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Crosstalk of four kinds of cell
deaths defines subtypes of
cutaneous melanoma for
precise immunotherapy
and chemotherapy

Qi Wan †, Ran Wei †, Xin Wei* and Ying-ping Deng*

Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Background: Cell death patterns can give therapeutic and biological clues that

facilitate the development of individualized treatments for this lethal form of

skin cancer.

Methods:We employed unsupervised clustering to establish robust classifications

based on the four kinds of cell death-associated gene expression of 462

melanoma patients in the Cancer Genome Atlas (TCGA) and tested their

reproducibility in two independent melanoma cohorts of 558 patients. We then

used dimensionality reduction of graph learning to display the different

characteristics of cell death patterns and immune microenvironments.

Results: We examined 570 cell death-associated gene expression data of

melanoma patients for exploration, independent verification, and

comprehensive classification of five reproducible melanoma subtypes (CS1 to

CS5) with different genomic and clinical features. Patients in death-inactive

subtypes (CS1, CS2, and CS5) had the least immune and stromal cell infiltration,

and their prognosis was the poorest. A death-active subtype (CS4), on the other

hand, had the highest infiltrated immune and stromal cells and elevated

immune-checkpoints. As a result, these patients had the highest response to

immunotherapy and the best prognosis. An additional subtype (CS3) had more

diversified cell death and immune characteristics with moderate prognoses.

Based on graph learning, we successfully divided the CS3 subtype into two

subgroups (group A and group B) with distinct survival outcomes and immune

features. Finally, we identified eight potential chemical drugs that were

specifically targeted for the therapy of melanoma subtypes.

Conclusions: This research defines the intrinsic subtypes of melanoma based

on the crosstalk of four kinds of cell deaths, which affords a blueprint for clinical

strategies and guiding precise immunotherapy and chemotherapy for

melanoma patients.

KEYWORDS

cell deaths, cutaneous melanoma, chemotherapy, immunotherapy, subtype
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.998454/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.998454/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.998454/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.998454/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.998454/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.998454&domain=pdf&date_stamp=2022-11-30
mailto:weixin_1982@163.com
mailto:dyp_wch@163.com
https://doi.org/10.3389/fimmu.2022.998454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.998454
https://www.frontiersin.org/journals/immunology


Wan et al. 10.3389/fimmu.2022.998454
1 Introduction

Cutaneous melanoma is the most lethal type of skin cancer

and is caused by the malignant alteration of melanocytes (1). The

prevalence of melanoma has steadily risen during the last few

decades (2). Therapy procedures have considerably improved in

recent years as a result of a better knowledge of the major

oncogenes and signaling pathways involved in its development

and progression—for instance, molecularly targeted therapies

such as the inhibitors of BRAF and MEK and immune-

checkpoint blockade like anti-PD1 and CTLA-4 treatments

have now significantly improved survival in these melanoma

patients (3, 4). However, responses to these therapies are still

inconsistent. Many individuals do not benefit at all or relapse

after a brief time of remission. Therefore, future results in these

melanomas will be dependent on the discovery of new treatment

targets and strategies to improve the present targets

and immunotherapies.

Cell death is significant in the formation of the organism and

sustains homeostasis to avoid disease development (5).

Melanoma growth, like other types of cancer, is influenced by

several cell death mechanisms and tumor microenvironments

(6). The diverse microenvironments of cell death processes

influence the immune response owing to the changes in tumor

cell death and immune, and stromal cell activities. Thus,

treatment efforts should focus on various cell death processes.

Cell death is traditionally classified into programmed and non-

programmed types depending on the modulation of the

underlying processes (7). There are three classical types of

programmed cell death (PCD) including apoptosis,

necroptosis, and pyroptosis. Apoptosis belongs to non-lytic

cell death, while necroptosis and pyroptosis mainly refer to

lytic cell death (8, 9). These types of cell death cause intracellular

component leakage, containing damage-associated molecular

pattern molecules, which trigger a significant inflammatory

response, also defined as inflammatory death (10).

Furthermore, ferroptosis is a novel cell death based on iron

regulation, which belongs to PCD but has unique biochemical

and morphological variations from other PCDs such as

pyroptosis and necroptosis (11, 12). Cell death has been found

to influence the development of a variety of chronic illnesses—

for example, dysfunction of the apoptosis pathway has a

significant role in resistance to traditional anticancer

medicines like targeted therapy, chemotherapy, and

radiotherapy (13). Ferroptosis dysregulation is connected to

carcinogenesis and has been proven to link the formation of

melanoma, breast, gastric, and lymphoma (14). In addition,

several research published in the last 5 years have revealed
Abbreviations: TCGA_SKCM, cutaneous melanoma of TCGA data; GEO,

Gene Expression Omnibus; ssGSEA, single-sample gene set enrichment

analysis; CPI, clustering prediction index; TMB, mutation burden; FGA,

fraction genome altered; AUC, area under the curve.
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that tumor cells undergoing necroptosis, pyroptosis, and

ferroptosis can induce a powerful anti-cancer immunity in in

vitro and in vivo conditions, and their efficacy can be cohesively

enhanced by checkpoint blockades, even in cancers with

immunotherapy resistance (15–17).

Melanoma is one of the most diverse cancers, with varying

degrees of aggressiveness among subtypes that necessitate

different treatment strategies. Although stimulation of a

specific form of cell death has progressively developed as a

new strategy treatment for cancers, most cancers have a built-in

resistance to a certain kind of cell death. Therefore, the crosstalk

of four kinds of cell deaths (“apoptosis”, “ferroptosis”,

“necroptosis” , and “pyroptosis”) has been discussed

systematically in this research. Based on cell death-related

gene signatures, melanoma patients were successfully classified

into distinct subtypes with different clinical characteristics,

molecular features, and responses to immunotherapy

and chemotherapy.
2 Materials and methods

2.1 Melanoma collection and process

Publicly accessed databases like Gene-Expression Omnibus

(GEO) and the Cancer Genome Atlas (TCGA) were used to

retrieve the RNA-seq of melanoma data as well as corresponding

clinical annotations. Following data processing steps such as

converting to TPMs format, removing low expression values or

missing values, and log2-transformation, three melanoma

cohorts including the cutaneous melanoma of TCGA data

(TCGA_SKCM), meta-GEO data, and meta-immune response

data were selected for subsequent analysis. The TCGA_SKCM

cohort was used as a training dataset for melanoma

classification. Meanwhile, meta-GEO and meta-immune

response data were regarded as testing datasets to prove the

accuracy of classification. The meta-GEO cohort consisted of

four GEO melanoma datasets including GSE19234, GSE53118,

GSE54467, and GSE65904. Moreover, the meta-immune

response cohort consists of the respective study of Hugo et al.

