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Glucagon-like peptide-1 (GLP-1) is a 30-amino acid hormone secreted by L

cells in the distal ileum, colon, and pancreatic a cells, which participates in

blood sugar regulation by promoting insulin release, reducing glucagon levels,

delaying gastric emptying, increasing satiety, and reducing appetite. GLP-1

specifically binds to the glucagon-like peptide-1 receptor (GLP-1R) in the body,

directly stimulating the secretion of insulin by pancreatic b-cells, promoting

proliferation and differentiation, and inhibiting cell apoptosis, thereby exerting a

glycemic lowering effect. The glycemic regulating effect of GLP-1 and its

analogues has been well studied in human and murine models in the

circumstance of many diseases. Recent studies found that GLP-1 is able to

modulate innate immune response in a number of inflammatory diseases. In

the present review, we summarize the research progression of GLP-1 and its

analogues in immunomodulation and related signal pathways.

KEYWORDS
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1 Introduction

Glucagon-like peptide-1 (GLP-1) is an endogenous incretin secreted by small

intestinal L cells, consisting of two bioactive isoforms: GLP-1 (7-37) and GLP-1 (7-

36). GLP-1 is rapidly degraded by an enzyme named dipeptidyl peptidase-IV (DPP-4),

converting to bioinactive products GLP-1 (9-36) and GLP-1 (9-37) (1–3), which have a

very low affinity for GLP-1 receptor (GLP-1R) and have no insulin secretion effect.

Endogenous GLP-1 has a short plasma half-life of about 2-3 min (4–6).

GLP-1 exerts its function by binding to GLP-1R and is involved in the development

and progression of many diseases (7, 8). GLP-1R is a family of transmembrane G protein-

coupled receptor B that was originally found in islet b cells but is widely expressed in
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extra pancreatic tissues, including the lungs, kidneys, central

nervous system, enteric nervous systems, lymphocytes, blood

vessels, and kidneys (9–11). Binding of GLP-1 with its receptor

enhances glucose-stimulated insulin secretion and reduces

glucagon. GLP-1 also delays gastric emptying, increases satiety,

and reduces appetite. Therefore, it lowers blood glucose through

multiple mechanisms (12, 13). The interaction between GLP-1

and GLP-1R exerts a variety of physiological functions,

including promoting insulin synthesis and secretion, inhibiting

islet cell production and releasing glucagon, reducing hepatic

glycogen output, acting on the central nervous system,

increasing satiety, and reducing food intake, by activating

different downstream signaling molecules (14–16).

GLP-1R agonists (GLP-1RAs) are a group of GLP-1

analogues that are resistant to DPP4-mediated degradation,

working through activating GLP-1R and its downstream

signaling (3, 17, 18). GLP-1RA is widely used to treat type 2

diabetes by enhancing insulin production, and they also have the

added benefit of suppressing appetite and losing weight (19, 20).

GLP-1RAs are also involved in the nervous, cardiovascular, and

endocrine systems (21–23).

The expression of GLP-1R remains controversial due to the

lack of specific antibody against GLP-1R, with most of the

literatures using qPCR to detect mRNA levels (24, 25). There

were also a few studies detected the expression of GLP-1R at the

protein level using a lineage-tracking animal model (26, 27).

Although Glp1r mRNA transcripts have been detected in

murine lymphoid tissue, little is known about the role of GLP-

1 in the immune system (28). Here, we will discuss in-depth the

actions of GLP-1 and its analogues in immunomodulation and

related signal pathways in the setting of a number of diseases.
2 GLP-1 in regulating
immune system

2.1 The role of GLP-1 in innate
immune cells

Recent studies have demonstrated that GLP-1 and its

analogues exert regulatory functions in innate immune cells,

especially macrophages. It has been shown that GLP-1 analogue

exenatide could activate the human monocyte-derived

macrophage towards M2 phenotype (29). Lixisenatide, another

GLP-1 analogue, has also been reported to decrease atheroma

plaque size and instability in animal models, by reprogramming

macrophages towards M2 phenotype (10 mg/kg/day) (30).

