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Introduction: Necroptosis, a type of programmed cell death, has recently been

extensively studied as an important pathway regulating tumor development,

metastasis, and immunity. However, the expression patterns of necroptosis-

related genes (NRGs) in colorectal cancer (CRC) and their potential roles in the

tumor microenvironment (TME) have not been elucidated.

Methods: We explored the expression patterns of NRGs in 1247 colorectal

cancer samples from genetics and transcriptional perspective. Based on a

consensus clustering algorithm, we identified NRG molecular subtypes and

gene subtypes, respectively. Furthermore, we constructed a necroptosis-

related signature for predicting overall survival time and verified the

predictive ability of the model. Using the ESTIMATE, CIBERSORT, and ssGSEA

algorithms, we assessed the association between the above subtypes, scores

and immune infiltration.

Results: Most NRGs were differentially expressed between CRC tissues and

normal tissues. We found that distinct subtypes exhibited different NRGs

expression, patients’ prognosis, immune checkpoint gene expression, and

immune infiltration characteristics. The scores calculated from the

necroptosis-related signature can be used to classify patients into high-risk

and low-risk groups, with the high-risk group corresponding to reduced
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immune cell infiltration and immune function, and a greater risk of immune

dysfunction and immune escape.

Discussion: Our comprehensive analysis of NRGs in CRC demonstrated their

potential role in clinicopathological features, prognosis, and immune

infiltration in the TME. These findings help us deepen our understanding of

NRGs and the tumor microenvironment landscape, and lay a foundation for

effectively assessing patient outcomes and promoting more effective

immunotherapy.
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Introduction

Colorectal cancer is a malignant tumor that poses a great risk to

human health and ranks in the top three of all cancer types globally

in terms of incidence and lethality (1). The progression from

normal mucosa to adenomatous polyps to colorectal cancer is a

step-by-step process characterized by the accumulation of genetic

mutations. Genetic and epigenetic changes that disrupt the balance

between cell proliferation and cell death play an extremely

important role in the events that drive tumor phenotypes (2).

Cell death is a fundamental physiological process in all living

organisms. It plays an integral role in embryonic development,

organ maintenance, aging, and extending to the coordination of

immune responses and autoimmunity (3). As a type of

programmed cell death similar to ferroptosis or pyroptosis,

necroptosis has recently become an important pathway that has

been extensively studied in regulating tumorigenesis and

progression. The necroptosis signaling pathway plays a role in

multiple important events, such as tumor development, immune

response, necrosis, and metastasis (4, 5). However, necroptosis may

exert anti-tumor or pro-tumor effects, depending on the tumor
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type. Necroptosis is a caspase-independent form of programmed

death that is triggered by multiple stimuli and different pathways

(6). RIPK1, RIPK3, and MLKL are essential components of the

necroptotic process, leading to membrane leakage and cytokine

release (7).

Surgery and chemotherapy are the most common treatment

modalities for colorectal cancer. When pro-apoptotic

chemotherapy fails due to the development of drug resistance,

necroptosis-based tumor therapy may become a new alternative

therapy (8). An important reason for the development of intrinsic

and acquired chemoresistance is the destruction of the apoptosis

mechanism caused by caspase inhibition and deficiency (9).

Therefore, necroptosis is a promising tool capable of killing

cancer cells with defective and inhibited caspase. Cells undergoing

necroptosis are also involved in the activation of the immune

system, particularly antigen presentation and cross-priming of

CD8+ T cells (10, 11). In vivo and in vitro experiments also

showed that necrotic tumor cells induce antitumor

immunogenicity through cross-priming and proliferation of

CD8+ T cells (12). This suggests that there is also a close link

between necroptosis and tumor immunity.

Numerous necroptosis inducers have been identified, laying the

foundation for studying new modes of tumor death and providing

new therapeutic approaches. However, most of these studies were

based on in vitro experiments. There is still a lack of in vivo

necroptosis markers for research, and there is a great need to further

identify novel necroptosis-related biomarkers and study their effects

on tumor cells and the microenvironment. At present, studies have

built models based on necroptosis-related genes in colorectal cancer

and demonstrated good predictive effects (13–16). This study

focused on necroptosis-related messenger RNAs that play

important roles in colorectal cancer. This study comprehensively

evaluated RNA sequencing data of necroptosis-related genes, and

mainly used three algorithms (ssGSEA, CIBERSORT, and

ESTIMATE) to obtain a comprehensive overview of the immune

landscape of CRC. We first performed unsupervised clustering of
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the samples based on the expression levels of 67 NRGs to classify

patients into two NRG-related subtypes. Next, the samples were

divided into two gene subtypes by consensus clustering based on the

differentially expressed genes identified between two NRG-related

subtypes. We further constructed a necroptosis-related signature to

assess the prognostic risk and immune status of patients, thereby

enabling individualized prediction of patients’ prognosis and

responsiveness to immunotherapy. With the in-depth study of

the mechanism of necroptosis in tumors, targeting strategies

based on necroptosis are highly promising to be another effective

tool for cancer treatment.
Methods

Data collection and pre-processing

Gene expression and clinically relevant information were

obtained from the Cancer Genome Atlas (TCGA) and Gene-

Expression Omnibus (GEO) databases. Three independent CRC

cohorts (TCGA-COAD, GSE17538, and GSE39582) were collected

for this study. We acquired gene expression data in FPKM

(Fragments per Kilobase Million) format from TCGA and

converted them to TPM (Transcripts per million) format,

downloaded normalized matrix files from the GEO database, and

removed batch effects between these datasets using the R package

SVA.We downloaded clinical information of the three datasets, and

detailed clinical information was provided in Supplementary

Tables 1-3. We extracted survival status and survival time from

clinical information, and excluded data with a follow-up time fewer

than 31 days and duplicate data. Additionally, we downloaded the

tumor immune subtype and stemness score files from the UCSC

database for subsequent analysis.
Expression and prognosis of
necroptosis-related genes (NRGs) in CRC

