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rheumatoid arthritis

Yi Lin1,2†, Ying-Jie Zhao1†, Hai-Lin Zhang1,2, Wen-Juan Hao1,2,
Ren-Di Zhu1,2, Yan Wang1,2, Wei Hu1,3* and Ren-Peng Zhou1,3*

1Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China,
2Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of
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Rheumatoid arthritis (RA) is a common autoimmune disease characterized by

chronic inflammation. Immune dysfunction is an essential mechanism in the

pathogenesis of RA and directly linked to synovial inflammation and cartilage/

bone destruction. Intermediate conductance Ca2+-activated K+ channel

(KCa3.1) is considered a significant regulator of proliferation, differentiation,

and migration of immune cells by mediating Ca2+ signal transduction. Earlier

studies have demonstrated abnormal activation of KCa3.1 in the peripheral

blood and articular synovium of RA patients. Moreover, knockout of KCa3.1

reduced the severity of synovial inflammation and cartilage damage to a

significant extent in a mouse collagen antibody-induced arthritis (CAIA)

model. Accumulating evidence implicates KCa3.1 as a potential therapeutic

target for RA. Here, we provide an overview of the KCa3.1 channel and its

pharmacological properties, discuss the significance of KCa3.1 in immune cells

and feasibility as a drug target for modulating the immune balance, and

highlight its emerging role in pathological progression of RA.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the joints.

The average global incidence is 0.5% to 1.0%, with genetic factors accounting for

approximately 60% risk of RA (1). The primary goal of RA therapy is to restore the

immune balance and reduce synovial inflammation and joint damage. The traditional

drug of RA ranges from disease-modifying anti-rheumatic drugs (DMARDs) (eg,

methotrexate and Janus kinase inhibitor tofacitinib) to biologic agents (eg, tumor
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necrosis factor inhibitors) and some adjuvant therapy drugs

like non-steroidal anti-inflammatory drugs (NSAIDs) and

glucocorticoids (GC) (1). However, the currently available

drugs provide limited long-term efficacy along with increased

risk of severe side-effects. Therefore, management of RA remains

a topic of considerable research focus. In this context, we propose

potential novel strategies for the treatment of RA by searching for

targets that restore the balance of immune function.

KCa3.1, a Ca2+-activated intermediate conductance K+

channel regulated by the Ca2+-binding protein calmodulin

(CaM), was first identified in erythrocytes by Gardos in 1958

(therefore also designated the Gardos channel) (2). The channel

is encoded by the KCNN4 gene and directly pre-associated with

CaM in the absence of Ca2+. When the intracellular free Ca2+

concentration is higher than 100 nM, the KCa3.1 channel is

activated after Ca2+ binds to CaM (3). This results in increased

K+ efflux and change in membrane potential, providing a driving

force for Ca2+ influx. Physiological and pharmacological studies

have shown that the KCa3.1 channel modulates membrane

potential and Ca2+ signaling in activated T and B cells,

macrophages and fibroblasts (4). From a pathological

perspective, the KCa3.1 channel is abnormally opened to

maintain Ca2+ homeostasis, thereby regulating various cellular

functions ranging from proliferation and differentiation to

migration (5). Therefore, the KCa3.1 channel may serve as a

potential therapeutic target for diseases associated with cell

activation and hyperproliferation, such as diabetic

nephropathy (6), ulcerative colitis (7), and RA (8).

The pathological process of RA involves interactions of

multiple immune cells, synovial fibroblasts, cytokines, and

proteases. Synovial tissue gradually develops chronic

inflammation that progresses to cartilage damage and bone

erosion, leading to joint damage and multiple clinical

symptoms (1, 9). Several studies have provided evidence that

KCa3.1 contributes substantially to immune imbalance in RA.

Notably, obstruction of the KCa3.1 channel effectively inhibits

disease progression by alleviating immune inflammation and

joint damage, suggestive of its significant therapeutic value in

RA. This article provides a summary of the current information

on the immunoregulatory mechanisms related to KCa3.1, its

functional roles in the development of RA, and potential as a

pharmacological target for disease management.
Overview of KCa3.1

KCa3.1 is a multifunctional intermediate conduction channel

also known as IKCa1, SK4, IK-1 or KCa4 (10, 11). This channel

belongs to a gene family consisting of all Ca2+-activated K+

channels. The International Union of Pharmacology has now

classified the gene family into three groups: KCa1.1 (BK, big-

conductance K+ channel), KCa2.1, KCa2.2, KCa2.3 (SK, small-

conductance K+ channel) and KCa3.1 (IK, intermediate-
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conductance K+ channel) (12). KCa3.1 is a membrane-spanning

protein composed of four a-subunits (13). Each a-subunit has six
transmembrane segments (S1-S6) with a pore motif between S5

and S6. The pore region is formed by the transmembrane helices S5

and S6 in the symmetrical center of the tetramer, generating a K+

conduction pathway (14). In genetics, the coding gene KCNN4 is

located at the q13.2 locus of human chromosome 19 (15, 16). The

encoded protein contains 427 amino acids with a short N-terminal

domain and long C-terminal tail. The C-lobe of CaM constitutively

binds to CAM-binding domain (CAMBD) 1 (positions 312-329) in

a Ca2+-independent manner at the C-terminus of KCa3.1, whereas

the CaMN-lobe barely binds to the channel and its binding pocket

remains closed. In the presence of high Ca2+, the N-lobe of CaM

binds with Ca2+ and rearranges into an open conformation. The N-

lobe of CaM pulls the S45A (first helix of the S4-S5 linker) helix

down, keeping the S45B (tightly coupled to the pore-lining S6

helix) away from the pore axis. This expands the S6 helical bundle

and eventually opens the pore (17). The N-lobe of CaM binds to

KCa3.1 at CAMBD2A (a nearby segment, positions 344-353) in

the same subunit and CAMBD2B (a distal segment, positions 360-

373) in an adjacent subunit (18). Furthermore, a pivotal role of

channel tetramerization and trafficking of two leucine zipper (LZ)

motifs in the N- and C-termini has been reported (19, 20). The

structure of KCa3.1 is shown schematically in Figure 1.

Here we focus on the transcriptional regulation, spliceosome

regulation and epigenetic regulation of KCa3.1 (21). At the

transcriptional level, activation protein-1 (AP-1) in conjunction

with transcription factor Ikaros-2, was demonstrated to enhance

KCa3.1 channel expression, which promoted the mitogenesis of

preactivated lymphocytes (22). Additionally, laminar shear stress

upregulates endothelial KCa3.1 by binding of AP-1 and cAMP

response element (CRE) to promoter in a CaMK/Akt/p300

pathway-dependent manner (23). Mutation of the AP-1 binding

motif in T cells as well as the transfection of AP-1 decoy

oligonucleotides into cardiac fibroblasts were shown to

significantly downregulate the expression of KCa3.1 (22, 24).