(GSE78220) (18), Riaz et al. (GSE91061) (19), and Van Allen

et al. (20), which has detailed information about clinical

immunotherapy response. The “ComBat” algorithm of the sva

Package was applied to merge several individual studies into the

large meta-cohort. This method can reduce batch effects

produced by distinct platforms and technological biases.
2.2 Four kinds of cell death-related gene

The Molecular Signatures Database in the Gene Set

Enrichment Analysis (GSEA) website (https://www.gsea-

msigdb.org) and previous literature in the PubMed database
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were used to compile lists of cell death-related genes. The search

keywords include “apoptosis”, “ferroptosis”, “necroptosis”,

“pyroptosis”, and “Homo sapiens”. After removing the

overlapped genes, the list gene sets eventually included the

apoptosis-related gene set (n = 247 unique genes), ferroptosis-

related gene set (n = 206 unique genes), necroptosis-related gene

set (n = 65 unique genes), and pyroptosis-related gene set (n = 52

unique genes) (Supplementary Table S1).
2.3 Clustering of four cell death
expression patterns

In order to conduct systematic clustering, the transcriptome

data of TCGA_SKCM were obtained to construct four cell

death-related gene matrixes with rows corresponding to

features and columns corresponding to common samples.

Next, unsupervised clustering was applied to discover the

potentially significant subtype of melanoma. We employed the

“MOVICS” package to perform integrative classification and

illustration for cancer subtyping research. The “MOVICS”

package afforded two main cluster algorithms (gap statistics

and clustering prediction index) to estimate the most possible

number of clusters in a partition clustering (21). Therefore, we

calculated the gap statistics and clustering prediction index

(CPI) to find the best clustering number. As a result, 10 state-

of-the-art integrative clustering approaches (CIMLR,

iClusterBayes, COCA, ConsensusClustering, MoCluster,

NEMO, IntNMF, LRAcluster, PINSPlus, and SNF) were

independently performed to systematically cluster the

TCGA_SKCM cohort. To boost clustering resilience, we

adopted the notion of a consensus ensemble for subsequently

classified results produced from diverse methods.
2.4 Tumor microenvironment calculation

Two methods for decoding microenvironment cells

(ESTIMATE and Stemness Index Workflow) were adjusted to

create a compendium of gene lists connected to particular

microenvironment cells. The “ESTIMATE” approach was

applied to estimate the infiltrated immune cells, stromal cells,

and tumor purity in tumor tissue. The Stemness Index

Workflow (https://bioinformaticsfmrp.github.io/PanCanStem_

Web/) applied the one-class algorithm to calculate tumor stem

cells in the tumor sample. We first employed these two

bioinformatic methods to evaluate tumor immune indices

(immune score, stromal score, tumor purity, and ESTIMATE

score) and stem cell index (mRNAsi score) and then

standardized the value of indices ranging from 0 to 1.
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2.5 Exploring the distinct clinical,
molecular, and cellular features
of subtypes

Based on clinical features such as age, stage, metastasis, Clark

level, and so on, we first assessed the different distribution of

clinical features among the cell death subtypes in TCGA_SKCM

cohort. To be specific, melanoma patients may benefit from

subtype-specific mutations as a treatment target. Therefore, we

compared the different mutational frequencies, tumor mutation

burden (TMB), and fraction genome altered (FGA) among

subtypes of cancer. Moreover, to identify subtype-specific

functional pathways, the differentially expressed genes in each

subtype were annotated in terms of Gene Ontology (GO)

biological processes (c5.bp.v7.1.symbols.gmt) by Gene Set

Enrichment Analysis (GSEA). Furthermore, we referred to 10

tumor-associated gene sets, five immune-microenvironment

gene signatures, and seven kinds of immune-checkpoint

molecules which were collected and deposited in the “IOBR”

package. Then, we used the single-sample gene set enrichment

analysis (ssGSEA) method to estimate the enrichment scores

among melanoma subtypes.
2.6 Chemotherapy response prediction

The Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) database was used to explore the

unique genomics of drug sensitivity across melanoma cell

subtypes for identifying candidate agents that displayed

variable effectiveness in cell death-related gene categorized

clusters. In this database, over 1,000 genetically defined human

cancer cell lines have been treated with a range of anti-cancer

drugs (367 compounds). In total, 34 kinds of these cell lines are

derived from cutaneous melanoma. We first used KNN machine

learning to categorize these cell lines into corresponding cell

death gene-classified subtypes and then examined the variations

in the area under the curve (AUC) value of drug responses

among these subtypes. After removing drugs with more than

20% missing values, only 219 compounds were selected for

further analysis. To evaluate if there is a significant difference,

Kruskal–Wallis test with a p-value of 0.05 was utilized.
2.7 Effect of drugs on A357
melanoma cell

2.7.1 Chemicals
All chemicals were purchased from MedChemExpress

(MCE, China) including ACY-1215 (no. HY-16026), tubastatin

A (no. HY-13271A), and EHT 1864 (no. HY-16659).
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2.7.2 Cell lines and cell culture
The human melanoma cell line A375 was a gift from Associate

Professor Naihong Yan from the Research Laboratory of

Ophthalmology, West China Hospital, Sichuan University, China.

All cells were cultured in Dulbecco’s modified Eagle’s medium

(Gibco, USA), supplemented with 10% fetal bovine serum (Gibco,

USA) and 1% penicillin/streptomycin mixture. The cells were

maintained in a humidified incubator (37°C, 5% CO2, and 95% air).

2.7.3 Cell viability assay
Cell viability was detected with cell counting kit-8 (CCK8,

MCE, China). A375 cells were plated in 96-well plates at a

density of 1 × 104 cells per well and treated with different

concentrations of ACY-1215, tubastatin A, and EHT 1864 (total

volume of 200 ml per well). After 24 and 48 h, 10 ml of CCK8
solution was added to each well of the plate and then incubated

at 37°C in the dark for 1 h. The optical density was measured at

450 nm by a microplate reader (Bio-Rad, USA).

2.7.4 Wound healing assay
The cells were seeded on six-well plates. After the cells have

reached 100% confluence, the monolayer was scratched using a

tip and washed with serum-free medium to remove detached

cells. IC50 concentrations of ACY-1215, tubastatin A, and EHT

1864 were added to a serum-free medium for culture and

photographed at 0, 24, and 48 h, respectively. The image-j

software was applied to calculate the area of the wound.

