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Activation of the cGAS-STING pathway by cytoplasmic DNA induces the

production of Type-1 interferons. Recent advances in research suggest that

the cGAS-STING pathway is involved in different parts of the cancer-immunity

cycle (CIC) to promote or suppress antitumor immune responses.

Combination therapy of STING agonists has made certain progress in

preclinical as well as clinical trials, but the selection of combination therapy

regimens remains a challenge. In this review, we summarize the role of the

cGAS-STING in all aspects of CIC, and focus on the combination

immunotherapy strategies of STING agonists and current unsolved challenges.
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1 Introduction

Cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytoplasmic

double-stranded DNA sensor that plays a key role in Type-1 interferon and

inflammatory responses via a Stimulator of Interferon Genes (STING)-dependent

signaling pathway (1). This pathway has been demonstrated to have a regulatory role

in metabolic endocrine diseases (2–5), viral infections (6, 7), autoimmune diseases (8, 9),

and neurological disorders (10, 11). In recent years, there is increasing evidence that the

cGAS-STING pathway is closely related to the occurrence, development and regression

of cancer. The cGAS-STING pathway regulates various aspects of the Cancer-Immunity

Cycle (CIC), including tumor antigen release (12), antigen presentation (13), the priming

and activation of T cells (14), the trafficking and infiltration of T cells into tumor tissues
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(15), and the recognition and killing of tumor cells by T cells

(16). The cGAS-STING pathway plays an anti-tumor or pro-

tumor role.

In this review, we summarize the role of the cGAS-STING in

all aspects of CIC, and focus on the combination

immunotherapy strategies of STING agonists and current

unsolved challenges.
2 Overview of the cGAS–
STING signaling

cGAS is a cytosolic DNA receptor activated by double-

stranded DNA (dsDNA) in a sequence-independent but

length-dependent manner (1, 17). cGAS catalyzes the

conversion of GTP and ATP to 2’3’-Cyclic GMP-AMP (2’3’-

cGAMP) (18, 19), which binds to STING and promotes its

translocation from the endoplasmic reticulum (ER) to Golgi (20,

21). STING recruits and activates TANK binding kinase-1

(TBK1), which in turn promotes the translocation of

interferon regulatory factor 3 (IRF3) into the nucleus where it

promotes the production of Type-1 interferon and the

transcription of interferon-stimulated genes (ISGs) (22, 23).

STING also binds and stimulates IkB kinase (IKK), which

mediates the activation of canonical and non-canonical NF-kB

pathways (24). After signal transduction is terminated, STING is

transferred to endolysosomes for degradation (22).
3 The cGAS-STING pathway
regulates the cancer-immunity cycle

Mounting evidence has demonstrated that the cGAS-STING

pathway plays an important regulatory role in all stages of the

cancer-immunity cycle, either activating or suppressing anti-

tumor immune responses, depending on the strength and timing

of the activation of the cGAS-STING pathway and the type and

state of the tumors (14, 25–27).
3.1 The cGAS-STING pathway
increases tumor antigen release
by promoting apoptosis

During normal mitosis, cGAS has a higher affinity for

nucleosomes compared to dsDNA, thus preventing cGAS

dimerization and activation (1). However, when Taxane drugs

interfere with mitosis leading to mitotic arrest, the accumulation

of phosphorylated IRF3 which is induced by the cGAS inhibits
Frontiers in Immunology 02
the expression of the anti-apoptotic protein BCL-xL, triggering

apoptosis via mitochondrial outer membrane permeabilization

(MOMP) (12). In addition, Type-1 interferon and TNFa
produced by the cGAS-STING activation can stimulate the

expression of the pro-apoptotic molecule, NOXA, in

neighboring cells via paracrine secretion. This induces

apoptotic priming, meaning the cancer cells undergo MOMP

propensity (28, 29). Analysis of The Cancer Genome Atlas

(TCGA) datasets showed that lung and ovarian cancer patients

with high cGAS expression were more sensitive to paclitaxel

treatment (12). The 2 ‘ 3 ‘ -cGAMP analogue, c-di-AMP,

activates the STING pathway to induce apoptosis in estrogen

receptor-negative breast cancer cells, resulting in the release of

tumor antigens (TAs) and propagation of the cancer-immunity

cycle (30).
3.2 The cGAS-STING pathway facilitates
the processing and presentation of
tumor antigens