Furthermore, two NF-kB binding sites were identified in the

promoter region of KCa3.1, and the up-regulation of KCa3.1 in

colon cancer cells was mediated in an NF-kB-dependent manner

(25). A functional repressor element 1-silencing transcription

factor (REST or NRSF) was confirmed to be a negative

regulator of KCa3.1 transcription (26). In a study on tumors,

histone deacetylase 2 (HDAC2) and HDAC3 were found to

downregulate KCa3.1 transcript levels in a REST-independent

and insulin-like growth factor-binding protein 5 (IGFBP5)-

independent manner in the breast cancer cell line, TMB-1 (27).

Meanwhile, HDAC2 and HDAC3 were found to be involved in

the epigenetic regulation of KCa3.1 in the KCa3.1-expressing

human prostate cancer cell line, PC-3. Epigenetically, KCNN4 is

hypermethylated in memory B cells in common variable

immunodeficiency (CVID) individuals relative to healthy

individuals (28). However, in a genome-wide DNA methylation

analysis, Bulk et al. found that the KCNN4 promoter was
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hypomethylated in lung cancer (29). Besides, Ohya et al. identified

novel spliced variants of KCa3.1 (human(h) KCa3.1b) from the

human thymus, which differs from hKCa3.1a for the lack of the

N-terminal domains. The study suggests that the N-terminal

domain of KCa3.1 is essential for channel trafficking to the

plasma membrane (30). Moreover, Du et al. showed that

KCNN4 was regulated by several microRNAs, such as miR-204-

5p studied in the research of pancreatic ductal adenocarcinoma

(PDAC) (31).

KCa3.1 is located in the lung, distal colon, and immune-related

tissues, such as thymus, bone marrow, and lymph nodes (32). In-

depth studies have shown that KCa3.1 is almost expressed in non-
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excitable cells, such as fibroblasts, lymphocytes, and other immune

cells. At the cellular level, electrophysiological and pharmacological

characterization studies have identified the presence of KCa3.1 in

plasmalemma and mitochondrial membrane (33). KCa3.1 channels

are additionally voltage-independent and unaffected by membrane

potential, with Ca2+-dependent and inwardly rectifying properties

of intermediate conduction (34). Functionally, basolateral KCa3.1

provides the driving force for Cl- secretion induced by activators

such as Ca2+ in human and rat colon (35). KCa3.1 is also involved

in regulation of cell volume in lymphocytes (36). Similarly, patch-

clamp studies showed that the CFT1-LCFSN cell, a cystic fibrosis

airway cell line, copes with hypotonic challenge via increasing the
B

C

A

FIGURE 1

Schematic representation of the structure of KCa3.1. A functional Ca2+-activated intermediate conductance K+ channel (KCa3.1) comprises four a
subunits organized around a central pore through which K+ flows out of the cell. (A) KCa3.1 channel composed of four a subunits. (B) Top view of
four a subunits around the central pore. (C) Schematic representation of a single KCa3.1 subunit, showing a total of 427 amino acids and consists of
six transmembrane segments, named S1-S6. The K+ ion conduction pore is located between the loop and S6, containing the GYGD K+ channel
pore sequence. CaM N-lobe binds to CAMBD2A and CAMBD2B with Ca2+, leading to channel opening. (Created with BioRender.com).
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KCa3.1 current (37). Moreover, the KCa3.1 channel is activated at

elevated cytosolic Ca2+ concentrations of above 100 nM. Substantial

activation of the KCa3.1 channel leads to K+ efflux, thereby

restoring and stabilizing the fully hyperpolarized membrane

potential to maintain a continuous driving force of Ca2+ influx

(38). While Ca2+ is indispensable for various physiological activities

of the body, continuous influx is necessary for activation,

proliferation and other physiological function of immune cells

and cytokine production (39). Thus, the functions of KCa3.1

described above suggest the potential of targeting KCa3.1 in the

treatment of diseases associated with immune imbalance.
Activators and inhibitors of KCa3.1

The pharmacological effects of the KCa3.1 channel have been

widely explored and its activators and inhibitors analyzed in various

diseases (Table 1). The majority examples of channel activators are

documented in the literature related to cardiovascular diseases,

neurological diseases and immune diseases. For instance, 1-ethyl-2-

benzimidazolidinone (1-EBIO) serves as a direct and potent

specific activator of KCa3.1 via increasing sensitivity of the

channel to resting levels of Ca2+ (43). A dichloro analog of

benzimidazolidinone, 5,6-dichloro-1-EBIO (DC-EBIO), is

reported to be 30 times more potent than EBIO (44). Naphtho

[1, 2-d] thiazole-2-ylamine (SKA-31) and its optimized product, 5-

methylnaphtho [2,1-d] oxazole-2-amine (SKA-121), act in a similar

manner to EBIO (45). Another preliminary study showed for the

first time that 6,7-dichloro-1H-indole-2,3-dione-3-oxime (NS309)

positively regulates KCa3.1 with higher potency and selectivity than

1-EBIO in the HEK-293 cells (human embryonic kidney cells). The

above findings indicate that NS309 presents an excellent alternative

to 1-EBIO as a pharmacological tool in KCa3.1 activation-related

research (46). In addition, chlorzoxazone (CZ) and zoxazolamide

(ZOX) are often used clinically as pharmacological activators of the

KCa3.1 channel and have entered Phase IV and Phase II clinical

trials, respectively (51). Classical methylxanthine compounds,

including theophylline, 3-isobutyl-1-methylxanthine (IBMX) and

caffeine, are reported to interact directly with channel proteins to

activate KCa3.1 (47). Gerlach et al. demonstrated that ATP activates

KCa3.1 in excised, inside-out patches in a protein kinase A inhibitor

5-24-dependent manner (52). In their experiments, ATP specifically

activated chimera containing the KCa3.1 C-terminal amino acids

His299-Lys427, but not other highly homologous Ca2+-activated K+

channels. In terms of indirect activation, the human single cAMP-

dependent protein kinase (PKA) site (S334A) on the KCa3.1 a
subunit is dependent on phosphorylation of PKA to reduce

binding of CaM to the KCa3.1 channel. PKA signaling pathway

inhibitors, such as PKI14-22, Rp-8-Br-cAMPS, and N-[2-(4-

bromocinnamylamino) ethyl]-5-isoquinoline (H-89), significantly

reversed downregulation of KCa3.1 channel, thereby restoring its

function, while Sp-8-Br-cAMPS, a PKA activator, exerted the

opposite effect (48, 53). Interestingly, PKA-mediated
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phosphorylation was shown to have no regulatory effect on

KCa3.1 channel in the above study (50). Moreover, a monoclonal

blocking antibody against programmed death 1, pembrolizumab,

has been identified that promotes KCa3.1 activity and

concomitantly increases Ca2+ flux in cytotoxic T cells of patients

immediately after treatment (54, 55). In conclusion, most KCa3.1

channel activators have low potency and poor selectivity and

modulate other ion channels simultaneously.