2.7.5 Cell apoptosis assay
Annexin V-FITC/propidium iodide (PI) Apoptosis kit (BD

Biosciences, USA) was used to measure the apoptosis level of A375

cells treatedwith IC50 concentrationofACY-1215, tubastatinA, and

EHT 1864, respectively. The cells were stained with Annexin V and

PI according to the instructions and then analyzed byflowcytometry

(Beckman, USA). Early apoptotic A375 cells showed annexin V-

positive and PI-negative, and late apoptotic A375 cells were stained

with both annexin V- and PI-positive. The results were presented as

the percentage of apoptotic cells.
2.8 Pseudotime analysis of subtypes

The pseudotime analysis based on dimensionality reduction

of graph learning was carried out by applying the reduced

dimension function of the “Monocle” package. The dimension

reduction approach was discriminative dimensionality reduction

with trees, and we set the maximum number of components at

five. Finally, the melanoma patients were landscaped and plotted

using the plot cell trajectory function, with the color correlating

to the cell death subtypes mentioned above.
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2.9 Statistical analysis

Statistical analysis was entirely carried out by using the R

package (v.4.0.3) and related packages. Unsupervised clustering

was conducted by “MOVICS” package (21). The “survival” and

“survivalROC” packages were used for survival analysis.

ESTIMATE and molecular signal pathways were estimated

and visualized by “IOBR” package (22). Pseudotime analysis

was visualized by the “Monocle” package. The Spearman test was

used to assess the correlation coefficient. For comparisons of two

or more groups, the Wilcoxon and Kruskal–Wallis tests were

used. Fisher’s exact or chi-square test was used to examine the

relationship between subgroup and clinicopathological features.
3 Results

3.1 Melanoma collection and clustering

After removing duplicated samples or samples without

survival information, 462 melanoma patients were included in

the TCGA_SKCM cohort. The meta-GEO cohort consisted of

412 melanoma patients, and the meta-immune response cohort

consisted of 146 melanoma patients who received immune-

checkpoint blockade therapy. A total of 570 genes that referred

to four kinds of cell deaths (“apoptosis”, “ferroptosis”,

“necroptosis”, and “pyroptosis”) were evaluated to explore the

important clusters in the TCGA_SKCM cohort. In order to

prove that these genes are consistent with cell death, we

conducted GO enrichment analysis and found that these genes

are positively activated in cell death-associated signal pathways

such as regulation of the cysteine-type endopeptidase activity

involved in the apoptotic process, regulation of apoptotic

signaling pathway, and execution phase of apoptosis

(Supplementary Figure S1). Next, CPI and gaps statistics

uncovered that the optimum number of clusters k for

clustering was three to five, and combined with the popular

Clark level classifier for cutaneous melanoma, it has five

classifications (Figure 1A). It should be highlighted that both

CPI and gap statistics do not fall too much at k = 5. As a result of

these considerations, k of 5 is selected as the ideal clustering

number for further analysis. A consensus ensemble derived from

10 different clustering methods identified five robust subtypes of

melanoma (Figure 1B). We defined these five clusters from CS1

to CS5. The complex cross-talk of four kinds of cell death

expression may have a particular biological relevance that

contributes to the heterogeneity of melanomas. Therefore, we

generated a comprehensive heat map to present distinctive

molecular patterns across apoptosis, ferroptosis, necroptosis,

and pyroptosis (Figure 1C).
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3.2 Somatic mutation in subtypes

To identify the subtype-specific mutations in melanoma, the

“maftools” package (23) was first employed to produce

oncoPrint plots which illustrated the top 20 popular mutant

genes including TTN (72%), MUC16 (67%), BRAF (50%),

DNAH5 (49%), PCLO (45%) … (Figure 1D). The independent

testing (Fisher’s exact or chi-square test) determined that seven

genes (TTN, MUC16, BRAF, DNAH5, LRP1B, PKHD1L1, and
Frontiers in Immunology 05
APOB) have different mutant frequencies among these subtypes

(Figure 1E). Among the frequently mutated genes, CS2

significantly harbored more mutations of TTN (86.5%; adj-P =

0.039), DNAH5 (54.1%; adj-P = 0.039), and APOB (37.8%; adj-

P = 0.039) than the other subtypes, while CS3 and CS4 were

significantly enriched in the mutations of BRAF (CS3: 57.4%;

CS4: 60.2%; adj-P = 0.039), MUC16 (CS3: 76.1%; CS4: 71.1%;

adj-P = 0.039), and LRP1B (48.3%; adj-P = 0.039) and were

frequently mutated in CS3, whereas PKHD1L1 was significantly
B

C

D E

A

FIGURE 1

Identification of melanoma subtypes based on cell death-associated gene expression. (A) Calculating clustering prediction index (blue line) and
Gaps-statistics (red line) in the cutaneous melanoma of The Cancer Genome Atlas data (TCGA_SKCM) cohort to determine the best cluster
number. (B) Consensus heat map according to the findings of 10 integrative clustering methods with a cluster number of five. (C)
Comprehensive heat map of distinctive molecular patterns across apoptosis, ferroptosis, necroptosis, and pyroptosis with annotation of genes.
(D) Top 20 mutant genes in the TCGA_SKCM cohort. (E) Mutational OncoPrint of five identified melanoma subtypes in the TCGA_SKCM cohort.
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more mutated in CS2 than in other subtypes (40.5%; adj-P =

0.039) (Table 1). The FGA scores were then used to assess

chromosomal instability, and we discovered that CS4 had

superior chromosomal stability than the other subtypes, with a

much lower fraction of genome lost or gained (Figure 2A).

Moreover, TMB has arisen as an emerging biomarker for the

prediction of numerous tumor types, prognosis, and

immunotherapy responses. Therefore, TMB was contrasted

among subtypes, and the Kruskal–Wallis test indicated that

CS4 and CS3 have relatively higher TMB than the other

subtypes (Figure 2B).
3.3 Survival analysis and validation of
meta-GEO cohort

In the TCGA_SKCM cohort, 118 melanoma patients were

classified into the CS1 subgroup, CS2 had 39 melanoma patients,

and the CS3, CS4, and CS5 subgroups respectively consisted of

180, 84, and 42 patients. Among these subgroups, CS4 has the

best survival prognosis than the other subgroups (overall

survival, P < 0.001) (Figure 2C). The stratified survival analysis

revealed that CS4 has a longer survival time than the patients in

the CS1 (P = 0.002), CS2 (P < 0.001), and CS5 (P < 0.001)

subtypes. Furthermore, we also discovered that CS3 has a better

prognosis than the patients in CS1 (P = 0.013), CS2 (P = 0.005),

and CS5 (P = 0.002), whereas there was no statistical significance

compared with the CS4 subgroup. Next, the independent testing

for a different distribution of clinical features indicated that these
Frontiers in Immunology 06
classifications were substantially correlated to overall survival

time, age, AJCC stage, Clark level, tumor stage, and metastatic

sample type (Table 2).