Besides, Exendin-4 could promote the polarization of bone

marrow-derived macrophages into M2 subtype (4.2 µg/kg/day)

(31). These studies indicate that the GLP-1 and its analogues

may act directly on macrophages and polarize the macrophages

to M2 phenotype. Some other studies revealed that GLP-1 and
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its analogues may also indirectly promote M2 polarization by

suppressing M1 and enhancing regulatory T cells (Tregs). DPP4

inhibitor alogliptin, which preserves GLP-1, was able to reduce

visceral adipose tissue macrophage content in LDLR-/- mice with

a concomitant upregulation of M2 marker CD163 (32). Another

DPP4 inhibitor Des-fluoro-sitagliptin was also reported to

decrease the accumulation of M1 macrophages in Gck+/-mice,

a b-cell–specific glucokinase haploinsufficient (Gck+/−) diabetic
model (33). Liraglutide, a widely used GLP-1RA in clinic,

ameliorated the macrophage accumulation in periodontitis, by

decreasing M1 macrophages but not M2 macrophages (30 mg/
kg/day) (34). GLP-1 could directly reduce the M1 polarization

by modulating the JNK/STAT3 activation in a murine

monocyte/macrophage cell line RAW264.7 (35). In addition,

GLP-1 administration also enhances the Treg function (36),

which may promote M2 polarization (37). In a recent clinical

study, we reported that the expression of GLP-1R on

macrophages, especially M2 marcrophages, was significantly

reduced in patients with coronary heart disease (CHD),

suggesting a potential role of macrophage-derived GLP-1R

signaling in cardiovascular disease (38). In addition to

macrophages, human neutrophils and eosinophils have also

been shown to express GLP-1R and GLP-1 signaling

significantly decreased the expression of eosinophil-surface

activation markers along with a decrease in the production of

IL-4, IL-8 and IL-13 (39). Taken together, GLP-1 and its

analogues play a crucial role in innate immune cells, especially

in macrophage.
2.2 The role of GLP-1 in innate-like
T lymphocytes

Invariant Natural Killer T (iNKT) cells are a subpopulation

of T lymphocytes that bridge the innate and adaptive immune

systems (40). A. E. Hogan, et al (10). reported that GLP-1R on

the surface of iNKT could trigger downstream signal

transduction cascades. GLP-1 inhibits the secretion of IFN-g
and IL-4 by iNKT cell in a dose-dependent manner. Dermal gd T
cells are another innate-like T lymphocyte subset that evoke

innate and adaptive immune responses. They play a very

important role in psoriasis patients with type 2 diabetes, and

the administration of a GLP-1 analogue improved the psoriasis

severity by decreasing the dermal gd T-cell number and IL-17

expression (41).
2.3 The role of GLP-1 in intestinal
epithelial lymphocytes

As a innate like lymphocytes, intestinal epithelial

lymphocytes (IELs) patrol the lamina propria and play a

critical role in host-bacteria interaction, wound healing,
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mucosal growth and regeneration, and inflammation (42). Tab
and Tgd IELs represent the two major subsets of intestinal IELs,