KCa3.1 channel inhibitors are divided into two main

categories: peptides and small molecule inhibitors. Peptide

blockers bind to the outer vestibule of the channel and form

multi-point contacts with channel residues whereas small-

molecule blockers pass through the membrane and bind the

cavity from the inside, blocking K+ outflow (38). The majority of

KCa3.1 channel peptide inhibitors are toxin polypeptides. The

most common is the scorpion toxin Glu32-charybdotoxin,

initially isolated from Leiurus quinquestriatus. Nevertheless,

the scorpion toxin peptide has low selectivity for KCa3.1 and

additionally shows activity against both KCa1.1 and Kv1.3

channel (a voltage-gated K+ channel) (56, 57). Maurotoxin

(MTX) (58) and urotoxin (a-KTx6) (59) display affinity for

KCa3.1 but also affect the Kv1.2 channel (a voltage-gated K+

channel). Accordingly, toxin polypeptide KCa3.1 channel

blockers have limited experimental value for in vivo research

on KCa3.1 due to their low specificity and are more commonly

used to investigate the pharmacological properties of KCa3.1 in

vitro (60).

Small-molecule inhibitors of KCa3.1, primarily derived from

the antibacterial drug clotrimazole, effectively block the channel

and inhibit mitosis of activated prolymphocytes (22). However,

clotrimazole inhibits cytochrome P450 enzymes in vivo, causing

severe side-effects, which limits its pharmaceutical value (45). A

derivative inhibitor of clotrimazole, 1-[(2-chlorophenyl)

diphenylmethyl]-1H-pyrazole (TRAM-34), was further

developed, which could avoid the adverse reactions of

cytochrome P450 enzyme inhibition (61). TRAM-34 is the

most commonly used KCa3.1 channel inhibitor in

pharmacological experiments. Mechanistically, TRAM-34

binds threonine 250 and valine 275 in the pore cavity of the

KCa3.1 channel, preventing penetration of ion (62).4-[[3-

(trifluoromethyl) phenyl] methyl]-2H-1, 4-benzothiazin-3

(4H)-one (NS6180) inhibits KCa3.1 channel activity using the

same mechanism as TRAM-34 but has low bioavailability and is

therefore only suitable for topical therapy. Senicapoc, also

known as ICA-17043, is a potent and selective blocker of

KCa3.1. Compared to other receptors, senicapoc displays

higher selectivity for KCa3.1 and lower possibility of off-target

effects (63, 64). A number of novel compounds have been

synthesized using the L-type Ca2+ channel blocker nifedipine

as the template, such as cyclohexadiene 4 (32) and the nano-

affinity KCa3.1 channel inhibitor cyclohexadiene lactone

composed of cyclohexadiene (4), and phenyl-4H-pyran. Due

to the difficulty in synthesizing phenyl-4H-pyran and its short
frontiersin.org
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TABLE 1 Inhibitors and Activators of KCa3.1.

Activators/
Inhibitors

Substances Structure/
formula

IC50/EC50 Experimental cells Description Clinical
trial

References

Channel
activators

1-EBIO 84 mM(EC50) Xenopus oocytes Increase channel
open rate

\ (29, 32)

DC-EBIO Test at 100 mM Capan-1 cells Increase channel
open rate

\ (40, 41)

SKA-31 260 nM (EC50) COS-7 cells open channel \ (30)

SKA-121 110 nM (EC50) COS-7 cells open channel \ (30)

NS309 10 nM (EC50) HEK-293 cell open channel \ (31)

CZ 98 mM(EC50) Xenopus oocytes Increase channel open
rate

Phase
I-IV

(32)

ZOX Test at 300 mM Xenopus oocytes Increase channel open
rate

Phase
I-II

(32)

theophylline Test at 0~1500 mM HEK-293 cell Mandatory Ca2
+-dependent
, independent of
phosphorylation

Phase
I-IV;

(33)

Channel
activators

IBMX Only test at 1mM HEK-293 cell Mandatory calcium
dependence

\ (33)

Caffeine Only test at 1mM HEK-293 cell Mandatory calcium
dependence

Phase
I-IV

(33)

ATP Only test at 100 mM Human microglia activate purinergic
receptors, free [Ca2+]i
↑

Phase
I-IV

(42)

PKI14-22 C53H100N20O12 Only test at 10M MLS-9 microglia, primary
rat microglia

Inhibit PKA, increase
current

\ (35)

Rp-8-Br-
cAMPS

Test at 10M, 100mM MLS-9 microglia, HEK-
293 cell, post-SE neurons

Inhibit PKA, increase
current

\ (35, 36)

H-89 Test at 1mM, 10 mM Inhibit PKA \ (36)

(Continued)
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half-life after intravenous injection (62), the compound is not a

suitable replacement for TRAM-34 as a KCa3.1 inhibitor.

Clinically, the antihypertensive drug nitrendipine blocks

KCa3.1 channel at a dose of 100 nM (65). Previous studies

have shown that in the PI3K-PI(3)P signaling pathway,

LY29400259 (a phosphatidylinositol 3-kinase inhibitor) (55)

and ellagic acid (a nucleoside diphosphate kinase B kinase

inhibitor) (66), prevent phosphorylation of specific group

amino acid and inhibit activity of the KCa3.1 channel.

Recently, Licochalconer A, a chalcone compound extracted

from licorice, was shown to block KCa3.1 in a concentration-

dependent manner, with anti-inflammatory effects (67). In

general, the pharmacological effects of the KCa3.1 channel are

relatively well characterized and meet the pharmacological needs

in the relevant studies. However, the most rigorous obstacle to
Frontiers in Immunology 06
clinical application of KCa3.1 modulators is almost associated

with their low selectivity, so it is of great significance to explore

highly specific drugs targeting KCa3.1 for conforming to

clinical use.
Abnormal expression of KCa3.1 in
rheumatoid arthritis

RA is an autoimmune disease characterized by inflammation

of the synovium, with the essential site of inflammation

identified as the synovial lining. In the process of lymphocyte

activation and pathological function in rheumatoid arthritis, the

increase of transient intracellular free calcium level plays a

crucial role. A study have found that compared with healthy
TABLE 1 Continued

Activators/
Inhibitors

Substances Structure/
formula

IC50/EC50 Experimental cells Description Clinical
trial

References

Post-SE neurons, HEK-
293 cell

Peptide
inhibitors

ChTX-Glu32 C175H272N56O57S7 250 nM (Emax) Human T-lymphocytes Salt bridge anchors the
outer vestibule

\ (43, 44)

MTX C145H231N45O47S8 1.4 nM (IC50) CHO cells Selective inhibitor \ (45)

a-KTx6 \ \ \ Inhibit KCa3.1 with
nanomolar affinity

\ (46)

Small
molecule
inhibitors

clotrimazole 3±0.5 mM (EC50) T cell inhibit mitosis Phase
I-IV

(47)

TRAM-34 5.5±0.5 mM(EC50) T cell inhibit mitosis \ (47)

NS6180 Human: 14 Nm; Mouse: 15
nM; Rat: 9 nM (IC50)

human, mice, and rat
erythrocytes

binding amino acid \ (48, 49)

ICA-17043 11±2 nM (IC50) Human erythrocytes High selective Phase
I-III

(50)

4-Phenyl-4H-
pyran

8nM (IC50) C6BU1 rat glioma cells Inhibit ion conduction
directly

\ (20, 48)
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people, RA patients have elevated basal cytoplasmic free calcium

level ([Ca2+]cyt) and abnormal activation of KCa3.1 channel to

maintain calcium influx in peripheral T lymphocytes (68).