By searching necroptosis-related literature, we identified 67

necroptosis-related genes (17). To investigate whether NRGs

play a role in the development of CRC, we compared NRGs

expression in normal and CRC tissues, and we subsequently

performed Kaplan-Meier survival analysis and univariate COX

analysis to determine the prognostic value of NRGs.
Consensus clustering analysis of NRGs

Unsupervised clustering analysis was performed to identify

different NRG-related molecular subtypes based on the gene

expression profiles of 67 NRGs, and patients were classified for

follow-up studies. We used a consensus clustering algorithm to

determine the number of clusters (K) and their stability, using the K
Frontiers in Immunology 03
value corresponding to the flattest cumulative distribution function

(CDF) curve as the determined number of clusters. The R package

consusclusterplus was utilized to perform the above analysis steps.

Principal component analysis was used to determine whether there

was good discrimination between subtypes. To investigate the

biological process differences among NRG-related molecular

subtypes, we performed gene set variation analysis (GSVA) based

on gene set c2.cp.kegg.v7.4.symbols.
Identification of differentially expressed
genes (DEGs) between NRG subtypes

The above consensus clustering analysis divided patients

into different NRG-related molecular subtypes and DEGs

between NRG subtypes were identified using the R package

limma with screening criteria of fold-change ≥ 1.5 and adjusted

P-value < 0.05.
Unsupervised clustering analysis of
gene subtypes

To explore the biological functions of differentially expressed

genes between NRG-related molecular subtypes, we performed

functional enrichment analysis using the clusterProfiler package,

including GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of

Genes and Genomes) analysis. The screening criteria were P < 0.05

and FDR < 0.05. Univariate Cox regression analysis was performed

on DEGs, and genes associated with CRC prognosis were selected

for unsupervised clustering of samples to identify gene subtypes.

The number and stability of gene clusters were determined by the

consensus clustering algorithm.
Evaluation of immune infiltrating cells
in TME of CRC

ssGSEA (single sample GSEA) is an implementation method

mainly proposed for a single sample that cannot do Gene Set

Enrichment Analysis (GSEA). We used ssGSEA to explore the

infiltration of various types of immune cells and immune-related

functions in CRC samples. The R packages limma, GSEABase and

GSVA were used to perform the above analysis. CIBERSORT is a

deconvolution algorithm. The R package CIBERSORT can calculate

the proportion of different types of immune cells in a sample based

on the Leukocyte signature matrix (LM22) containing 547 reference

genes. The ESTIMATE algorithm infers tumor purity and cell

density from the RNA sequencing data of the samples. Based on the

R package ESTIMATE, we assessed the immune and stromal

content (immune and stromal scores) in each sample. In

addition, we also collected 47 immune checkpoint genes to

compare their expression in different subtypes.
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Construction of the necroptosis-related
signature (NR-signature)

We first randomly divided all samples into two groups: the

training group (n=570) and the testing group (n=570). The training

group was used to learn the sample characteristics and construct the

signature, and the testing group was used as a validation cohort to

test the prediction performance of the signature.

Based on the DEGs screened between different NRG subtypes,

we performed a univariate Cox analysis to further identify the

DEGs associated with CRC prognosis. Next, we performed a 10-

fold cross-validation lasso (least absolute shrinkage and selection

operator) regression and Cox proportional hazards regression

analysis. Lasso regression was run for 1000 cycles to obtain the

gene combination with the smallest cross-validation error,

followed by Cox analysis and model construction. The final risk

score was calculated as follows:

RiskScore =o
N

i=1
Expi ∗Wið Þ,

where Exp is the expression value of each gene in the signature,

and W is the coefficient of multiple cox regression analysis for

each gene. The median risk score in the training set was used as

the cut-off value, and patients were divided into a high-risk group

and a low-risk group. Survival curves were plotted to evaluate the

overall survival (OS) of two groups, and the predictive

performance of this signature for 1-, 3-, and 5-year survival was

evaluated using the receiver operating characteristic (ROC) curve.

Subsequently, the predictive NR-signature was applied to the

testing group and the whole samples for validation.
Validation and comparison of
NR-signature

Many prognostic models have been constructed and

demonstrated good predictive performance in CRC. To

investigate whether the signature based on necroptosis is

effective and complementary to existing studies, we compared

our model with other phenotype-based models, including those

based on immune, autophagy, pyroptosis, ferroptosis, aging, and

metabolism genes (14, 18–27). Based on the TCGA database, we

calculated and compared the concordance index (C-index) of

several signatures, and we plotted the ROC curve and survival

curve of each signature to visualize the predictive effect.
GSEA analysis, genomic mutation
analysis, clinical relevance, and immune
correlation analysis of NR-signature