and GLP-1R was expressed in both of these subsets at a higher

level than cells isolated from the spleen, lymph nodes, and bone

marrow (43). In addition, the activation of GLP-1R by exendin-4

increased cAMP accumulation and reduced cytokine production

in IELs. CD4+ CD25+ Tregs are a subpopulation of T cells that

are effective in reducing inflammation (44, 45). A significantly

lower percentage of peripheral Tregs was detected in naive male

GLP-1R-/- mice, while the numbers of CD4+ and CD8+ T cells

and B cells in the spleen and lymph nodes had no differences

(36). In addition, the activation of GLP-1R can increase Treg

frequency and function, as demonstrated by flow cytometry and

inhibition assays in diabetic NOD mice, with increased IL-10

expression and enhanced cellular inhibitory function (46). Th1/

Th17 cell is a T cell subset which co-expresses IFN-g and IL-17A

(47), driven by IL-12 or IL-23 (47, 48). The development of

tissue-infiltrating interferon (IFN)-g/interleukin (IL)-17A

doubly-secreting encephalitogenic CD4-positive T cell subset

in the CNS was notably inhibited by dulaglutide (49). CD4-

positive T lymphocytes was suppressed by liraglutide,

accompanied by improved hepatosteatosis and metabolic

function in female mice (200 mg/kg twice daily) (50). In a T-

cell-dependent glomerulonephritis model, T-cell proliferation

and nephritis was inhibited by liraglutide 200 mg/kg once daily

(51). In conclusion, GLP-1 and its analogues have an important

immunomodulatory effect in innate like lymphocytes.
3 The role of GLP-1/GLP-R axis in
related signal pathways

GLP-1 is known to increase insulin secretion by b cells under
hyperglycemic conditions. Although the GLP-1R agonists are

used to treat type 2 diabetes in clinic (52, 53), there are direct

evidences about the therapeutic actions of GLP-1-based

therapies in different healthy conditions in humans, including

adipogenesis, osteogenesis, and nociception, with many

signaling pathways are involved (54).
3.1 PKA/STAT3 pathway

GLP-1 and its analogues exert their function such as M2

polarization by inducing the activation of the activator of

transcription 3 (STAT3) (29). Following the treatment with

GLP-1, the phosphorylation of JNK and its signal transduction

through the cyclic adenosine monophosphate/protein kinase A

(PKA) signaling pathway was attenuated, while the

phosphorylation of STAT3 was increased, which further

induce the polarization of macrophage towards M2 (35). An

ovariectomized and a macrophage-depleted model were

employed to investigate the effects of Exendin-4 on
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macrophages and bone formation. The results showed that

Exendin-4 also promoted bone marrow-derived macrophage

polarization to M2 phenotye and TGF-b1 secretion via PKA-

STAT3 signaling (31). Non-alcoholic fatty liver disease

(NAFLD) induced by a high-fat diet was used to investigated

the Kupffer cells M2 polarization in the liver, which shows that

liraglutide can reverse the negative effects of nonalcoholic fatty

liver disease by modulating Kupffer cell M2 polarization via the

cAMP-PKA-STAT3 signaling pathway (55).
3.2 MAPK and NF-kB pathway

Mitogen-activated protein kinase (MAPK) pathway was also

involved in the signaling of GLP-1R (56–59). Male ob/ob mice

were subcutaneously injected with liraglutide daily for 4 weeks,

fatty acid synthase (FASN) was down-regulated through the

MAPK/ERK and PKA signaling pathways (11). In an in vitro

study with peripheral blood mononuclear cells, exendin-4

suppressed inflammatory responses and reduced oxidative

stress, which was rmediated by suppressing MAPK signaling

pathway (60). The protective effects of GLP-1 on IL-6

production and high glucose-induced endothelial progenitor

cells (EPCs) dysfunction also mediated by the MAPK signaling

pathway (61, 62). In a partial hepatectomy-induced behavior

study using male Sprague-Dawley rats, surgical trauma induced

an exacerbated spatial learning and memory impairment, while

exendin-4 treatment suppressed the activation of nuclear factor

kappa-B (NF-kB) and IL-1b , and thus ameliorated

hepatectomy-induced behavioral deficits and inflmmation (63).

Similarily, GLP-1R-mediated suppression of NF-kB p65 was also

able to modulate neuropathic pain-induced neuroinflammation

and improve recognition memory dysfunction (64).
3.3 PI3K/Akt pathway

GLP-1RAs can also function through the Phosphoinositide

3-kinases (PI3K)/AKT pathway (65–67). Microvascular

endothelial cells (CMECs) were isolated from neonatal

Sprague–Dawley (SD) rat hearts by the enzyme dissociation to

induce hypoxia/reoxygenation (H/R) injury, and GLP-1

analogue liraglutide protected cardial microvascular

endothelium from H/R injury by activating PI3K/Akt/survivin

pathways (68).Liraglutide-induced PI3K activation was also able

to enhance keratinocyte migration and promote wound healing

in mice (9). MC3T3-E1 cells were incubated with liraglutide,

which directly acts on osteoblasts and activates PI3K/AKT

signaling, promoting bone formation (69). However, there

were also a few reports suggesting that PI3K/Akt pathway was

inhibited by GLP-1 and its analogues. Pancreatic cancer cell lines

and mouse xenograft models of human pancreatic cancer were

used to evaluate the effects of the GLP-1R agonist liraglutide in

vitro and vivo. The results demonstrated that GLP-1R activation
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997578
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.997578
with liraglutide dose-dependently suppressed Akt activation and