Addit ional ly , Ca2+-act ivated K+ currents with the

characteristics of KCa3.1 channel were detected in synovial

fibroblasts from RA patients. TGF-b1-induced KCa3.1

overexpression stimulates the proliferation and mediator

secretion of synovial fibroblasts, which can be suppressed by

KCa3.1 inhibitors. This result supports the theory that KCa3.1 is

closely related to synovial inflammation (8). In addition, KCNN4

is required for fusion of macrophages to form osteoclasts or

multinucleated macrophages (MGCs) during the immune

response to RA (69). KCa3.1 is expressed in both physiological

and inflammatory osteoclast formation and is the only channel

in the Ca2+-activated K+ channel family that is upregulated

during the process of receptor activator of nuclear factor-kB
ligand (RANKL)-induced osteoclast formation. The collective

results confirm an association of abnormal expression of KCa3.1

with pathogenesis of RA.

Experimental studies on animal models suggest that KCa3.1 is

significantly associated with inflammation and pathogenesis of RA.

In a collagen antibody-induced arthritis (CAIA) model, alleviated

joint inflammation and tissue damage was observed in KCNN4-/-

mice compared to KCNN4+/+ mice (69). One extremely interesting

phenomenon was that collagen-induced arthritis (CIA) KCNN4-/-

mice did not develop autoimmune arthritis (70). Specifically,

following intradermal injection of chicken collagen type II into

the base of the tail ofKCNN4-/- mice on days 0 and 21, noKCNN4-/-

mice developed clinical evidence or histological signs of arthritis, in

contrast to wild-type mice. Notably, the CIA KCNN4-/- model

indicates a possible pro-inflammatory effect of KCa3.1 in RA.

However, the specific mechanisms by which deficiency of KCNN4

induces resistance against joint inflammation in CIA models

remain unclear. These findings suggest that targeting KCa3.1

deficiency may alleviate joint inflammation and limit the

development of persistent joint damage in experimental animal

models, presenting a potential strategy for RA therapy.
Regulatory roles of KCa3.1 in
immune cells

Role of KCa3.1 in T cells

The most prominent cell type in immune diseases is the T

cell, which is responsible for recognizing antigens and generating

immune responses. During pathogenesis of RA, autoantigens are

presented to T cells by antigen-presenting cells. Following

activation of pathogenic self-reactive T cells, various innate

immunocytes are activated. Immediately afterwards,

inflammatory signaling pathways are initiated, secreting

various cytokines to trigger synovial tissue inflammation.

KCa3.1 expressed in T cells initiates expression of genes that
Frontiers in Immunology 07
promote T cell activation and proliferation (71). Notably,

stimulated activated T cells express significantly higher levels

of KCa3.1 than resting T cells (22).

CD4+ T cells are core cells of the immune system,

coordinating the adaptive immune response and regulating

immune and non-immune cell functions through cytokine

production (72, 73). In CD4+ T cells, the KCa3.1 channel is

activated mainly through the phosphatidylinositol 3 phosphate

(PI(3)P) signaling pathway. After antigen presentation to T cell

receptors, the class II phosphatidylinositol 3 kinase C2b (PI3K-

C2b) is activated, which, in turn, promotes production of PI(3)P

(74). Several studies indicate that KCa3.1 channel activation by PI

(3)P is associated with NDPK-B. The inhibitory effect of the 14

amino acid region at CT of KCa3.1 is eliminated upon

recruitment of nucleoside diphosphate kinase B (NDPK-B) to

phosphorylate the histidine residue H358 in this region (75).

Based on the above mechanism, existing studies have focused on

inhibition of KCa3.1 channel opening through potential effects on

three sites of activity. First, intracellular PI (3)P synthesis is

restricted by the PI(3)P phosphatase myotubularin-related

protein 6 (MTMR6). Consistently, the highly selective PI3K

inhibitor wortmannin depletes intracellular PI(3)P that results

in inhibition of KCa3.1 (75, 76). Second, phosphoglycerate mutase

family 5 (PGAM5) induces dephosphorylation of NDPK-B and

directly inhibits NDPK-B-mediated histidine phosphorylation,

thereby blocking KCa3.1 channel activation (77). Third, the

mammalian protein histidine phosphatase (PHPT-1) binds

d i r e c t l y to phosphory l a t ed H358 , t r i gge r ing i t s

dephosphorylation to achieve inhibition of KCa3.1 channel

activity (78). Moreover, intracellular copper deficiency is

associated with elevated H358 phosphorylation, implying that

the use of copper chelators may enhance the activity of KCa3.1

(79). In an established KCa3.1-/- mouse model, it was observed

that T helper (Th)-0, Th1, and Th2 cells isolated from KCa3.1-/-

mouse are defective in Ca2+ flux and cytokine production, while

the Th17 and Treg subsets displayed normal function. The above

phenomenon supports a key role of KCa3.1 in Th0, Th1, and Th2-

mediated diseases, including RA, colitis, and several other

immune inflammatory disorders (80). Consistently,

pharmacological inhibition of KCa3.1 decreased inflammatory

bowel disease mice symptoms via increasing IL-10 production in

Treg cells, suggests that KCa3.1 is responsible for the invalidation

of anti-inflammatory efficiency of Treg cells in chronic

inflammatory disorders (81, 82).

CD8+ cells are cytotoxic T lymphocytes that infiltrate solid

tumors to perform immune surveillance functions. Chimote et al.

provided evidence of compartmental reduction of CaM levels at the

plasma membrane of CD8+ T cells in head and neck squamous cell

carcinoma (HNSCC) patients, leading to decreased activity and

chemotaxis of KCa3.1 (83). Similarly, another recent study showed

that targeted KCa3.1 activation could restore the chemotaxis ability

of HNSCC CD8+ T cells in the presence of adenosine (84).