Dendritic cells (DCs) are considered to be the main antigen-

presenting cells (APCs) responsible for the priming of anti-

tumor T cells. Type-1 IFN production promotes DC maturation,

upregulates the expression of molecules such as MHCI, MHCII,

CD40, CD80, CD86 (13) on the DCs surface (31), and enhances

DC migration to tumor draining lymph nodes (TDLNs)

migration (32). Although T cell activation occurs mainly in

TDLNs, STING signaling has been reported to induce the

formation of intra-tumor tertiary lymphoid structures (TLS) in

a mouse model of melanoma (33), where DCs may activate T

cells, thereby skipping the need for migration to TDLNs (34). In

addi t ion, i t has been reported that in the tumor

microenvironment (TME), cancer cells transfer cGAMP into

tumor-associated DCs via gap junctions, leading to the

activation of pathways downstream of the cGAS-STING

(31, 35).
3.3 The cGAS-STING pathway has a
dichotomous effect on the priming
and activation of T cells

Although it is well known that the cGAS-STING pathway

plays a key role in the regulation of T cell priming and activation,

the strength and timing of the activation of this signaling

pathway may have opposing effects (14).

Moderate activation of the cGAS-STING pathway

upregulates the expression of the TA-MHC I complex on the

cell surface of DCs, which is recognized by TCRs, leading to the
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activation of CD8+ cytotoxic T cells (CTLs) (31).. Moreover, by

increasing the expression of the transcription factor TCF1, the

cGAS-STING pathway-mediated Type-1 interferon increases

the activity of stem-like CD8+ T cells (36), which are capable

of self-renewal, persistence, and differentiation potential (37–

39). It has been reported that the cGAS agonist Manganese (40),

low-dose STING agonists ADU-S100 (S100) (14), Vadimezan

(DMXAA) (41), and STINGV155M (a constitutively activating

mutation of STING) (42) all have the ability to enhance the

activity of CTLs thereby producing durable antitumor

immunity. Consistent with these findings, STING-deficiency

reduces CD8+ T cell activity in mice (43).

However, high doses of ADU-S100 lead to substantial T cell

death and impaired antitumor immunity (14). This may be

attributed to the activation of the non-type I IFN domain of

STING that disrupts calcium homeostasis, thereby stimulating T

cells to be highly responsive to TCR signaling-induced

endoplasmic reticulum stress, leading to T cell death (26, 27).
3.4 Activation of the cGAS-STING
pathway promotes the trafficking and
infiltration of T cells

CTLs need to leave TDLNs and enter the tumor tissue via

blood vessels in order to recognize and kill cancer cells (44). The

cGAS-STING pathway-induced Type-1 interferon response

drives the expression of multiple chemokines such as CXCL9,

CXCL10, and CCL5, that act as chemical gradients to direct

CTLs into the tumor tissue (45–47). IFN I signaling also

increases the expression of E selectin, VCAM-1, and ICAM-1

in endothelial cells, enhances vascular permeability, and

facilitates immune cell extravasation, thus enhancing the

antitumor effect (15).

The tumor vasculature is disorganized and immature, with

loose connections and low pericyte coverage. In addition, this

vascular system does not provide a continuous blood supply to the

tumor tissue, thus increasing the distant metastasis of tumor cells

and decreasing the tropism of CTLs to TME (48–51). The cGAS-

STING pathway-induced activation of Type-1 interferon

upregulates the vascular normalization genes such as Cdh5,

Angpt1, Pdgfrb, Mcam, and Col4a. These genes induce the

normalization of tumor vasculature with increased pericyte

coverage and more intact basement membrane, facilitating

infiltration of CTLs into tumor tissue (33, 52, 53). Consistent

with these findings, STING deficiency reduces the expression of

these genes (53). However, vascular endothelial growth factor

(VEGF)/VEGFR2 can negatively regulate Type-1 interferon

signaling through ubiquitin-mediated IFNAR degradation,

leading to the inhibition of Type-1 interferon action in VEGF-

rich tumor tissues (53). Combining STING agonists with

VEGFR2 blockers not only attenuates the negative effects of
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VEGF, but also synergistically promotes tumor vascular

normalization (53).
3.5 The cGAS-STING pathway has a
dichotomous effect on the recognition
and killing of cancer cells by T cells