To validate the robustness of the cell death clustering, we

first applied the “limma” approach to identify the biomarkers for

each subtype which are picked from a list of the most up-

expressed genes ordered by log2 fold change (100 biomarkers for

each subtype). These biomarkers must satisfy the significance

level (adjusted P-value 0.05 and log2 fold change > 0) and not

overlap with any other subtype-identified biomarkers. The heat

map visualized the expression of 100 biomarkers for identifying

subtypes of melanoma in the TCGA_SKCM cohort (Figure 2D

and Supplementary Table S2). Subsequently, based on the

template heat map (Figure 2E), nearest template prediction

(NTP) was conducted to predict a sample category in the

meta-GEO cohort. The Kaplan–Meier survival curve of the

predicted five subgroups in the meta-GEO cohort suggested

that CS4 was also the best subgroup for prognosis than the

others (overall survival, P < 0.001) (Figure 2F). To explore the

potential prognostic mechanism in the CS4 subgroup, we

mapped the 100 biomarkers in the CS4 subgroup to the

STRING website and screened the corresponding proteins.

According to the protein–protein interaction (PPI) network

analysis (Supplementary Figure S2A), seven hub genes

including CD79A, CD79B, CD19, CCR7, CD40LG, SELL, and

ZAP70 (degree ≥20) were identified in the CS4 subtype. These

hub genes contribute to the activation of primary B-lymphocytes

as well as the proliferation of T-cell and cytokine production.

The Wilcoxon tests indicated that most of the hub genes (six of
TABLE 1 Independent test between subtype and mutation.

Gene (mutated) TMB CS1 CS2 CS3 CS4 CS5 p-value p-adjusted

FAT4 148 (32%) 40 (33.9%) 12 (32.4%) 58 (33.0%) 27 (32.5%) 11 (26.2%) 9.34e-01 9.34e-01

XIRP2 149 (33%) 37 (31.4%) 12 (32.4%) 64 (36.4%) 24 (28.9%) 12 (28.6%) 7.46e-01 7.87e-01

MUC16 309 (68%) 72 (61.0%) 23 (62.2%) 134 (76.1%) 59 (71.1%) 21 (50.0%) 4.39e-03 3.91e-02

HYDIN 143 (31%) 41 (34.7%) 11 (29.7%) 64 (36.4%) 19 (22.9%) 8 (19.0%) 7.52e-02 1.30e-01

PKHD1L1 154 (34%) 45 (38.1%) 15 (40.5%) 64 (36.4%) 25 (30.1%) 5 (11.9%) 1.16e-02 3.91e-02

APOB 148 (32%) 31 (26.3%) 14 (37.8%) 66 (37.5%) 31 (37.3%) 6 (14.3%) 1.44e-02 3.91e-02

USH2A 141 (31%) 33 (28.0%) 12 (32.4%) 58 (33.0%) 31 (37.3%) 7 (16.7%) 1.56e-01 2.12e-01

BRAF 234 (51%) 47 (39.8%) 14 (37.8%) 101 (57.4%) 50 (60.2%) 22 (52.4%) 6.66e-03 3.91e-02

DNAH7 158 (35%) 35 (29.7%) 13 (35.1%) 68 (38.6%) 31 (37.3%) 11 (26.2%) 3.94e-01 4.40e-01

DNAH5 230 (50%) 51 (43.2%) 20 (54.1%) 107 (60.8%) 38 (45.8%) 14 (33.3%) 3.13e-03 3.91e-02

RP1 155 (34%) 38 (32.2%) 13 (35.1%) 70 (39.8%) 28 (33.7%) 6 (14.3%) 2.99e-02 6.31e-02

ANK3 154 (34%) 35 (29.7%) 15 (40.5%) 62 (35.2%) 34 (41.0%) 8 (19.0%) 9.23e-02 1.35e-01

DSCAM 141 (31%) 37 (31.4%) 14 (37.8%) 61 (34.7%) 23 (27.7%) 6 (14.3%) 8.25e-02 1.31e-01

PCLO 209 (46%) 48 (40.7%) 19 (51.4%) 94 (53.4%) 36 (43.4%) 12 (28.6%) 2.55e-02 6.06e-02

FLG 149 (33%) 40 (33.9%) 7 (18.9%) 62 (35.2%) 29 (34.9%) 11 (26.2%) 3.10e-01 3.68e-01

CSMD1 165 (36%) 46 (39.0%) 12 (32.4%) 74 (42.0%) 24 (28.9%) 9 (21.4%) 5.77e-02 1.10e-01

LRP1B 181 (40%) 46 (39.0%) 13 (35.1%) 85 (48.3%) 28 (33.7%) 9 (21.4%) 1.13e-02 3.91e-02

TTN 337 (74%) 81 (68.6%) 32 (86.5%) 140 (79.5%) 59 (71.1%) 25 (59.5%) 1.39e-02 3.91e-02

MGAM 156 (34%) 36 (30.5%) 12 (32.4%) 71 (40.3%) 27 (32.5%) 10 (23.8%) 2.23e-01 2.82e-01
fr
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seven) were differentially expressed in the TCGA–Genotype

Tissue Expression dataset (Supplementary Figure S2B) (24).

Furthermore, to prove the results from the database, we also

used immunohistochemistry to confirm that these hub genes

were also differentially increased in melanoma compared with

normal skin samples (Supplementary Figure S2C). Lastly, to test

the comparability and repeatability of acquired subtypes across

discovery and validation cohorts, the in-group proportion (IGP)
Frontiers in Immunology 07
statistic will be utilized (25). The values of the IGP scale are from

0 to 1. Most of the IGPs for each subtype in the discovery and

validation cohorts were higher than 0.7 (Supplementary Table

S3), which indicates a repeatable patient partition for that

subtype. Furthermore, several different predictive approaches

like partition around medoids classifier, NTP, and consensus

ensemble algorithms were performed for accurate classification

(21, 26, 27). The Kappa statistics manifested that there is a
B
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FIGURE 2

Independent verification of melanoma subtypes. (A) Bar plot of fraction genome altered among five identified melanoma subtypes in the
cutaneous melanoma of The Cancer Genome Atlas data (TCGA_SKCM cohort). (B) Comparison of tumor mutation burden and single-nucleotide
variants among five melanoma subtypes in the TCGA_SKCM cohort. (C) Kaplan–Meier survival curve of five melanoma subtypes in the
TCGA_SKCM cohort. (D) Heat map of subtype-specific upregulated biomarkers for five melanoma subtypes in the TCGA_SKCM cohort. (E) Heat
map of nearest template prediction in the meta-Gene Expression Omnibus (GEO) cohort using subtype-specific upregulated biomarkers identified
from the TCGA_SKCM cohort. (F) Kaplan–Meier survival curve of five melanoma subtypes in the meta-GEO cohort. **** means p < 0.0001.
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relatively high consistency among these methods (Figure 3A).