Furthermore, KCa3.1 is reported to support the migration of
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CD8+ T cells. Reduced K+ channel activity could be restored by

cytokines, ultimately leading to functional recovery of impaired

CD8+ T cells, facilitating clearance of pathogens or control of local

tissue inflammation (85).
Role of KCa3.1 in B cells

The primary function of B cells is to differentiate into plasma

cells that secrete antibodies to mediate humoral immune response

under conditions of antigen stimulation and Th cell assistance. In

RA condition, abnormal activation of B cells lead to autoantibodies

secretion following autoantigen presentation by certein antigen

presenting cells. In addition, B cells can regulate bone formation

in RA by inhibiting differentiation of osteoblasts (86). Other than

supporting T cell proliferation, KCa3.1 coordinates the proliferation

and migration of B cells. KCa3.1 is reported to be expressed in B

cells and activity of the channel is significantly elevated during

differentiation of activated naive B cells into memory B cells (87,

88). As professional antigen-presenting cells, B cells play a

significant role in the adaptive immune response. Mechanistically,

B cells ingest, process, and present antigens by expressing the B cell

receptor (BCR) and regulating the human leukocyte antigen HLA-

DO (89). Non-competitive anti-N-methyl-D-aspartate-receptor

(NMDAR) antagonists modulate BCR-induced B cell

proliferation, migration, and production of the anti-inflammatory

factor interleukin-10 (IL-10) through negative regulation of the

KCa3.1 channel (88). KCNN4 encoding KCa3.1 has been

characterized as a tissue-specific transcriptional coactivator

(OCA-B)-dependent gene involved in B cell proliferation and

function that is required for antigen-dependent B

cell differentiation.

In contrast to the above findings, KCa3.1 has been shown to

be positively engaged in BCR-induced B cell proliferation but

not required during the active phase of B cell differentiation (90).

After TRAM-34 treatment, the ability of B lymphocytes to

proliferate was weaker and expression of chemokine (C-C

motif) ligand 7, a chemotactic-related factor that promotes B

cell migration, significantly decreased (91). While the underlying

mechanisms have not been established, it is reasonable to

speculate that Ca2+-associated changes are significantly linked

to inhibition of KCa3.1 channel in B cells. At the molecular level,

activation of the extracellular signal-regulated kinase (ERK)

upstream protein RAS affects the ERK signaling pathway,

leading to reduced secretion of B cell chemokines and

recruitment of inflammatory cells (92).
Role of KCa3.1 in macrophages

Macrophages play a fundamental role in the pathogenesis of

RA disease, with significant infiltration at the inflamed synovium

and cartilage junction, promoting inflammation by secreting
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cytokines and chemokines (93). Studies demonstrated that

macrophages may contribute to RA synovial inflammation

through activation of Notch signaling, leading to M1 pro-

inflammatory phenotype, or via c-Jun N-terminal kinase

(JNK) signaling channels activating nuclear factor kB and

producing large amounts of tumor necrosis factor-a (TNF-a)
(94). Earlier in vitro studies have demonstrated KCa3.1

expression in macrophages, with key roles in regulation of

macrophage proliferation, migration, reactive oxygen species

(ROS), and cytokine production (95, 96). In keeping with its

role in T and B cells, KCa3.1 is reported to maintain Ca2+ influx

and membrane hyperpolarization in macrophages (97). Upon

blockage of the KCa3.1 channel in a study by Xu et al., the

activity of signal transducer and activator of transcription 1

(STAT-1) protein was inhibited and phosphorylation levels

reduced in macrophages (98). Moreover, the levels of pro-

inflammatory cytokines and chemokines were significantly

decreased in M1 macrophages whereas markers in M2

macrophages remained unchanged, suggesting that the KCa3.1

channel mainly regulates the function of M1 type macrophages

and expression of pro-inflammatory genes. In chronic diseases,

such as RA, multinucleation of macrophages is a critical step in

the formation, differentiation and activation of osteoclasts,

which lead to bone erosion and long-term inflammation (99,

100). In a microarray analysis of fused rat macrophages and

human monocytes forming osteoclasts by Kang et al., the role of

KCNN4 as a potential modulator of multinucleation was

validated (69). The main downstream effect of nuclear factor-

kB (NF-kB) ac t iva t ion i s upregu la t ion of T ce l l

dephosphorylation by nuclear translocation of nuclear factor

cytoplasmic 1 (NFATc1), which stimulates Ca2+ signaling and

activates Akt. Silencing or blockage of KCa3.1 suppressed

NFATc1 expression and Akt activation, implying that KCNN4

is also closely associated with cell death (69). Another study

reported that TNF-a mediates the NF-kB pathway through

increased autocrine secretion. NF-kB binds directly to the

promoter region of KCNN4 and enhances its activity to

upregulate gene expression and promote cell proliferation

(101). Furthermore, blockade of the KCa3.1 channel with

TRAM-34 negatively regulates NF-kB and STAT3 signaling

and impairs the ability of macrophages to differentiate into the

pro-inflammatory M1 phenotype, in parallel with reduced levels

of inflammatory factors, such as interleukin-1 (IL-1),

interleukin-6 (IL-6), TNF-a and monocyte chemoattractant

protein-1 (MCP-1) (102). The majority of studies indicate that

the role of KCa3.1 in macrophages is closely associated with NF-

kB and STAT signaling pathways.
Role of KCa3.1 in mast cells

Mast cells (MCs) recognize endogenous and exogenous

mediators, which boost the release of various mediators from
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other immune and non-immune cells, consequently regulating

different physiological activities in vivo (103). During the process

of RA, activated MCs produce an array of pro-inflammatory

mediators that activate other immune system cells, initiating and

maintaining the inflammatory response. TNF-a preformed by

mast cells initiates an inflammatory cascade response promoting

cytokine expression. Meanwhile, products of mast cells, in

particular, histamine and TNF-a, promote proliferation and

catabolic effects of articular chondrocytes and synovial stromal

cells, leading to the development of RA (104). A number of

previous studies have confirmed the presence of KCa3.1 in mast

cells. Activation of the KCa3.1 channel maintains high

concentrations of intracellular free Ca2+ in mast cells, promotes

IgE-dependent histamine release, and regulates the secretory

responses of mast cells (105). The Orai/CRACM1 ion channel

provides the major Ca2+ influx pathway for mast cells to release

mediators and activation of the KCa3.1 channel in mast cells is

highly dependent on this process (106). Prostaglandin E2 (PGE2)

suppresses the IgE-dependent cell activation pathway by

inhibiting activation of EP2 receptors. Inactivation of EP2

receptors limits the influx of free cytoplasmic Ca2+, leading to

reduced chemokine production and subsequent closure of the

KCa3.1 channel (107). Upon interference with channel gene

expression via lentiviral targeting of KCa3.1, signaling pathways

are disrupted and mast cell activity is reduced, followed by

attenuation of the immune inflammatory response (108). In

addition, E3 ubiquitin ligase (containing a tripartite motif of

protein 27) negatively regulates high-affinity receptor for IgE

(FcepsilonRI) activation and downstream signaling of KCa3.1

through ubiquitination and inhibition of PI3KC2b in mast cells

(109). The levels of chemokine CXC motif chemokine ligand 10,

chemokine stem cell factor, and TNF-a in mast cells are reported

to be significantly decreased by charybdotoxin and TRAM-34,

along with diminished mast cell migration capacity (110).
Role of KCa3.1 in dendritic cells