We performed GSEA analysis on all samples to enrich the

respective involved signaling pathways in high and low risk
Frontiers in Immunology 04
groups based on the KEGG gene set with clusterProfiler

package. To explore the tumor mutational burden (TMB) in

CRC, we calculated the total number of non-synonymous

mutations in the samples from TCGA database. The R package

maftools was used to draw the oncoprint of gene mutations in

high and low risk groups. We also investigated the correlation of

risk groups with clinical indicators to see if there were differences

in the proportion of high- and low-risk samples in different

tumor stages and immune subtypes. To explore the relationship

between risk status and immune cells, we assessed the status of

immune cell infiltration and immune function in samples using

multiple methods including ssGSEA and the CIBERSORT

algorithm. In addition, we also used various methods such as

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT-ABS, and CIBERSORT to analyze the correlation

between risk scores and infiltrating immune cells based on TCGA

samples. We also calculated the TIDE score and Dysfunction

score of the TCGA samples based on the online website TIDE

(http://tide.dfci.harvard.edu/) to evaluate the immune escape and

immunotherapy of the samples in the high and low risk groups.
Pan-cancer analysis of genes in
NR-signature

We compared the differential expression of genes in normal

and cancer tissues in pan-cancer. The correlation of gene

expression with immune microenvironment scores (including

immune and stromal scores, ESTIMATE score, and tumor

purity), Stemness Score (including RNAss: RNA expression-

based and DNAss: DNA methylation-based), and immune

subtypes were calculated on a pan-cancer scale.
Quantitative real-time PCR (RT-qPCR)

We obtained cancer and normal tissue samples from eight CRC

patients who underwent curative resection at Tongji Hospital of

Tongji Medical College (Wuhan, China). The MolPure® Cell/

Tissue Total RNA Kit (Yeasen) was used to extract total RNA,

which was then reverse transcribed with the Hifair® III 1st Strand

cDNA Synthesis Kit (gDNA digester plus, Yeasen) in accordance

with the manufacturer’s protocols. The target sequence was

amplified with real-time PCR with the Hieff® qPCR SYBR Green

Master Mix(Low Rox Plus, Yeasen). The cycling parameters used

were 95°C for 5 min, 95°C for 10 s, and 60°C for 30 s for 40 cycles.

Melting curve analyses were performed, and Ct values were

determined during the exponential amplification phase of real-

time PCR. The 2–DDCt method was used to determine relative fold

changes between tumor tissues and normal tissues as the following

equation: 2 –DDCt (DDCt = DCttumor – DCtnormal). The primer

sequences were listed in Supplementary Table 5.
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Statistical methods

All statistical analysis and graphing were performed by R-

4.1.2. Wilcoxon rank-sum test and Student’s t test were used for

comparison between the two groups. Kruskal-Wallis test was

used for comparison among more than two groups of samples.

The Kaplan-Meier method was used to plot survival curves for

prognostic analysis, and the log-rank test was used to determine

the significance of differences. The correlation test was

performed using Spearman correlation analysis and distance

correlation analysis. Comparisons of composition ratios among

groups were performed by chi-square test. All heatmaps were

plotted by the R package pheatmap. All statistical P values were

two-tailed, and P < 0.05 was used as the truncated value.
Results

Differential expression and survival
analysis of NRGs

We first compared the expression of 67 NRGs in 473 CRC

tissues and 41 normal tissues based on the TCGA database, of

which 52 genes were differentially expressed (Figure 1A). Among

them, MLKL was highly expressed in cancer tissues, while RIPK1

and RIPK3 were lowly expressed in cancer tissues. To provide a

more comprehensive landscape of the expression of NRGs, we

jointly analyzed TCGA and GTEx database through GEPIA to

expand the sample size. NRGs with differential expression

exceeding 1.5 times were shown in Supplementary Figure 1. A

total of 1247 tumor samples were obtained after combining

TCGA and GEO data, and we further analyzed whether there

was an impact of NRGs on the prognosis of CRC patients. We

performed univariate Cox analysis (Figure 1B) and Kaplan-

Meier survival analysis (Supplementary Figure 2), respectively

(Supplementary Table 4). The analysis results showed that the

expression of some NRGs was related to the survival of patients.

The high expression of RIPK1 was associated with poor

prognosis, while the high expression of RIPK3 represented a

good prognosis, and the MLKL expression was not related to the

survival time of patients.
Identification of NRG subtypes in CRC

To further explore the expression characteristics of NRGs in

colorectal cancer, we qualitatively classified patients based on the

expression profiles of 67 NRGs using the R package

ConensusClusterPlus. By consensus clustering algorithm, a

cluster number (K value) of 2 was the best choice to classify

the whole samples into NRG cluster A (n=695) and NRG cluster

B (n=552) (Figures 2A, B). The principal component analysis
Frontiers in Immunology 05
demonstrated significant differences of necroptosis gene profile

between the two clusters (Figure 2C), and the heatmap showed

the expression of NRGs in two NRG clusters (Figure 2E).

Kaplan-Meier survival analysis indicated that patients with

NRG cluster A had better overall survival (P = 0.010,

F i gure 2D) . To exp lo re the pot en t i a l b io log i ca l

change between distinct NRG clusters, we applied GSVA

enrichment analysis, which showed that NRG cluster B was

significantly enriched in immune-related pathways, including

B _CELL _RECEPTOR_ S IGNAL ING_PATHWAY ,

T _CELL _RECEPTOR_ S IGNAL ING_PATHWAY ,

LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION,

C H E M O K I N E _ S I G N A L I N G _ P A T H W A Y ,

NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY,

ANTIGEN_PROCESSING_AND_PRESENTATION,

NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY,

TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY and

REGULATION_OF_ACTIN_CYTOSKELETON (Figure 2F).

