AUTHOR=Fathi Mobina , Vakili Kimia , Yaghoobpoor Shirin , Tavasol Arian , Jazi Kimia , Hajibeygi Ramtin , Shool Sina , Sodeifian Fatemeh , Klegeris Andis , McElhinney Alyssa , Tavirani Mostafa Rezaei , Sayehmiri Fatemeh TITLE=Dynamic changes in metabolites of the kynurenine pathway in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A systematic Review and meta-analysis JOURNAL=Frontiers in Immunology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.997240 DOI=10.3389/fimmu.2022.997240 ISSN=1664-3224 ABSTRACT=Background

Tryptophan (TRP) is an essential amino acid that must be provided in the diet. The kynurenine pathway (KP) is the main route of TRP catabolism into nicotinamide adenosine dinucleotide (NAD+), and metabolites of this pathway may have protective or degenerative effects on the nervous system. Thus, the KP may be involved in neurodegenerative diseases.

Objectives

The purpose of this systematic review and meta-analysis is to assess the changes in KP metabolites such as TRP, kynurenine (KYN), kynurenic acid (KYNA), Anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 5-Hydroxyindoleacetic acid (5-HIAA), and 3-Hydroxyanthranilic acid (3-HANA) in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) patients compared to the control group.

Methods

We conducted a literature search using PubMed/Medline, Scopus, Google Scholar, Web of Science, and EMBASE electronic databases to find articles published up to 2022. Studies measuring TRP, KYN, KYNA, AA, 3-HK, 5-HIAA, 3-HANA in AD, PD, or HD patients and controls were identified. Standardized mean differences (SMDs) were used to determine the differences in the levels of the KP metabolites between the two groups.

Results

A total of 30 studies compromising 689 patients and 774 controls were included in our meta-analysis. Our results showed that the blood levels of TRP was significantly lower in the AD (SMD=-0.68, 95% CI=-0.97 to -0.40, p=0.000, I2 = 41.8%, k=8, n=382), PD (SMD=-0.77, 95% CI=-1.24 to -0.30, p=0.001, I2 = 74.9%, k=4, n=352), and HD (SMD=-0.90, 95% CI=-1.71 to -0.10, p=0.028, I2 = 91.0%, k=5, n=369) patients compared to the controls. Moreover, the CSF levels of 3-HK in AD patients (p=0.020) and the blood levels of KYN in HD patients (p=0.020) were lower compared with controls.

Conclusion

Overall, the findings of this meta-analysis support the hypothesis that the alterations in the KP may be involved in the pathogenesis of AD, PD, and HD. However, additional research is needed to show whether other KP metabolites also vary in AD, PD, and HD patients. So, the metabolites of KP can be used for better diagnosing these diseases.