Dendritic cells (DCs) participate in the presentation of

autoantigens and production of pro-inflammatory factors, which

contribute to ongoing inflammation in RA. In addition, DCs are in

charge of maintenance and differentiation of autoimmune B and T

cells which directly participated in RA pathogenesis (111). Studies

show that the binding of lymphatic chemokines CCL19 and CCL21

to their receptor CCR7 induces mobilization of Ca2+ stored in

mature DCs and subsequent opening of the KCa3.1 channel (112,

113). The migratory capacity of DCs is tightly regulated by the

intracellular Ca2+ concentration and chemokine receptors are

differentially expressed in DCs at two states of maturation. In the

presence of TRAM-34, temporal coupling between KCa3.1 and Ca2

+ inward flow was shown to be disrupted and subsequent CCR7-

induced chemotaxis impaired (112). Paradoxically, KCa3.1

exhibited migratory capacity only in immature dendritic cells and
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expression of its migration marker CCR5 was modified in the

presence of TRAM-34 (114, 115). Data from the above study

additionally confirmed that activation of T lymphocyte

proliferation by dendritic cells is not affected by KCa3.1. In vitro,

prevention of [Ca2+]i elevation under conditions of KCa3.1

deficiency decreased the directed migration of lipopolysaccharide

(LPS)-challenged DCs, supporting the involvement of KCa3.1 in

LPS-induced DC migration (116).
Roles of KCa3.1 in other immune cells

In RA, neutrophils can activate other immune cells that

perpetuate inflammation and lead to the destruction of cartilage

and bone in affected joints. This pathogenic effect occurs

primarily through mechanisms including increased cell

survival and migration capacity, abnormal inflammatory

activity, elevated oxidative stress, and exacerbated neutrophil

extracellular trap formation (117). Recently, Henrıq́uez et al.

demonstrated the existence of KCa3.1 in mammalian

neutrophils for the first time and showed a positive correlation

between upregulation of the channel and neutrophil migration

(118). Concomitantly, targeted KCa3.1 inhibition altered the

capacity of cells to properly regulate cell volume and limited

neutrophil migration in vitro with no effect on Ca2+ homeostasis.

Likewise, the membrane potential of the KCNN4-/- neutrophil

subpopulation was balanced in a study by Grimes et al., resulting

in a homogeneous lower-calcium (Calo) response (119). In

addition, erythrocytes have a partial immune function

although they are not conventional immune cells. The KCa3.1

channel present on erythrocytes regulates cellular volume by

transporting K+ across the membrane and its activity increases

in response to high cytokine levels (120). The role of KCa3.1 in

immune cells has been summarized in the Table 2.
Correlative regulation of KCa3.1 and
immune-inflammatory cytokines

Synovial inflammation is a critical process in the

pathogenesis of RA and directly associated with clinical

symptoms, such as inflammatory pain, joint swelling and

progressive destruction of multiple joints. Accumulating

evidence suggests that the KCa3.1 channel is capable of

cytokine regulation with potential significant implications in

immune-inflammatory diseases (Figure 2). KCa3.1 has been

shown to stimulate TGF-b1 production. In experiments by C.

Huang et al . , treatment with TRAM-34 suppressed

transcription of TGF-b1 and TGF-b1 type II receptor mRNA

and negatively regulated phosphorylation of Smad2/3 (122).

The above processes led to reduced production of

inflammatory cytokines, PAI-1, and matrix proteins in the

nucleus, with anti-inflammatory and anti-fibrotic effects. The
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KCa3.1 channel is reported to mediate K+ efflux, promote

intracellular Ca2+ concentrations, and activate calmodulin

k i n a s e IV (C aMK IV ) , wh i c h f a c i l i t a t e s CREB

phosphorylation, contributing to upregulation of c-fos/AP-1

and NFATc1 expression, and ultimately leading to osteoclast

formation (123). Moreover, NF-kB and STAT3 signaling

pathways are inactivated upon blockade of the KCa3.1

channel. Consequently, decreased secretion of pro-

inflammatory factors, such as IL-1b, IL-6, TNF-a, and MCP-

1, limits the progression of inflammation (102). In regulatory T

cells, suppression of KCa3.1 channel activity initiates

phosphorylation of JNK and c-Jun, activation of JNK/c-Jun

signaling, and E4BP4/Blimp1-mediated anti-inflammatory IL-

10 cytokine secretion (81, 82). The above findings suggest that

inhibition of KCa3.1 channel activity modulates immune-

inflammatory factors and al lev iates inflammat ion.

Paradoxically, TRAM-34 is reported to activate two types of

transcriptional regulators, KLF4 and/or TRIM33, and mediate

upregulation of pro-inflammatory IL-17A (82). Another study

disclosed no pro-inflammatory changes in T cell subsets and

plasma cytokines or chemokines following administration of

SKA-31, a KCa3.1 activator, in rats (124).

The KCa3.1 channel both regulates and is regulated by

cytokines (Figure 3). TGF-b1 has the capability to inhibit

catalase activity and promote hydrogen peroxide levels,

thereby inducing an increase in KCa3.1 expression. The

p38MAPK signaling pathway plays a vital role in stress

responses, such as inflammation and apoptosis. p38MAPK/

AP-1/NF-kB signaling activates the AP1 complex (composed

of c-fos and c-Jun) and promotes transcription and translation

of KCa3.1 (125). Upregulation of KCa3.1 stimulates the
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expression and production of interferon-g (IFN-g), in turn,

mediating the mobilization and accumulation of inflammatory

T cells, which are involved in inflammation (126). In addition,

IL-1b stimulation is reported to activate NF-kB signaling and

upregulate the KCa3.1 channel in pancreatic islet cells. The

drug modafinil suppresses progression of inflammation via

elevation of adenosine 3’, 5 cyclic monophosphate (cAMP) and

inhibition of KCa3.1 channel activity (127). Furthermore, IL-4

specifically binds type I receptors and regulates JAK3 and RAS/

MEK/ERK signaling pathways. In the above mechanisms, the

transcription factor AP-1 is activated and upregulates KCa3.1

(128). However, in-depth studies revealed that IL-4 increases

the current in the KCa3.1 channel only slightly, inducing no

significant changes in channel density with increasing

membrane area (40). Based on the available information,

targeting the KCa3.1 channel is proposed as a means to

effectively regulate immune-related molecules, such as

cytokines and inflammatory factors, which play a crucial part

in immune system-mediated disorders.
KCa3.1 as a potential drug
target for RA

Targeting the inflammatory process
of RA

The occurrence and continuous development of RA is

manifested by failure of spontaneous regression of

inflammation. Increasing evidence suggests that KCa3.1

promotes secretion of inflammatory factors by regulating
TABLE 2 Role of KCa3.1 in immune cell.