To further investigate the role of NRGs in TME of colorectal

cancer, we applied the ssGSEA algorithm to evaluate

the association between NRG subtypes and immune

cell subpopulations, and the results showed significant

differences in the infiltration of most immune cells

between different clusters (Figure 2G). Immune cell

infiltration was more abundant in NRG cluster B, including

Activated.B.cell, Activated.CD4.T.cell, Activated.CD8.T.cell,

Activated.dendritic.cell, Eosinophil, Gamma.delta.T.cell, MDSC

(Myeloid-derived suppressor cell), Macrophage, Monocyte,

Natural .ki l ler .T.cel l , Natural .ki l ler .cel l , Neutrophil ,

Regulatory.T.cell (Treg). In addition, the expression of

immune checkpoint genes was generally upregulated in

cluster B.
Identification of gene subtypes based on
differentially expressed genes

To reveal the potential biomolecular characteristics

underlying different NRG subtypes, we identified 702

NRGcluster-related DEGs based on R package limma, followed

by GO and KEGG functional enrichment analyses (Figures 3A,

B). The results showed that these DEGs were mainly enriched in

biological processes such as immune-related processes,

cytokines-related processes, chemokines-related processes, and

tumor signaling pathways, suggesting that necroptosis may play

an important role in tumor development and immune

regulation. We then performed a univariate Cox regression

analysis to identify 361 NRGcluster-related DEGs with

prognostic value, which were defined as necroptosis-related

signature genes (NRSGs). To further verify the regulatory

mechanism of necroptosis, we performed unsupervised

clustering based on 361 NRSGs to divide the samples into two
frontiersin.org
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gene subtypes: gene cluster A and gene cluster B (Figures 3C, D).

According to the Kaplan-Meier curve, gene cluster B showed a

better prognosis (P < 0.001, Figure 3E). The heatmap showed the

expression distribution of 361 NRSGs in the two gene clusters

(Figure 3F). Furthermore, significant differences in the

expression of NRGs were observed between distinct gene

clusters, which was consistent with the expected results of the

necroptosis regulatory pattern (Figure 3G).
Frontiers in Immunology 06
Characteristics of TME between different
gene subtypes

We assessed the potential role of NRPGs in the tumor

microenvironment of CRC. Based on the ESTIMATE

algorithm, gene cluster A exhibited higher estimate scores,

stromal scores, immune scores, and lower tumor purity

(Figure 4A). This suggested that the TME of gene cluster A
A

B

FIGURE 1

Expression and survival information of necroptosis-related genes (NRGs) in colorectal cancer. (A) Expression distribution of 67 NRGs in normal
and cancer tissues. (B) Univariate COX analysis of 67 NRGs. ***P < 0.001; **P < 0.01; *P < 0.05.
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had a higher content of stromal cells and immune cells. Through

CIBERSORT algorithm, we further observed that plasma cells,

CD8+ T cells, naive CD4+ T cells, resting and activated CD4

memory cells, Tregs, resting NK cells, and dendritic cells were

more abundant in gene cluster B, while M0 macrophages, M1
Frontiers in Immunology 07
macrophages, M2 macrophages, and neutrophils were

significantly higher in gene cluster A (Figure 4B). In addition,

we integrated immune cell infiltration information of TCGA

samples from multiple existing databases. Through comparison,

overall immune cell infiltration was more abundant in gene
A

B

D

E

F

G

C

FIGURE 2

Identification of two NRG subtypes. (A) Consensus matrix heatmap of sample clustering under k = 2. (B) Cumulative distribution function
(C, D, F) curve with the number of subtypes k = 2 to 9. (C) Principal component analysis showing the difference in transcriptomes between the
two NRG subtypes. (D) Heatmap showing differences in the expression of 67 NRGs between distinct NRG clusters. (E) Survival analysis of
patients in two NRG clusters. (F) GSVA enrichment analysis showing the potential biological change between distinct NRG clusters. (G) TME
immune-infiltrating characteristics and transcriptome traits of two NRG clusters. ***P < 0.001; *P < 0.05; ns P ≥ 0.05.
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cluster A (Figure 4D). Finally, we compared the expression levels

of immune checkpoint genes between the two clusters. The

results showed that the vast majority of immune checkpoint

genes were highly expressed in subtype A, including the most

well-known genes like LAG3, CTLA4, ICOS, TIGIT, PDCD1,

CD274 (PD-L1), BTLA (Figure 4C). Previous studies have shown

that macrophage infiltration is associated with poor prognosis in
Frontiers in Immunology 08
CRC, whereas infiltration of NK cells, NKT cells, and gdT cells

predicts good prognosis (28). Although cluster A generally had

higher infiltration of immune cells and stromal cells, it had higher

infiltration of macrophages and lower infiltration of CD8+ T cells.