Presently, melanomas have traditional classifications such as

AJCC stage and Clark level. It is critical to verify the consistency

of emerging subtypes with traditional classifications in order to

represent the robustness of clustering analysis. Therefore,
Frontiers in Immunology 08
adjusted mutual information (AMI), Fowlkes–Mallows (FM),

Jaccard Index (JI), and Rand Index (RI) were applied to evaluate

the similarity between the current subtypes and other well-

established subtypes (21). All of these statistics were scaled

ranging from 0 to 1, and the higher the number is, the closer
TABLE 2 Summary of clinical features.

n level CS1 CS2 CS3 CS4 CS5 p Test

118 39 180 84 42

Futime (median,
IQR)

322.26 (167.61,
892.35)

303.12 (164.40,
590.76]

583.44 (263.94,
1,114.92]

694.38 (334.53,
1,394.07]

183.90 (131.31,
330.90]

<0.001 Nonnorm

Fustat (%) 0 51 (43.2) 19 (48.7) 94 (52.2) 51 (60.7) 26 (61.9) 0.085 Exact

1 67 (56.8) 20 (51.3) 86 (47.8) 33 (39.3) 16 (38.1)

Age (median, IQR) 61.00 (48.25,
72.00]

63.00 (54.00,
71.50]

55.50 (45.00, 66.00] 56.50 (46.00, 71.50] 60.00 (56.00,
75.75)

0.014 Nonnorm

Metastasis_Stage
(%)

M0 101 (95.3) 36 (97.3) 165 (93.2) 71 (94.7) 40 (95.2) 0.933 Exact

M1 5 (4.7) 1 (2.7) 12 (6.8) 4 (5.3) 2 (4.8)

LymphNode_Stage
(%)

N0 62 (55.9) 21 (55.3) 88 (49.7) 36 (47.4) 24 (57.1) 0.389 Exact

N1 17 (15.3) 4 (10.5) 31 (17.5) 15 (19.7) 6 (14.3)

N2 7 (6.3) 4 (10.5) 25 (14.1) 9 (11.8) 4 (9.5)

N3 16 (14.4) 6 (15.8) 21 (11.9) 12 (15.8) 1 (2.4)

NX 9 (8.1) 3 (7.9) 12 (6.8) 4 (5.3) 7 (16.7)

Stage (%) I/II NOS 2 (1.8) 1 (2.7) 3 (1.8) 3 (4.0) 1 (2.5) <0.001 Exact

Stage 0 3 (2.7) 2 (5.4) 0 (0.0) 1 (1.3) 0 (0.0)

Stage I 15 (13.6) 2 (5.4) 39 (23.6) 20 (26.7) 2 (5.0)

Stage II 47 (42.7) 17 (45.9) 42 (25.5) 10 (13.3) 24 (60.0)

Stage III 38 (34.5) 14 (37.8) 70 (42.4) 37 (49.3) 11 (27.5)

Stage IV 5 (4.5) 1 (2.7) 11 (6.7) 4 (5.3) 2 (5.0)

Tumor_Stage (%) T1 8 (7.2) 5 (13.5) 28 (16.3) 23 (30.7) 1 (2.4) <0.001 Exact

T2 19 (17.1) 1 (2.7) 39 (22.7) 15 (20.0) 3 (7.3)

T3 23 (20.7) 8 (21.6) 37 (21.5) 16 (21.3) 6 (14.6)

T4 48 (43.2) 19 (51.4) 43 (25.0) 13 (17.3) 30 (73.2)

Tis 3 (2.7) 3 (8.1) 0 (0.0) 1 (1.3) 0 (0.0)

TX 10 (9.0) 1 (2.7) 25 (14.5) 7 (9.3) 1 (2.4)

Clark_level (%) I 2 (2.2) 3 (10.7) 0 (0.0) 0 (0.0) 0 (0.0) 0.002 Exact

II 3 (3.4) 0 (0.0) 10 (8.4) 3 (5.7) 2 (6.5)

III 16 (18.0) 1 (3.6) 36 (30.3) 19 (35.8) 5 (16.1)

IV 49 (55.1) 17 (60.7) 58 (48.7) 25 (47.2) 18 (58.1)

V 19 (21.3) 7 (25.0) 15 (12.6) 6 (11.3) 6 (19.4)

Race (%) Asian 3 (2.6) 0 (0.0) 6 (3.4) 0 (0.0) 3 (7.5) 0.11 Exact

Black or African
American

0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2) 0 (0.0)

White 113 (97.4) 38 (100.0) 170 (96.6) 82 (98.8) 37 (92.5)

Sample.Type (%) Metastasis 86 (72.9) 24 (61.5) 161 (89.4) 81 (96.4) 7 (16.7) <0.001 Exact

Primary 32 (27.1) 15 (38.5) 19 (10.6) 3 (3.6) 35 (83.3)

Sex (%) Female 42 (35.6) 18 (46.2) 57 (31.7) 40 (47.6) 18 (42.9) 0.093 Exact

Male 76 (64.4) 21 (53.8) 123 (68.3) 44 (52.4) 24 (57.1)

Neoplasm_Status
(%)

Tumor-free 47 (43.5) 18 (48.6) 77 (45.3) 48 (58.5) 30 (76.9) 0.003 Exact

With tumor 61 (56.5) 19 (51.4) 93 (54.7) 34 (41.5) 9 (23.1)
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the two appraisals are. We observed a moderated agreement in

RI, JI, and FM estimation and a slight similarity in AMI

calculation. The alluvial diagram also shows the agreement

between the AJCC stage, Clark level, and the present

subtypes (Figure 3B).
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3.4 Microenvironment, molecular
features of subtypes

Firstly, GSEA was conducted for each subtype to identify

subtype-specific functional pathways according to their
B

C

A

FIGURE 3

Consistency evaluation of different prediction approaches. (A) Consistency heat map using Kappa statistics among different prediction
approaches. (B) Agreement of the predicted five subtypes of melanoma with Clark level and tumor stage classification in the cutaneous
melanoma of The Cancer Genome Atlas data cohort. (C) Heat map of subtype-specific functional pathways based on upregulated genes for five
identified melanoma subtypes.
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corresponding upregulated genes. Based on the significance

threshold (P-value < 0.05 and adjusted P-value < 0.25) and without

any overlapped pathways identified for other subtypes, we observed

that CS1mainly enriched in protein synthesis and post-translational

modifications such as ribosomal subunit biogenesis, assembly, and

methylation. CS2 was significantly involved in energy metabolism

and mitochondrial function like oxidative phosphorylation, NADH

dehydrogenase complex assembly, and ATP synthesis coupled

electron transport. The subtypes of CS3 and CS4 mainly referred

to immune response and inflammatory regulation such as positive

regulationof receptor binding, interleukin 4production, andpositive

regulation of T cell migration. The CS5 subtype was significantly

enriched in pathways associated with skin development,

keratinization, and cornification (Figure 3C).