Cells Experimental cells Inhibition/activation of KCa3.1 Mechanism References

T
lymphocytes

CD4+ T cells MTMR6/
Wortmannin

PI(3)P↓, KCa3.1↓,
proliferation↓

(75, 76)

CD4+ T cells PGAM5 Dephosphorylation NDPK-B, Histidine phosphorylation↓,
KCa3.1↑

(77)

CD4+ T cells PHPT-1 Bind p-H358, dephosphorylation p-H358, KCa3.1↓ (78)

CD8+ T cells 1-EBIO Chemotactic capacity↑ (84)

B
lymphocytes

Splenic B cells NMDAR antagonists Inhibit BCR, KCa3.1↓, IgM, IgG↓, IL-10↑ (88)

Splenic B cells TRAM-34 KCa3.1↓, cells proliferation↓, CCL7↓, migration↓ (91)

Macrophages THP-1 cells TRAM-34 KCa3.1↓, STAT-1↓, type M1 polarization↓ (98)

Human macrophages KCNN4 deficiency KCa3.1↓, RANKL↓, NF-kB↓, NFATc1↓, Akt↑ (69)

Mast cells HLMC AH6809 EP2↓, KCa3.1↓, chemokine↓, migration↓ (107)

P815 cells LV-KCa3.1-shRNA KCa3.1↓, AKT phosphorylation↓, IL-6, IL-8↓, mast cell activity↓ (108)

BMMC TRIM27-/- FcϵR1↑, PI3KC2b↑, KCa3.1↑, mast cell activation↑ (121)

HLMC TRAM-34 KCa3.1↓, CXCL10, TNF-a↓, migration↓ (110)

Dendritic
cells

Lung dendritic cells TRAM-34 CCR7 inhibition, KCa3.1↓, migration↓ (112)

Immature dendritic
cells

TRAM-34 CCR5 inhibition, KCa3.1↓, migration↓ (114)
fr
The symbols ↑ and ↓ mean the up-regulation and down-regulation of KCa3.1 expression, respectively.
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immune-inflammatory cells in RA. In related reports, KCa3.1 is

considered a pro-inflammatory ion channel that activates the

function of inflammasome. Hydroxychloroquine is reported to

impair the inflammasome and inhibit neutrophil recruitment in

a dose-dependent manner through inhibition of Ca2+-activated

K+ conductance in THP-1 macrophages (70). Interestingly,

earlier findings indicate that TGF-b induces transcription and

translation of KCa3.1 and, conversely, silencing or inhibition of

KCa3.1 negatively regulates TGF-b (8). In addition, the pro-

inflammatory and invasive behavior of synovial fibroblasts plays

an essential role in RA. Another study showed that blockage of

KCa3.1 with TRAM-34 or siRNA treatment could suppress

proliferation of RA-SFs. Inactivation of the channel led to

downregulation of the pro-inflammatory factors IL-6,

interleukin-8 (IL-8), and MCP-1, as well as tissue-destructive

protease MMP3 at both mRNA and protein levels. Notably,

inhibition of the KCa3.1 channel also upregulated MMP1

mRNA and enhanced secretion of IL-1b while decreasing that

of IL1-RA, resulting in inhibition of short-term activation of Th2

lymphocytes in RA and consequently, a shift in the

inflammatory homeostasis of RA to a pro-inflammatory state

(41). However, limited data on the specific role of KCa3.1 in

inflammation of RA are available at present. Further studies are
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required to elucidate the functions and mechanisms of action of

KCa3.1 in the inflammatory process associated with RA.
Targeting of cartilage destruction and
bone erosion

The pathogenesis of RA is synovial inflammation

accompanied by cartilage damage and bone erosion. In

addition to synovial tissue and immune cells that show critical

immune-inflammatory activities, synovial fibroblasts and

osteoclasts play a central role in cartilage and bone destruction

and bone erosion in RA. Although no evidence of direct

mediation of RA cartilage and osteogenic destruction by

KCa3.1 has been obtained, its involvement in these processes

via regulation of fibroblast (FLS) and osteoclast activation is a

strong possibility.

Previous studies have shown that highly activated FLS can

promote inflammation and tissue invasion and mediate tissue

damage with tissue-infiltrating macrophages and immune cells,

such as T cells and B cells (42). FLS are involved in the

pathological process of synovitis, synovial lining hyperplasia,

activation of a number of synovial cells, and destruction of
FIGURE 2

KCa3.1 regulates cytokine production and secretion. TGF-b1 binds to type II receptors and transphosphorylates type I receptors, phosphorylates
Smad2/3 and secretes many inflammatory factors. Activation of KCa3.1 also promotes the secretion of IL-1b, IL-6, IL-8, TNF-a, and MCP-1
through the STAT3 and NF-kB signaling pathways. IFN-g is upregulated by KCa3.1 either. KCa3.1 restrains the production of IL-10 through the
JNK/c-Jun and NF-kB pathways. The blocked KCa3.1 channel by TRAM-34 inhibits these pathways. IL-17A is a pro-inflammatory cytokine that is
upregulated by TRAM-34 through activation of KLF4 and/or TRIM33. (Created with BioRender.com).
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cartilage matrix through production of cytokines and

chemokines. The p38 MAPK (mitogen-activated protein

kinase) pathway is a crucial signal transduction step during

chronic inflammation (49). Two isoforms of p38MAPK, a and

g, are expressed in FLS, which play key roles in the

inflammatory process by activating the p38MAPK signaling

pathway to produce inflammatory factors, such as TNF-a, IL-
1b and IL-6 (129). In addition, FLS regulate the proliferation

and differentiation of immune cells through the p38 pathway.