Besides, the high expression of immune checkpoint genes can

cause the depletion of immune cells. These factors may ultimately

lead to a worse prognosis of subtype A.
A B

D E

F G

C

FIGURE 3

Identification of two gene subtypes. (A-B) GO and KEGG enrichment pathway of differentially expressed genes between two NRG subtypes.
(C) Consensus matrix heatmap of sample clustering under k = 2. (D) CDF curve with the number of subtypes k = 2 to 9. (E) Survival analysis of
patients in two gene clusters. (F) Heatmap showing differences in the expression of necroptosis-related signature genes between distinct gene
clusters. (G) Differences of 67 NRG expression between two gene clusters. ***P < 0.001; **P < 0.01; *P < 0.05; ns P ≥ 0.05.
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Construction of NR-signature

A prognostic signature was constructed based on NRSGs. We

randomly divided the samples into a training group (n = 569) and a

testing group (n = 569). LASSO and Cox analyses were

subsequently performed on the 361 NRPGs to further construct

the optimal prognostic model (Supplementary Figure 3A). Finally,

we included 25 genes into the model, and the signature was

constructed as follows: NRG riskscore=-0.364*PALLD+

0.215*VSIG4+0.329*ANTXR2-0.552*PTPRM+0.269*IHH+

0.595*SIGLEC1-0.186*CXCL13-0.509*CEBPA+0.185*PLK2+
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0.190*EGR2-0.339*IGFBP5-0.567*UBE2L6+0.275*AIFM3+

0.303*ARMCX2+0.259*IGFBP3+0.192*ACE2+0.306*HOXC6-

0.077*SPINK1+0.146*FABP4-0.296*THBS4-0.175*PHGR1-

0.173*MMP12-0.161*CKMT2-0.167*PLCB4+0.278*VIP.

According to the median value of the risk score of the training

group, we divided the patients into a high-risk group and a low-risk

group. With the increase in risk scores, the proportion of death

among patients also increased. The heatmap showed differential

expression of 25 mRNAs in the high-risk and low-risk groups

(Figure 5A). K-M survival analysis showed that the prognosis of the

low-risk group was significantly better than that of the high-risk
A

B

D

C

FIGURE 4

Characteristics of TME between different gene subtypes. (A) Estimate scores, stromal scores, immune scores, and tumor purity of two gene
subtypes. (B) TME immune-infiltrating characteristics and transcriptome traits of two gene clusters. (C) Different expression of immune
checkpoint genes in distinct gene clusters. (D) Heatmap showing differences in immune-infiltrating characteristics between two gene clusters of
TCGA samples based on multiple algorithms. ***P < 0.001; **P < 0.01; *P < 0.05; ns P ≥ 0.05.
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group (Figure 5D). To test the prediction performance of signature,

we plotted ROC curves with AUC values of 0.813, 0.791, and 0.799

in the training group at 1, 3, and 5 years (Figure 5E). To further

validate the signature, we applied it to the testing group and all
Frontiers in Immunology 10
samples, and the results showed a trend consistent with the training

group (Figures 5B–E). And we also re-validated the prediction effect

of the model in three independent datasets, respectively

(Supplementary Figure 3B, C).
A

B

D

E

C

FIGURE 5

Construction of necroptosis-related signature. Ranked dot and scatter plots showing the risk score distribution and patient survival status, and
the heatmap showing differential expression of 25 mRNAs in the high-risk and low-risk groups in the training group (A), testing group (B), and all
sample (C). (D) Kaplan–Meier analysis of the overall survival between the high and low-risk groups. (E) ROC curves to test the prediction
performance of signature of 1-, 3-, and 5-year survival according to the risk score.
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Verification and comparison of
NR- signature

We compared the predictive performance of the risk model and

other clinical indicators. In the prediction of 1-year OS, the effect of

the stage was slightly better than that of the risk model, while in the

prediction of 3- and 5-year OS, the prediction ability of the risk

model was better than other indicators (Figures 6A–C). Similarly,

we also re-compared each indicator in the three datasets, and the

results showed good predictive performance of the risk model

(Supplementary Figure 4).
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In addition, various types of prediction models have been

constructed in CRC. To further test the effect of NR-

signature, we compared the prediction accuracy of various

models based on the TCGA database. By calculating, we

found that the C-index of the NR-signature was higher than

other types of models (Figure 6D). Besides, we also plotted

the ROC curve and K-M survival curve of each model

(Figure 6E; Supplementary Figure 5) . The resul ts

demonstrated that the NR-signature had good prediction

performance and can be used as a complement to existing

types of prediction models.
A B

D
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C

FIGURE 6

Verification and comparison of the signature. (A-C) The comparison of 1-, 3-, and 5-year ROC curves of the signature and other clinical
characteristics in the whole cohort. (D) C-index of various types of prediction models constructed for CRC. (E) ROC curves to compare the
prediction performance of various signatures of 1-, 3-, and 5-year survival in the TCGA-COAD cohort.
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GSEA analysis, mutation, and clinical-
related analysis of NR-signature

To investigate the underlying biological processes in the high-

and low-risk groups, we performed GSEA analysis based on the

KEGG geneset. The results showed that tumor-related pathways

were enriched in the high-risk group, including ECM RECEPTOR

INTERACTION, FOCAL ADHESION, and PATHWAYS IN

CANCER. In addition, CALCIUM SIGNALING PATHWAY,

which regulates cell survival and death, was also enriched in the

high-risk group (Figure 7A). In the low-risk group, DNA

REPLICATION, OXIDATIVE PHOSPHORYLATION,

PEROXISOME, and PROTEASOME were significantly enriched

(Figure 7B). Next, we analyzed the distribution of somatic

mutations in the high and low-risk groups based on TCGA-
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COAD data, and the top ten mutated genes in both groups were

APC, TP53, TTN, KRAS, SYNE1, PIK3CA, MUC16, FAT4,

ZFHX4, and RYR2 (Figures 7C, D). APC and TP53 are the most

widespread and representative mutations in colorectal cancer, and

detecting the mutation status of these genes can help improve the

accuracy of diagnosis and guide individualized treatment.