Moreover, to explore the relationship between cell deaths and

tumor microenvironment, cell death indices (apoptosis, ferroptosis,

necroptosis, and pyroptosis) and tumor microenvironment-related

predictors (immune score, stromal score, tumor purity, ESTIMATE

score, and mRNAsi score) were calculated and plotted. The

distribution of cell death indices for each subtype in the

TCGA_SKCM cohort is illustrated in Figure 4A. Kruskal–Wallis

test determined that melanoma patients in the CS4 subtype had the
Frontiers in Immunology 10
highest cell deathscore than theother subtypes,whereas thecelldeath

scores of CS1 and CS2 were located at a much lower level. Similarly,

we surprisingly observed that the CS4 subtype had a superior

immune score, stromal score, and ESTIMATE score than the other

subtypes (Figure 4B), while tumor purity and mRNAsi score in CS4

were the minima among subtypes. The correlation analysis

discovered that four kinds of cell death (apoptosis, ferroptosis,

necroptosis, and pyroptosis) were not only positively associated

with each other but also have a close positive correlation with

immune score, stromal score, and ESTIMATE score. There were

negative associations between cell deaths with tumor purity and

mRNAsi score (Figure 4C). To prove our observation, similar

analyses were performed in the meta-GEO cohort. Similar

distribution trends and statistical results were observed in cell

death indices (Figure 4D) and tumor microenvironment-related

predictors (Figure 4E). The circle plot manifested similar

correlation coefficients compared with the TCGA_SKCM

cohort (Figure 4F).

We also produced a heat map to comprehensively depict the

distinct features of tumor-associated pathways, immune-

microenvironment signatures, and expression of immune-

checkpoint molecules (Figure 5A). The Kruskal–Wallis test
B C
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FIGURE 4

Association between cell deaths and tumor microenvironment. (A) Distribution of four cell death indices (apoptosis, ferroptosis, necroptosis, and
pyroptosis) among five identified melanoma subtypes in the cutaneous melanoma of The Cancer Genome Atlas data (TCGA_SKCM) cohort. (B)
Distribution of tumor microenvironment-related predictors (immune score, stromal score, tumor purity, ESTIMATE score, and mRNAsi score)
among five identified melanoma subtypes in the TCGA_SKCM cohort. (C) Correlation coefficients between cell death indices and tumor
microenvironment-related predictors in the TCGA_SKCM cohort. (D) Distribution of four cell death indices among five identified melanoma
subtypes in the meta-Gene Expression Omnibus (GEO) cohort. (E) Distribution of tumor microenvironment-related predictors among five
identified melanoma subtypes in the meta-GEO cohort. (F) Correlation coefficients between cell death indices and tumor microenvironment-
related predictors in the meta-GEO cohort.
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detected that tumor-associated pathways such as cell cycle, m6A

regulation, DNA damage response (DDR), mismatch repair, and

metabolism hypoxia were positively enriched in the CS1 subtype

(Figure 5B). As for the previous report, the immune

microenvironment signatures and immune-checkpoint molecules

are where the subtypes of CS3 and CS4 had the highest expression

values compared to the others (Figure 5B).
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3.5 Pseudotime analysis of subtypes

To better visualize the five clusters based on unsupervised

clustering and identify the underlying mechanisms of individual

patient distributions, we performed the t-SNE algorithms to

investigate and illustrate cluster categorization across samples.

The two-dimensional tSNE plot showed that melanoma patients
B
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A

FIGURE 5

Landscape of cell deaths for five identified melanoma subtypes. (A) Comprehensive heat map of tumor-associated pathways, immune-
microenvironment signatures, and expression of immune-checkpoint molecules among five identified melanoma subtypes. (B) Box plot of tumor-
associated pathways, immune-microenvironment signatures, and expression of immune-checkpoint molecules among subtypes. (C) t-SNE plot for
melanoma subtype distribution. (D) Graph learning-based dimensionality reduction plot of melanoma subtypes; each color represents a subtype
corresponding to the previously defined subtype. (E) The intra-cluster heterogeneity within CS3 subtype, which was further divided into two
subgroups according to their location in graph learning. (F) Kaplan–Meier survival curve of subgroups A and B in CS3 subtype. **** means p < 0.0001.
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in the TCGA_SKCM cohort can be distinctively partitioned into

five clusters (Figure 5C). In addition, the cell death-associated

gene expression was subjected to the graph learning-based

dimensionality reduction approach. Individual patients were

placed on a manifold with sparse tree structures, and the

landscape of melanoma for cell deaths was established. Most

patients were classified into separate clusters at the end of the

branch, such as CS1, CS2, CS4, and CS5 subtypes, which were

consistent with our previously described unsupervised clustering

(Figure 5D). Individual patient placed in the landscape indicates

the general features of cell death in the relevant subtype. In the

cell death landscape, for example, the death-active subtype CS4

and death-inactive subtypes CS1 and CS2 were dispersed at the

opposite end of the horizontal axis (Figure 5D). As a result, we

speculated that the cell death landscape’s vertical axis indicates a

different status of cell death for patients.

Moreover, we observed that the samples of the CS3 subtype

have scattered distributions on both sides of the vertical axis in

the landscape. Therefore, we believed that a significant intra-

cluster heterogeneity existed in the CS3 subtype. Based on the
Frontiers in Immunology 12
vertical axis in the landscape, we successfully divided the CS3

cluster into two subgroups (group A and group B) (Figure 5E).

The Kaplan–Meier (KM) survival plots manifested that group A

in the CS3 subtype had good survival than group B with log-rank

P = 0.046 (Figure 5F). To assess the classification robustness, the

CS3 subtype in the meta-GEO cohort and meta-immune

response cohort was correspondingly classified into two

subgroups. The KM survival curves revealed similar outcomes

that group A in the CS3 subtype had a longer survival time than

group B regardless of the meta-GEO cohort (Figure 6A) and

meta-immune response cohort (Figure 6B). Interestingly, the

two subgroups of the CS3 cluster identified by the cell death

landscape not only have distinct survival outcomes but also were

correlated with different molecular features—for example,

patients in group A had a positive enrichment in CD8 T cell

effector, antigen processing and presenting machinery (APM),

immune-checkpoint, TME score, INFG signature, MHC classes I

and II, ICB resistance, and T cell exhaustion (Figure 6C),

whereas group B was much more inclined to cancer hallmark

pathways like DDR (Figure 6C).
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FIGURE 6