tumourigenicity/metastasis in human pancreatic cancer cells

both in vitro and in vivo (70).
3.4 Other pathways

In addition to the above mentioned signal pathways, GLP-1/

GLP-R axis also also activates a number of other important

signal pathways. Chang’s findings suggest that EX-4 inhibited

LPS-induced iNOS expression at protein level, but not at

transcriptional level, of iNOS gene via a cAMP/PKA

dependent mechanism (71). Liraglutide can reduce oxidative

stress and fatty degeneration in oxLDL-treated Raw264.7 cells,

accompanied by an alteration of AMPK/SREBP1 pathway (72).

In consistency, AMPK activation induced by GLP-1 impaired

inflammatory signals in keratinocytes and restrained

macrophage migration (73).
4 The role of GLP-1/GLP-R in
related disease

4.1 Diabetes

Diabetes mellitus is characterized by increased inflammation,

reflecting innate immune control disorders, and studies have

shown a local intestinal intraepithelial lymphocyte (IEL)-GLP-1

receptor (GLP-1R) signaling network that controls the mucosal

immune response (43). GLP-1 agonists, a novel class of anti-

diabetic drugs, are an integral part of the management of patients

with type 2 diabetes (74–76). GLP-1 agonists bind to GLP-1

receptors on pancreatic b cells, which directly stimulates

pancreatic b cells to secrete insulin. They can also promote the

proliferation of pancreatic b cells, increase the number of b cells,

inhibit apoptosis, and promote insulin synthesis, thus resulting in

hypoglycemic effects (77, 78). GLP-1RA has also been reported to

promote motor activity and energy expenditure, thus activating

the metabolism of brown fat in rodents (20). Weight-loss effect of

non-insulin glucose lowering drugs in patients with type 2

diabetes is also a hot spot of current research. A systemic

analysis shows that GLP1-RA and Tirzepatide are most effective

in inducing weight loss in patients with type 2 diabetes among a

variety of anti-diabetic drugs (79). Studies have suggested that in

addition to diabetes, GLP-1R agonists may also have a beneficial

effect on many other diseases such as cardiovascular disease,

central nervous disorder, and tumors (21–23).
4.2 Cardiovascular disease

The latest research has found that GLP-1R is widely

expressed in the cardiovascular system and is involved in
Frontiers in Immunology 04
intracellular metabolism and signal transduction. These

metabolites are biologically active, can reduce intravascular

oxidative stress, inhibit hepatocyte gluconeogenesis and

oxidative stress, increase cardiomyocyte activity, promote

vasodilation, protect the cardiovascular system, improve

cardiac function, thereby directly or indirectly protecting the

cardiovascular system (80–82). For example, a number of large-

scale clinical trials have demonstrated that GLP-1RA could

reduce the risk of cardiovascular events, which has been well

reviewed in elsewhere (83, 84) and we will not further

discuss here.
4.3 Nervous system disorder

Recently, a protective effect of the GLP-1/GLP-1R axis on

ischemic brain injury has been emphasized. The activation of

GLP-1R can reduce the size of cerebral infarction by enhancing

cell survival signaling pathways, reducing ischemia-reperfusion

injury, promoting brain repair, and inhibiting inflammatory

response and oxidative stress (85–88). As we mentioned before,

GLP-1R agonism is able to ameliorate neuroinflammation and

behavioral deficits induced by hepatectomy or neuropathic pain

(63, 64). In addition, activation of GLP-1R in the brain is albe to

reduce appetite, lowering the risks for other diseases such as

metabolic and cardiovascular disorders (88).
4.4 Tumors

The role of GLP-1RA in tumor remains controversial. Due

to the promotive effect of GLP-1R agonism on b-cells
proliferation and survival, concerns of tumorigenesis,