Transcriptional growth factor b1 (TNF-b1) is highly expressed
in RA-SFs and can induce expression of pro-inflammatory and

pro-destructive proteins (130). TNF-b1 has been shown to

induce KCNN4 transcription and translation, activate the

KCa3.1 channel, increase K+ current, provide continuous

power for Ca2+ influx, and promote inflammatory processes

(131). At present, studies on the mechanism of action of

KCa3.1 in synovial fibroblasts are lacking and the pathways

underlying KCa3.1 upregulation by TGF-b1 remain to be

established. Further clarification of whether KCa3.1 has

functional activity in RA-SFs through signaling pathways,

such as p38MAPK (132) and NF-kB (133, 134), should

fur ther suppor t i t s potent ia l invo lvement in RA

cartilage injury.
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Osteoclasts and RANKL act together to promote the

occurrence of bone erosion (124, 125). In a recent study,

activation of endogenous fibroblast-like synoviocytes induced

RANKL expression and stimulated osteoclast formation (135,

136). The KCa3.1 channel inhibitors, TRAM-34 and ICA-17043,

have been shown to inhibit monocyte formation in osteoclasts in

a dose-dependent manner but the precise molecular

mechanisms remain to be established (69). It is speculated that

the KCa3.1 channel is functionally active in the formation of

osteoclasts. KCa3.1 can prevent the progression of bone erosion

by inhibiting the differentiation and formation of osteoclasts,

thereby relieving the clinical symptoms of RA patients,

providing further support for its utility in management of RA.
Blockage of the KCa3.1 channel

In applications of KCa3.1 channel inhibitors, existing studies

indicate that TRAM-34 exerts no notable side-effects when used at a

high concentration (~120 mg/kg) and has no effect on blood

biochemistry and hematology parameters (137). Senicapoc has

passed Phase I-III clinical trials for clinical drug use in sickle cell

disease, with a reported IC50 value of 11 nm (138). Senicapoc may
FIGURE 3

Cytokines regulate KCa3.1 expression and activity. TGF-b1 inhibits catalase, thereby synthesizing hydrogen peroxide to activate KCa3.1. IL-4 and
IL-1b upregulates AP-1 through JAK3/RAS/MEK/ERK and NF-kB signaling pathway, resulting in the initiation of KCa3.1 transcription. AP-1 can be
upregulated by activated CaMKIV/CREB and p38 MAPK pathway, either. KCa3.1 activity is controlled by elevated cAMP in response to agents.
(Created with BioRender.com).
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cause diarrhea, nausea, and other adverse reactions in a dose-

dependent manner, but overall drug safety is good. The KCa3.1

inhibitors TRAM-34 and Senicapoc have been used in RA-related

in vitro studies (8, 69). Clotrimazole and nitrendipine have

progressed to the clinical trial stage and are widely used to treat a

number of diseases. According to the tissue distribution

characteristics of the KCa3.1 channel, KCa3.1 generally not

expressed in excitable tissues and reproductive organs, which

indicates a low-risk, acute-toxicology profile of KCa3.1 channel

blockade. The results obtained to date support the feasibility,

efficacy, and safety of the KCa3.1 channel as a therapeutic target

in RA. However, extensive research is required before introduction

of KCa3.1 channel blockers in the clinic. Remarkably, related

studies have shown that the KCa3.1 channel is the basis of slow

afterhyperpolarization (SAHP) in neurons and may exert side-

effects that affect sensory transmission (139).
Conclusions and outlook

KCa3.1 promotes inflammation, cartilage damage, and bone

erosion in synovial fibroblasts and osteoclasts that are

mechanistically involved in development of RA. Based on its

ability to restore the immune balance by interfering with Ca2+

signaling, KCa3.1 presents a promising therapeutic target for

RA. The possible functions of KCa3.1 in the pathological process
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of RA is shown in Figure 4. Despite interesting experimental

findings to date, research in this field is still in its infancy.

Considerable work remains to be done to elucidate the in-depth

mechanisms underlying the involvement of KCa3.1 in RA. For

example, the issue of whether KCa3.1 directly mediates cartilage

and bone destruction in RA is yet to be resolved. Furthermore,

no clinical trials have directly investigated the effects of KCa3.1-

specific inhibitors and activators in RA as yet. In summary,

KCa3.1 provides excellent research prospects for treatment of

RA and further development of drugs targeting this channel may

be of considerable benefit to patients.
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Glossary

1-EBIO 1-Ethyl-2-benzimidazolidinone

AP-1 activation protein-1

BCR B cell receptor

BMMC bone marrow-derived mast cells

CAIA collagen antibody-induced arthritis

CaM calmodulin

CAMBD CAM-binding domain

CaMKIV calmodulin kinase IV

cAMP adenosine 3’, 5 cyclic monophosphate

CHO cells Chinese hamster ovary cells

CIA collagen-induced arthritis

CRE cAMP response element

CVID common variable immunodeficiency

CZ chlorzoxazone

DCs dendritic cells

DC-EBIO 5, 6-dichloro-1-EBIO

DMARDs disease-modifying anti-rheumatic drugs

EC50 effective concentration producing 50% of maximum response

FLS fibroblast-like synoviocytes

GC glucocorticoids

H-89 N-[2-(4-bromocinnamylamino) ethyl]-5-isoquinoline

HDAC histone deacetylase

HEK-293
cells

human embryonic kidney cells

HNSCC head and neck squamous cell carcinoma

IBMX 3-isobutyl-1-methylxanthine

IC50 inhibitory concentration (e.g. 50% inhibition of maximum)

IFN-g interferon-g

IGFBP5 insulin-like growth factor-binding protein 5

IL interleukin

JNK c-Jun N-terminal kinase

KCa3.1 intermediate conductance Ca2+-activated K+ channel

LPS lipopolysaccharide

LZ leucine zipper

MAPK mitogen-activated protein kinase

MCP-1 monocyte chemoattractant protein-1

MCs mast cells

MGCs multinucleated macrophages

MTMR6 myotubularin-related protein 6

MTX Maurotoxin

NDPK-B nucleoside diphosphate kinase B

NFATc1 nuclear translocation of nuclear factor cytoplasmic 1

NF-kB nuclear factor-kB

NMDAR anti-N-methyl-D-aspartate-receptor

NS309 6, 7-dichloro-1H-indole-2, 3-dione-3-oxime

NS6180 4-[[3-(trifluoromethyl) phenyl] methyl]-2H-1, 4-benzothiazin-3
(4H)-one

NSAIDs non-steroidal anti-inflammatory drugs
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PGAM5 phosphoglycerate mutase family 5

PGE2 prostaglandin E2

PHPT-1 protein histidine phosphatase

PI3K phosphatidylinositol 3-kinase

PI3K-C2b the class II phosphatidylinositol 3 kinase C2b

PI(3)P phosphatidylinositol 3 phosphate

PKA cAMP-dependent protein kinase

RA rheumatoid arthritis

RANKL receptor activator of nuclear factor-kB ligand

REST repressor element 1-silencing transcription

SKA-121 5-methylnaphtho [2, 1-d] oxazol-2-amine

SKA-31 Naphtho [1, 2-d] thiazole-2-ylamine

STAT-1 signal transducer and activator of transcription 1

TNF-a tumor necrosis factor-a

TNF-b1 transcriptional growth factor b1

TRAM-34 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole

TRIM27 tripartite motif containing protein 27

ZOX zoxazolamide
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