Moreover, several studies have focused on reactivating TP53

function to exert its anti-tumor effects (29, 30). Among the

mutated genes, the mutation rate of KRAS was significantly

higher in the high-risk group than that in the low-risk group

(51% vs. 37%, P = 0.009). According to studies, the prevalence of

KRAS mutation in colorectal cancer is about 40%, and KRAS

mutation suggests poor prognosis (31–33). The 8th AJCC Cancer

Staging Manual specifies that the level of evidence for KRAS
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FIGURE 7

GSEA analysis, mutation, and clinical-related analysis of the signature. GSEA analysis showing pathways enriched in the high-risk group (A) and
low-risk group (B). The distribution of somatic mutations in the high-risk group (C) and low-risk group (D). (E) The correlation between risk
scores and stage. (F) The correlation between risk scores and immune subtypes.
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mutation as a prognostic and predictive factor is grade I and II,

respectively (33). In addition, KRAS gene mutation indicates poor

response of colorectal cancer patients to anti-EGFR targeted therapy

(32, 33). The higher frequency of KRAS mutations in the high-risk

group in our analysis is consistent with these findings. Additionally,

we assessed the correlation of risk scores with clinical indicators.

The proportion of patients with high and low risk varied by stage,

with fewer high-risk patients than low-risk patients within stage I-II

and more high-risk patients within stage III-IV (Figure 7E).

Moreover, the proportion of patients with high and low risk

differed across immune subtypes (Figure 7F).
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Assessment of TME and immune
checkpoints in high- and low-risk groups

Based on the CIBERSORT algorithm, the heatmap showed a

close correlation between the 25 genes in NR-signature and immune

cells (Figure 8A).We explored the relationship between risk score and

immune cells of TCGA samples according to immune cell infiltration

information from multiple databases. Correlation analysis showed

that the overall risk score was negatively correlated with immune

infiltration (Figure 8B). We then assessed immune cell infiltration

and immune function in all samples using different methods. ssGSEA
A B
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FIGURE 8

The immune landscape of high- and low-risk groups. (A) Heatmap showing a close correlation between genes in the signature and immune
cells. (B) Correlation analysis showed that the overall risk score was negatively correlated with immune infiltration in TCGA samples. Different
contributions of immune cell infiltration and immune function in distinct risk groups based on ssGSEA algorithm (C-D) and CIBERSORT
algorithm (E-F). (G) Different expression of immune checkpoint genes in high- and low-risk groups. (H) TIDE scores and Dysfunction scores of
distinct risk groups based on TCGA samples. ***P < 0.001; **P < 0.01; *P < 0.05; ns P ≥ 0.05.
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analysis showed that the infiltration of CD8+ T cell, DC (dendritic

cell), pDC (plasmacytoid dendritic cells), Tfh (follicular T-helper-

cell), Th1, TIL (tumor-infiltrating lymphocytes) and Treg was lower

in the high-risk group, and APC (antigen-presenting cell) co-

inhibition, cytolytic activity, inflammation-promoting, T cell

functions such as co-inhibition and co-stimulation were attenuated

(Figures 8C, D). The CIBERSORT algorithm showed a similar trend,

with lower immune infiltration and immune function overall in the

high-risk group, and a significant decrease in CD8+ T cells, cytolytic

activity, inflammation-promoting, and TIL (Figures 8E, F). We also

performed a survival analysis of these immune cells and functions,

and low-grade infiltration of the aforementioned important immune

cells and functions was associated with poor prognosis

(Supplementary Figure 6). The expression levels of multiple

immune checkpoint genes also differed between high and low-risk

groups (Figure 8G). Finally, we calculated TIDE scores and

Dysfunction scores based on samples from the TCGA database,

and the results showed that patients in the high-risk group scored

higher, predicting a higher potential for immune escape and immune

dysregulation (Figure 8H).
Pan-cancer analysis of 25 genes included
in NR-signature

To further validate the functions of the genes included in NR-

signature, we explored these genes in pan-cancer based on the

TCGA database. First, we compared the expression levels of 25

genes in cancer tissues and normal tissues, and the results showed

that 25 genes showed significant expression differences in multiple

cancer types (Supplementary Figures 7, 8). In addition, we also

investigated the association of genes with immune

microenvironment score and Stemness Score. Among them,

VSIG4, SIGLEC1, and CXCL13 were significantly positively

correlated with estimate scores, stromal scores, and immune

scores in pan-cancer, while negatively correlated with tumor

purity (Supplementary Figure 9). In general, genes were

negatively correlated with RNAss. Subsequently, we analyzed the

relationship between genes and immune subtypes in COAD, and

boxplots indicated differences in gene expression among different

immune subtypes (Supplementary Figure 10). We also re-analyzed

the association of 25 genes with immune microenvironment score

and stemness score in COAD, and the expression of most genes

showed a strong positive correlation with the immune

microenvironment score (Supplementary Figure 11).
Kaplan-Meier survival analysis and
expression information of genes in
NR-signature

To further validate the functions of the genes included in the

model, we first performed KM survival analysis of these genes
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based on the TCGA database (Supplementary Figure 12), and

selected 10 survival-related genes for expression validation. RT-

qPCR results based on eight pairs of colorectal cancer tissues

showed that eight of the 10 genes were significantly differentially

expressed between cancer and normal tissues. Among them,

MMP12 was highly expressed in colorectal cancer tissues, while

ARMCX2, CEBPA, CXCL13, FABP4, HOXC6, SIGLEC1 and

VSIG4 were more expressed in normal tissues than in cancer

tissues (Figure 9).
Discussion

Recently, a large number of studies have revealed the

important regulatory role of necroptosis in tumor progression

and immune response. Han et al. revealed that Resibufogenin

inhibits CRC growth and metastasis through RIP3-mediated

necroptosis (34). Hsieh et al. showed that carnosine can inhibit

human colorectal cancer cell proliferation by inducing

necroptosis, autophagy, and reducing angiogenesis (35).