especially pancreatic cancers, have been raised about incretin-

based therapies (89). By analyzing the reported adverse events in

the US Food and Drug Administration’s database, Elashoff

reported that treatment with DPP4 inhibitor sitagliptin or

GLP-1R agonist exenatide increased the risk of pancreatitis

and pancreatic cancer as compared with other therapies.

However, other types of cancer occurred at a similar level

between patients who took sitagliptin and those with other

therapies (90). Animal study has also demonstrated that

exenatide can promote pancreatic duct hyperplasia, a well-

established risk factors for pancreatic cancer (91). However, a

meta-analysis including 37 eligible randomized controlled trials

failed to identify an association between GLP-1RAs and

increased risk of overall cancer. There was even a lower risk of

overall cancer in patients treated with albiglutide in the

subgroup analysis (92). Another meta-analysis on pancreatic

cancer specifically also showed that GLP-1RAs were not

associated with increased risk for pancreatic cancer as

compared with other treatments (93). Interestingly, GLP-1R

has been utilized to mediate tumor specificity for insulinoma
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that highly expresses GLP-1R during radiotherapy. A single

injection of an Ahx-DTPA-(111)In)NH(2) In-labeled GLP-1R

agonist markedly reduced tumor volume in a dose-dependent

manner in a mouse model of insulinoma (94). Mechanistical

studies suggest that GLP-1RAs may reduce tumor growth in

prostate (95) and breast cancer (96, 97). Taken together, the

exact role of GLP-1R in tumorigenesis remains to be illucidated.
4.5 Asthma

Asthma is a very common chronic lung disease characterized

by chronic persistent airway inflammation and airway

remodeling, resulting in incompletely reversible airway

obstruction, especially in advanced stages (98). Many researchs
Frontiers in Immunology 05
showed that GLP-1R signaling inhibits the innate immune

response in animal models of asthma, by the activation of

PKA/NF-kB signaling pathway (99) and the decreased

eosinophil production of IL-4, IL-8 and IL-13 (39). GLP-1RA

treatment may be a new pharmacologic adjunctive treatment

strategy for obese patients with asthma (100, 101).
5 Discussion

The safety and efficacy of GLP-1RAs in the treatment of

type 2 diabetes have been well demonstrated. Recent

investigations suggest that it also participates in a number of

other diseases by regulating immune response (Figure 1). Both

the innate and innate-like cells express GLP-1R. Engagement
FIGURE 1

Immune regulatory function of GLP-1/GLP-1R axis.
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of GLP-1R and its ligands activates multiple signaling

pathways including PKA/STAT, PI3K/Akt, MAPK, and

NFkB. Given the importance of inflammation in disease

progression, GLP-1RAs have been shown to possess

beneficial effects on many other diseases in addition to

diabetes. For example, the improvements in cardiovascular

outcome have been evidenced in a number of large-scale

randomized controlled clinical trials on cardiovascular

disease (102). The obvious improvement of skin lesions in

patients with psoriasis type 2 diabetes mellitus after liraglutide

treatment may be related to inhibition of the expression of

inflammatory factors such as IL-23, IL-17, and TNF-a (103).

Despite of recent advances in our understanding of the

immune regulatory role of GLP-1/GLP-1R, there are many

challenges to overcome in this area. First, the expression of

GLP-1R remains controversial in many types of cells and

tissues due to the lack of specific antibody against GLP-1R.

Second, the exact molecular signaling for GLP-1R activation

remains elusive. Last, to what extend immune system is

involved in the beneficial effects of GLP-1RAs on

cardiometabolic and other diseases is not well understood.

Therefore, further studies are required to delineate the detailed

mechanisms by which GLP-1RAs regulate immune function

and chronic inflammatory diseases.
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