Validation of heterogeneity within CS3 subtype and immunotherapy response. (A) Kaplan–Meier survival curve of subgroups A and B in CS3
subtype at the meta-Gene Expression Omnibus (GEO) cohort. (B) Kaplan–Meier survival curve of subgroups A and B in CS3 subtype at the
meta-immune response cohort. (C) Box plot of CD8 T cell effector, DNA damage response, antigen processing and presenting machinery,
immune-checkpoint, tumor microenvironment score, INFG signature, MHC classes I and II, ICB resistance, and T cell exhaustion between
subgroups (A) and (B, D) Immunotherapy response rate of five identified melanoma subtypes in the cutaneous melanoma of The Cancer
Genome Atlas data (TCGA_SKCM) cohort. (E) Immunotherapy response rate of five identified melanoma subtypes in the meta-immune
response cohort. (F) Rate of immunotherapy response for subgroups A and B in CS3 subtype at the TCGA_SKCM cohort. (G) Rate of
immunotherapy response for subgroups A and B in CS3 subtype at the meta-immune response cohort.
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3.6 Prediction of immunotherapy and
chemotherapy response

Because of the distinct distribution of expression of

immune-checkpoint molecules among subtypes, we speculated

that our classifications based on cell deaths can be applied to

predict immunotherapy response in patients of melanoma. To

prove our guesses, the melanoma patients who received

immunotherapy in the TCGA_SKCM cohort and the meta-

immune response cohort were classified into five categories

accordingly. We surprisingly uncovered that the response rate

of the CS4 subgroup was relatively higher than the other

subgroups no matter if in the TCGA_SKCM cohort or the

meta-immune response cohort. Patients in the CS4 subgroup

have a 58.33% immunotherapy response in the TCGA_SKCM

cohort (Figure 6D). Meanwhile, in the meta-immune response

cohort, the CS4 subgroup has the highest response rate (57.14%)

than the other subgroups (Figure 6E) Moreover, the CS3 subtype

had more diversified cell death and immune characteristics with

moderate immunotherapy response. A subdivided analysis

indicated that the enrichment score of immune-checkpoints in

group A was higher than in group B in the CS3 subtype. Thus,

we also explored the immune response rate between group A
Frontiers in Immunology 13
and group B. We observed that group A had a larger response

rate than group B regardless of the TCGA_SKCM cohort and the

meta-immune response cohort. In the TCGA_SKCM cohort,

patients in group A have a 43.75% response rate versus 29.63% in

group B (Figure 6F). At the same time, group A in the meta-

immune response cohort has a larger proportion response rate

than group B (66.67% vs. 10%) (Figure 6G).

Scientists are struggling to discover new potential

compounds for melanoma due to resistance to standard

chemotherapeutics (28). To investigate candidate agents that

displayed variable effectiveness in cell death gene categorized

clusters, the GDSC database was used to test the prediction

model (Figure 7A). The AUC values of drug responses were

compared within clusters. The GDSC database has 367

compounds in total. Only 219 compounds were evaluated on

34 kinds of melanoma cell lines that were utilized in the analysis.

The Kruskal–Wallis tests detected eight compounds, including

ACY-1215, CHIR-99021, EHT-1864, ELESCLOMOL, FTI-277,

nilotinib, tubastatin A, and TWS-119, that were distinctly

affected in cell death gene categorized clusters (Figure 7B).

Furthermore, we observed that the AUC values of ACY-1215,

EHT-1864, and tubastatin A were significantly lower in cluster 2.

Elesclomol and nilotinib were significantly lower in cluster 3. In
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FIGURE 7

Drug identification in cell death-associated gene classified clusters of melanoma. Immunotherapeutic response and potential compounds. (A)
Heat map of the differential expression of cell death-associated gene classified clusters in melanoma cells at the Genomics of Drug Sensitivity in
Cancer database. (B) Box plot of the area under the curve of ACY-1215, CHIR-99021, EHT-1864, ELESCLOMOL, FTI-277, NILOTINIB,
TUBASTATIN A, and TWS-119 among five clusters. (C) Cell viability curves and estimated IC50 values of ACY-1215, tubastatin A, and EHT-1864.
(D) Wound healing assay in A375 cells was performed after treatment with ACY-1215 (10.33 mm), tubastatin A (17.77 mm), and EHT-1864 (32.83
mm) at a 48-h recovery period. (E) Flow cytometry analysis of A357 cells which were stained with Annexin V-FITC and propidium iodide after 48
h of ACY-1215 (10.33 mm), tubastatin A (17.77 mm), and EHT-1864 (32.83 mm) treatment.
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cluster 5, the AUC values of CHIR-99021 and FTI-277 were

much lower than in the other clusters. Furthermore, TWS-119

was much lower in cluster 3. The lower AUC of the drug

responses means being more sensitive to drug therapy.
3.7 Effect of ACY-1215, EHT-1864, and
tubastatin A on A357 melanoma cell

We discovered that melanoma patients with death-inactive

subtypes are more sensitive to ACY-1215, EHT-1864, and

tubastatin A. Therefore, these drugs were selected for cell

experiments. Firstly, the CCK8 test was used to measure the

cell viability and IC50 values of drugs on A357 melanoma cells.

We found that both ACY-1215 and tubastatin A can effectively

kill A357 cells with lower concentrations. The IC50 values of

ACY-1215, tubastatin, and EHT-1864 were 10.33, 17.7, and

32.83 mm, respectively (Figure 7C). Furthermore, the wound

healing assay indicated that ACY-1215, tubastatin, and EHT-

1864 can significantly attenuate the cell migration of A357 after

incubation for 24 and 48 h (Figure 7D). The effect of ACY-1215,

tubastatin, and EHT-1864 on A357 cell apoptosis was studied

using flow cytometry. The results show that these drugs can

obviously increase A357 cell apoptosis (Figure 7E).
4 Discussion

The prevalence of advanced melanoma has risen steadily

over the last few decades. However, treatment regimens have

markedly increased in recent years as a result of an improved

understanding of the underlying tumorigenesis and signal

transduction pathways associated with its pathological process

—for example, cancer immunotherapies focused on checkpoint

inhibitors have reached significant clinical success. However, its

usage is severely limited to the fact that just one-third of patients

with most forms of melanoma respond to these inhibitors (29).

Several research findings tried to integrate cell death induction

with immune-checkpoint inhibitors, resulting in synergistically

enhanced antitumor activity, even in checkpoint inhibitor-

resistant tumors (17). Under this scenario, researchers

proposed a novel notion, immunogenic cell death, which

might be induced by radiation, tumor vaccination,

immunotherapy, or some form of chemotherapy (30).

Immunogenic cell death (ICD) was previously known as

immunogenic apoptosis since most kinds of ICD are caused

by apoptosis. As the understanding of cell death processes has

increased, many nonapoptotic cell deaths have been

characterized in recent years. Three well-studied nonapoptotic

cell deaths include necroptosis, pyroptosis, and ferroptosis (31–

33). As a consequence, in this study, we examined the ICD-

associated RNA-seq data of melanoma patients for exploration,

independent verification, and comprehensive classification of
Frontiers in Immunology 14
five reproducible melanoma subtypes in multiple cohort studies,

which put a spotlight on cancer classification for frontline

therapeutic approaches.