However, most of the current studies have focused on the role

of necroptosis mediated by specific molecules in tumors, the

overall effect exerted by the combined action of multiple NRGs

and the comprehensive landscape of immune infiltration in

TME have not been fully elucidated. There have also been

many studies investigating the overall role of certain classes of

genes and their regulat ion of the tumor immune

microenvironment based on different sets of functional genes

in different cancer species, such as costimulatory molecule-

related genes, RNA-n6-methyladenosine-related genes,

ferroptosis-related genes, etc (36–39). Therefore, clarifying the

overall changes in NRGs at the transcriptional and genetic levels

and the characteristics of immune cell infiltration in the TME

will help us to deepen our understanding of anti-tumor immune

responses and provide new insights for promoting more

accurate risk stratification and clinical treatment for patients.

Through differential expression analysis, we found that

MLKL was highly expressed in CRC tissues, while RIPK1 and

RIPK3 were lowly expressed in cancer tissues. The result is

consistent with previous findings. In a panel of more than 60

cancer cell lines, two-thirds of the cells had reduced levels of the

RIPK3 protein, and cancer cells tended to escape necrosis to

survive (40). Survival analysis also showed that low expression of

RIPK3 was closely associated with poor prognosis. We identified

two NRG subtypes based on 67 NRGs, with cluster A showing a

better prognosis. GSVA analysis revealed a significant

enrichment of immune-related pathways such as B cell

receptor and T cell receptor signaling pathways in cluster B.

There were also significant differences in TME characteristics

between the two clusters, with cluster B showing more abundant

immune cell infiltration. In NRG cluster B, the contents of

activated CD8+ T cells, activated CD4+ T cells, Tfh, and

activated B cells were higher, but the regulatory T cells and
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MDSCs which play an immunosuppressive role were also

infiltrated in large numbers. These immune effector cells are

regulated by immune regulatory cells, regulatory molecules, and

immune checkpoints. Treg cells infiltrating locally in tumors can

inhibit the proliferation and activation of T cells, and combine

with MDSCs and tumor-associated macrophages to form an

immunosuppressive network and participate in the formation of

tumor immune tolerance (41–43). This indicated that under the

long-term stimulation of tumor antigens, T cells, especially

CD8+ T cells, may be inhibited by Tregs, with their effector

function in a depleted state which can not effectively kill tumor

cells. In addition, immune checkpoint gene expression was

generally significantly upregulated in subtype B, including the

inhibitory molecules PDCD1, CTLA4, LAG3, and HAVCR2

(TIM3) which are highly expressed by depleted T cells.

In addition, mRNA transcriptome differential expression

genes between distinct NRG subtypes were closely related to

biological processes such as immune-related processes,

cytokines, chemokines, and tumor signaling pathways. We
Frontiers in Immunology 15
identified two gene subtypes based on DEGs associated with

prognosis between NRG subtypes. Survival analysis indicated

that gene subtypes B had a better prognosis. Although subtype B

had a lower immune microenvironment score, with fewer

immune cells and stromal cells overall than subtype A, it

contained abundant infiltrating effector T cells such as CD8+ T

cells and CD4+ memory cells, accompanied by lower immune

checkpoint gene expression. It has been shown that high levels of

PD-1 (PDCD1) expression correlate with increased numbers of

tumor-infiltrating Tregs and decreased numbers of effector T

cells in the TME of CRC, which can be reversed by immune

checkpoint blockades (ICB) (44, 45). Our analysis showed a

partially similar trend, with gene cluster A having higher

PDCD1 expression accompanied by lower levels of infiltrating

CD8+ T cells and Tregs cells. Several studies have reported that

PD-1/PD-L1 (CD274) expression levels in cancer patients

provide important predictive information for assessing

sensitivity to ICBs before treatment (46–48). A study by Chen

et al. showed that CRC patients with high PD-L1 expression
FIGURE 9

Expression information of genes in NR-signature based on CRC and normal tissues.
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responded more effectively to ICBs (49). This suggests that for

gene cluster A with higher PD-1 and PD-L1 expression and

lower infiltration of CD8+ T cells, ICB may have higher

sensitivity to reverse the state of the tumor microenvironment

and improve prognosis. In addition, according to the literature,

PD-L1 expression in cancer cells can promote macrophage

recruitment, and macrophages induce PD-L1 upregulation and

suppress CD8+ T cell responses, which in turn promote

macrophage infiltration, forming a positive feedback loop that

promotes immune escape of cancer cells and thus CRC growth

(50). The above findings also support the results of our analysis

that gene cluster A with high PD-L1 expression and macrophage

infiltration had a poor prognosis.

