameter (l) selection in the LASSO regression model in RA. (C) The optimum root
mean squared error (RMSE) of SVM-based method based on 44 characteristic genes in RA. (D) Coefficient profiles of variables in the LASSO
regression model in MDD. (E) Ten-fold cross-validation for turning parameter (l) selection in the LASSO regression model in MDD. (F) The optimum
root mean squared error (RMSE) of SVM-based method based on 27 characteristic genes in MDD. (G) 14 core genes in RA and 14 core genes in
MDD screened by LASSO regression model and SVM-based method, and 6 common core genes were obtained after taking the intersection.
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These chemokines are closely related to RA and depression by

interfering with the microglial elongation process (54). MDX-1100,

an anti-CXCL10 monoclonal antibody, had demonstrated well

tolerated and clinically effective in patients with RA who had an

inadequate response to methotrexate (55). This further confirms

that CXCL10 plays a role in the immunopathogenesis of RA. The

ERAP2 gene has been shown to be expressed considerably more in

the CD4 + T cells of patients with RA who react to glucocorticoid

medication, suggesting that ERAP2 may be a clinical predictor of

response to glucocorticoid therapy in patients with RA (56).

MARCO, a macrophage receptor with a collagen structure, is

involved in the uptake of apoptotic cells, and the ability of

macrophages to promptly clear apoptotic cells has been linked to
Frontiers in Immunology 12
autoimmune diseases (57). Lower levels of the platelet-activating

factor acetyl hydrolase, a protein encoded by PLA2G7, may result in

a loss of anti-inflammatory function, triggering juvenile RA (58).

The relationship between the immune cell types and the diagnostic

markers of RA were evaluated using ssGSEA which showed that the

six candidate diagnostic genes of RA complicated by MDD were

correlated with immune cell content to varying degrees.

The long onset time of RA is a serious threat to human health

and quality of life. In recent years, there have been many

applications of natural product in arthritis. AU with antioxidant,

anti-inflammatory, neuroprotective, and osteoprotective properties

are high-profile natural small molecules. AU has a wide range of

biological effects and is a compound with rich potential sources, a
B C
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A

FIGURE 7

ROC curves of the 6 common core genes in RA and MDD. (A, B, C, D, E, F) ROC curves of AURKA, BTN3A2, CXCL10, ERAP2, MARCO, PLA2G7 in the
RA dataset, respectively. (G, H, I, J, K, L) ROC curves of AURKA, BTN3A2, CXCL10, ERAP2, MARCO, PLA2G7 in the MDD dataset, respectively.
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FIGURE 8

The 28 immune cells and their correlation with the 6 common core genes in RA and MDD. (A) Heatmap of 28 immune cell expression scores
in RA. (B) Heatmap of 28 immune cell expression scores in MDD. (C) Comparison of 28 immune cells in samples with HC and RA by Fraction.
(D) Comparison of 28 immune cells in samples with HC and MDD by Fraction. (E) Spearman correlation analysis of the 6 common core genes
and 28 immune cells in RA. (F) Spearman correlation analysis of the 6 common core genes and 28 immune cells in MDD. #p < 0.05; ##p <
0.01; ###p < 0.001.
TABLE 2 ADMET properties of AU by ACD/Labs, SwissADME and ADMETlab 2.0.

Name Aucubin (AU) Source

PubChem CID 91458 PubChem

Molecular Formula C15H22O9

CAS 479-98-1

MW 346.33 SwissADME

TPSA 149.07

Lipinski (violations) 1 (NHorOH > 5)

GI absorption Low

Log P Hydrophilic ACDLabs

Solubility Soluble

BBB permeant No

Pgp substrate Yes

Bioavailability (%) (Dose, mg = 50.00) 3.17

hERG Non-inhibitor

AMES Toxicity (Probability value) 0.1-0.3 ADMETlab 2.0

Skin Sensitization (Probability value) 0.0-0.1
F
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TABLE 3 Summary of molecular docking details.

Targets Grid dimensions (Å) Center grid box Number of poses generated Affinity (kcal/mol)

center x center y center z Aucubin Original ligand

AURKA 30×30×30 -7.525 26,575 79.368 9 -7.7 -6.8

ERAP2 30×30×30 88.371 9.906 123.592 9 -8.4 -8.2

PLA2G7 30×30×30 25.469 4.174 -2.949 9 -6.0 -7.6
F
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FIGURE 9

Molecular docking results of AU interaction with AURKA, ERAP2 and PLA2G7. (A, B) Molecular docking conformation of AU interaction with AURKA.
(C, D) Molecular docking conformation of AU interaction with ERAP2. (E, F) Molecular docking conformation of AU interaction with PLA2G7.
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good safety profile, and many beneficial biological activities. It has

high application potential in health products and medicines, and

can be used to treat RA, depression, hypertension, lower back pain,

and other diseases (59). In animal models of neurological diseases,

AU inhibits the activation of glial cells, which are responsible for

brain inflammation (60, 61). Modern medical research has

demonstrated that AU can increase the biomechanical quality of

the femur, bone mineral density, and bone microarchitecture to

prevent osteoporosis (62). In a molecular docking study, three

target proteins (AURKA, ERAP2, and PLA2G7) predicted the

potential therapeutic effect of AU on RA with MDD.

BTN3A2 expression has been found to be increased in patients

with RA, and inhibiting BTN3A2 may improve RA symptoms in

animal models (63). Elevated levels of CXCL10 have been associated

with impaired cognitive performance in patients with depression

(64), and may accelerate disease progression in RA patients (65). In

vitro studies suggest that AU may exert therapeutic effects by
Frontiers in Immunology 15
decreasing the expression of CXCL10 and BTN3A2. There is a

growing body of evidence supporting the role of adult neurogenesis

in the pathology and physiology of brain homeostasis and

depression (66). AU’s effect on PC12 cell proliferation may be

one mechanism by which it improves depression. HFLS cells, found

in the synovial lining of joints, may become activated and produce

abnormal amounts of pro-inflammatory cytokines and matrix

metalloproteinases (MMPs) in RA patients, potentially leading to

joint damage and inflammation (67). bIII-tubulin has been shown

to positively regulate the activation of HFLS cells (68), and

decreased bIII-tubulin gene expression suggests that AU may

inhibit activation of HFLS cells in RA patients.

In conclusion, 55 core genes are likely to be involved in the

mechanism underlying RA with MDD, which predicts multiple

therapeutic pathways closely related to the disease. Six diagnostic

markers not only affect immune cells but are also potential

therapeutic targets for RA with comorbid MDD.
B
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FIGURE 10

In vitro validation of the targets using MTT assay and qPCR. (A) MTT assay to measure cell viability in PC12 cells after treatment with AU at 0 to 160
mM concentrations (In comparison with the control group, *P < 0.05, and ** P < 0.01). (B) MTT assay to measure PC12 cell proliferation after
treatment with AU at 0 to 5 mM concentrations (In comparison with the control group, *P < 0.05, and ** P < 0.01). (C) Quantitative analysis of
BTN3A2, AURKA, PLA2G7, ERAP2, CXCL10, MARCO, MAP-2, and bIII-tubulin gene expression in HFLS cells by real-time PCR (In comparison between
two groups, *P < 0.05, and ** P < 0.01). (D) Quantitative analysis of BTN3A2, AURKA, PLA2G7, CXCL10, MARCO, MAP-2, and bIII-tubulin gene
expression in PC12 cells by real-time PCR (In comparison between two groups, *P < 0.05, and ** P < 0.01).
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