Various gene expression-based biomarkers in the literature

can categorize individuals who are at risk and who can benefit

from individualized treatments, but their correctness and

predictive ability stay restricted (34–38). Nevertheless, the

majority of this research relied on the differential study of

genomic or transcriptome characteristics rather than biological

processes (39). In the current research, we first collected the

genes referred to “apoptosis”, “ferroptosis”, “necroptosis”, and

“pyroptosis” processes. Moreover, to prove that these genes are

consistent with cell death, we conducted GO enrichment

analysis and found that these genes are positively activated in

cell death-associated signal pathways. Next, we investigated the

variations of specific melanoma subtypes based on cell death

gene expression and its relationship to tumor genetic mutations

as well as the immunological environment. We found that

patients in the high-risk subgroups (CS1, CS2, and CS5) with

low cell death indices were associated with high Clark levels and

tumor stage. These groups also manifested worse overall

survival. The substantial connection of cell death with clinical

characteristics and survival outcomes suggests that cell death is

effective in melanoma patients’ prognosis. Furthermore, we

observed that patients in CS3 and CS4 subgroups with good

prognoses were significantly enriched in mutations of BRAF and

MUC16. Consistently, previous research has proven that BRAF

mutation in melanoma patients indicates a higher overall and

relative survival rate (40, 41). Several studies indicate that a

BRAF mutant could be identified by host immunity and may

play a role in anticancer immune responses (42). Erkes et al.

recently reported that BRAF inhibitors promoted pyroptosis in

anticancer immune responses, pointing to novel treatment

approaches for refractory melanoma (43). Furthermore, the

mutation of MUC16 was linked to better overall survival in

both NSCLC and melanoma (44). Wang et al. have previously

proven that MUC16 mutations are mainly enriched in immune-

associated pathways and are favorably linked with T-cell

activation, which may enhance the prognosis of melanoma

patients (45).

Recent research has revealed strong links between cell death

and anti-cancer immunity—for example, the tumor-infiltrated

CD8+ T cells are thought to induce tumor cell death via

perforin-granzyme and Fas-FasL. The new mechanism,

however, has illustrated that CD8+ T cells suppress tumor

growth by inducing ferroptosis, pyroptosis, and necroptosis,

which prompted a reconsideration of the relationship between

tumor cell death and immune activation (17). In this study, we

observed that apoptosis, necroptosis, pyroptosis, and ferroptosis

positively correlated with a highly infiltrated immune

microenvironment and highly expressed immune-checkpoint

genes, which was consistent with many previous tumor cell

death research (46–48). Furthermore, compared with patients in
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the low-cell-death group, patients in the high-cell-death groups

(CS3 and CS4) had a lower expression of tumor-associated

molecular pathways and higher enrichment of immune

response biological pathways. A variation in the functional

immunological network, as previously reported, can cause

disruptions in anti-cancer response, immunoediting, and

cancer cell escape (49). This heterogeneity of cell death

pa t t e rns combined wi th d i s t inc t tumor immune

microenvironments offers a once-in-a-lifetime chance to

develop targeted therapeutics (50). Patients with high

infiltration of the immune microenvironment and highly

expressed checkpoint target genes are more particularly

sensitive to immune-checkpoint inhibitors. We discovered that

melanoma patients in CS3 and CS4 subtypes with a high

expression of checkpoint target genes are more sensitive to

checkpoint inhibitor therapy. However, basic unsupervised

clustering analysis for patient subtyping frequently failed to

identify intra-cluster interactions and did not reveal the overall

structure of the patient distribution (51)—for example, a subtype

of CS3 had similar prognosis and clinical outcomes compared

with the CS4 subtype. However, the CS3 subtype manifested a

more sophis t i cated heterogene i ty of the immune

microenvironment and had a lower chromosomal instability

than the CS4 subtype. To address these issues, we used graph

learning algorithms to identify the tree topologies of cell death

profiles in patients, which supplied additional information to

clustering analysis and provided fresh insight into the

complicated melanoma cell death landscape. We found that

the CS3 subtype can successfully cluster into two subgroups

(group A and group B) with different survival outcomes,

molecular features, and distinct responses of immune-

checkpoint inhibitor therapies.

The biological differences between the five categories may

signal the necessity for distinct treatment strategies. Based on the

GDSC database, we identified eight compounds that were

distinctly affected in cell death gene categorized clusters. ACY-

1215 and tubastatin A are selective inhibitors of HDAC6, which

are required for the proliferation and metastasis of melanoma

cells (52, 53). Previous studies have revealed that HDAC6

inhibitors might suppress the growth of a panel of human

melanoma cell lines and could be a potential strategy for

melanoma therapy, even resolving vemurafenib resistance (53,

54). In our research, we observed that ACY-1215, tubastatin A,

and EHT 1864 are more sensitive to the death-inactive subtypes

(CS1, CS2, and CS5) of melanoma patients. Cell experiments

also confirmed that ACY-1215, tubastatin A, and EHT 1864 can

effectively kill A357 cells via apoptosis. Several previous

experiments have proven that selective inhibitors of HDAC6

synergistically improve anticancer activity via induction of

tumor cell death (55, 56). Elesclomol is an investigational

agent that causes oxidative stress, mitochondrial-induced
Frontiers in Immunology 15
apoptosis in tumor cells, and synergies with taxanes in tumor

models (57). In phase II clinical trial of patients with metastatic

melanoma, elesclomol with paclitaxel was observed to improve

progression-free survival compared with paclitaxel alone (58).

The phase II Tasigna Efficacy in Advanced Melanoma trial

suggested that nilotinib, a KIT-selective tyrosine kinase

inhibitor, may be an effective therapy option for individuals

with KIT-mutated advanced melanoma (59). Moreover, CHIR

99021 is a GSK3 kinase inhibitor that can significantly enhance

TNF and IFN production, natural cytotoxicity, and antibody-

dependent cellular cytotoxicity for effective cancer

immunotherapy (60). In conclusion, it is reasonable to

speculate that these chemicals may induce various kinds of cell

death and can be employed as precise therapies for some death-

inactive melanoma subtypes.
5 Conclusion

In summary, we systematically landscaped five cell death

subtypes in melanoma that were connected with distinct anti-

cancer immunity and found vastly differing patterns in tumor

genetic mutation, immune-checkpoint inhibitors, tumor-

infiltrating environment, functional orientation, and, most

importantly, clinical outcomes. This research gives a

conceptual framework for understanding melanoma cell death

and immune response and has practical implications for

individualized immunotherapy and chemotherapy.
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SUPPLEMENTARY FIGURE 2
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genes between tumor and normal skin groups in the Cancer Genome

Atlas–Genotype Tissue Expression dataset. (C) Immunohistochemical
images of hub genes in melanoma tissues and normal samples.
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