The above findings suggested that NRGs can be used as an

effective indicator for assessing clinical survival and immune

infiltration in CRC. Therefore, we further construct the NR-

signature, and the model exhibited robust and effective

prediction ability. Compared with other clinical indicators and

published prediction models, the good performance of our

model showed that NR-signature can act as a supplement to

the existing research. Patients in the high-risk and low-risk

groups showed different clinical characteristics, survival time,

immune infiltration, and expression of immune checkpoints.

The high-risk group had lower CD8+ T cells, TIL, and Tfh cells,

with a low state of many immune functions such as T cell co-

activation and co-suppression, which may lead to immune

dysfunction and increased risk of immune escape. The low-

risk group was relatively immune-activated, although most

immune checkpoint genes were highly expressed. This

suggested that the application of immune checkpoint

inhibitors in the low-risk group may have better results, which

can further enhance the original anti-tumor immune effect.

Overall, NR-signature can be used for prognostic stratification

of patients, guide more effective immunotherapy, and contribute

to a deeper understanding of the underlying molecular

mechanisms of CRC.

Among the genes selected to construct the NR-signature,

VSIG4, SIGLEC1, and CXCL13 showed significant correlations

with immune microenvironment scores in pan-cancer. VSIG4 (V-

set and immunoglobulin domain–containing 4) is a complement

receptor of the immunoglobulin superfamily and is specifically

expressed in resting tissue-resident macrophages (51, 52). By

binding to unrecognized receptors on T cells, VSIG4 can inhibit

T cell proliferation and promote the differentiation of Foxp3+ Tregs

(53). Several other studies have revealed that VSIG4 can negatively

regulate the inflammatory response mediated by macrophages (54,

55). Yuan et al. used soluble VSIG4 as a surrogate marker of

activated macrophages for the diagnosis of patients with

Lymphoma-associated haemophagocytic lymphohistiocytosis (56).

Hall et al. believed that VSIG4 is a new marker of adipose tissue

macrophages in aged mice and can be used as a biomarker of aging

adipose tissue in mice (57). SIGLEC1, sialic acid binding Ig-like

lectin 1, is involved in initial contact with sialylated pathogens and
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mediates phagocytosis and endocytosis of pathogens, thereby

promoting immune responses to limit infection (58). It has been

reported that SIGLEC1 is abnormally expressed in various

autoimmune diseases and can serve as a potential clinical marker,

such as monogenic interferonopathies (59), systemic lupus

erythematosu (60–62), autoimmune congenital heart block (63),

and primary Sjögren’s syndrome (64). CXCL13 is a chemokine

targeting B lymphocytes, and its receptor CXCR5 is expressed in

specific T lymphocyte subsets (65). Accumulating evidence

indicates the important roles of CXCL13 and CXCR5 in the

regulation of tumorigenesis, progression, metastasis, and

prognosis in the tumor microenvironment (66–68). CXCL13 has

prognostic value for CRC patients, and high expression of CXCL13

can also lead to resistance to 5-Fluorouracil (69). These studies have

shown that necroptosis-related signature genes such as VSIG4,

SIGLEC1, and CXCL13 are closely related to immune activity in the

microenvironment, which also reflects the potential interaction

between necroptosis and tumor immune regulation. In addition,

we also verified the expression of some genes (ARMCX2, CEBPA,

CKMT2, CXCL13, FABP4, HOXC6, IGFBP3, MMP12, SIGLEC1,

and VSIG4) in the model based on 8 pairs of colorectal cancer

tissues. 8 out of 10 genes (ARMCX2, CEBPA, CXCL13, FABP4,

HOXC6, MMP12, SIGLEC1, and VSIG4) showed significant

differences in expression between cancer and normal tissues. The

functional mechanism of ARMCX2 has not been elucidated in

detail. The role of CEBPA in hematologic tumors has been

extensively studied, but its potential function in CRC remains to

be explored (70, 71). CXCL13 (72), FABP4 (73, 74), and HOXC6

(75, 76) have been reported to be highly expressed in CRC and play

a pro-tumor role in some studies. However, the gene expression

trends we analyzed were reversed and more in-depth studies are

needed to clarify the functions of thesemolecules. It has been shown

that MMP12 is highly expressed in colon cancer patients and

predicts a poor prognosis (77), which is consistent with the

results of our qPCR. We have discussed SIGLEC1 and VSIG4 in

various diseases above, but their role in CRC still needs further

investigation. Due to insufficient sample size, further experiments

are needed to explore the function of these genes in

colorectal cancer.

There are some limitations of our study. First, most of the

data used for the analysis were derived from public databases.

Although our analysis was based on a large sample of more than

1000 cases, these cases were obtained retrospectively, and

selection bias in the dataset may also affect the accuracy of the

results. Large-scale prospective studies and in vivo, in vitro

mechanistic studies are still needed to further confirm our

results. In addition, some important clinical variables such as

surgery, chemoradiotherapy, and immunotherapy information

are missing in most of the datasets, we also need to combine

more clinical characteristics to improve the prediction accuracy.

In conclusion, our comprehensive analysis of NRGs revealed

their extensive involvement in the regulatory mechanisms of the

tumor immune microenvironment, clinicopathological features,
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and prognosis. We also constructed a novel signature to

comprehensively evaluate the prognostic risk and immune

infiltration characteristics of a single case. These findings

demonstrated the important clinical implications of NRGs and

provided new insights for individualized targeted therapy and

immunotherapy of cancer.
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