Activation of the cGAS-STING pathway not only induces

CTLs-mediated cancer cell death by upregulating MHC-I

expression on the surface of cancer cells (54), but also

activates NK cells to kill tumor cells, especially those with

reduced or absent MHC-I expression (55–58). In addition, in

the tumor microenvironment (TME), tumor derived cGAMP

can be transferred from tumor cells to immune cells to trigger

the STING pathway in immune cells and activate the antitumor

response of NK cells (59). The death of cancer cells induces the

release of tumor antigens, leading to the initiation of a new

round of CIC.

The programmed cell death protein 1 (PD-1) expressed by T

cells binds to the ligand PD-L1 on the surface of tumor cells,

which inhibits the clearance of tumor cells by effector T cells

(60–63). Activation of the cGAS-STING pathway has been

demonstrated to increase the expression of PD-L1 on the

surface of tumor cells and thus attenuate the activity of CTLs,

which has been confirmed in models of liver cancer (64),

melanoma (65), non-small cell lung cancer (NSCLC) (16) and

small cell lung cancer (SCLC) (46, 66). The antitumor effects of

STING agonists were enhanced when combined with PD-L1 or

PD-1 blockers (40, 67, 68).

It has been found that activation of the cGAS-STING pathway

may induce the formation of immunosuppressive TMEs and

negatively regulate the killing effect of CTLs (69, 70). (IDO1) is

an enzyme that catalyzes tryptophan into kynurenine, which

inhibits the proliferation of T cells and promotes the

differentiation of Tregs and the infiltration of myeloid-derived

suppressor cells (MDSCs) (71, 72). Activation of the cGAS-

STING pathway increases IDO1 expression (73), which has

been validated in colorectal cancer (74, 75). Analysis of the

TCGA dataset revealed that infiltration of Tregs and MDSCs

positively correlated with STING expression in pancreatic cancer,

bladder urothelial carcinoma, breast cancer, liver cancer, prostate

adenocarcinoma, and thyroid cancer (76). Interestingly, Eslam

Mohamed et al. (77) proposed that PERK-deficient MDSCs

lead to activation of their own STING signaling, reprogramming

immunosuppressed MDSCs into myeloid cells that activate CD8+

T cell-mediated anticancer immunity.

In addition, DNA damage-mediated activation of the cGAS-

independent non-canonical STING signaling primarily activates

NF-kB and promotes IL-6 production, which is associated with

pro-tumor response (78–80). 2’3’ -cGAMP transferred from

tumor cells to astrocytes activates NF-kB signaling, thereby
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promoting brain metastasis and chemoresistance (81). Since

TBK1 and STING inhibitors do not block non-canonical

STING, NF-kB inhibitors may be an option to reduce the pro-

tumorigenic response (79).
4 The mechanism underlying the
inhibition of the cGAS-STING
pathway in tumor

An increasing number of investigations have indicated

that the activity of the cGAS-STING pathway is inhibited

in several tumors due to the regulation of multiple mechanisms.

Mutant p53 inhibits the activation of the cGAS-STING-TBK1-

IRF3 pathway and promotes tumor progression by interacting

with and inhibiting TBK1 activity (82). Mutant NF2 is induced

by activated IRF3 to form cellular condensates, which inhibit

TBK1 activity, particularly in human vestibular nerve sheath

tumors (83). As a hydrolase of cGAMP, ecto-nucleotide

pyrophosphatases 1 (ENPP1) impedes the antitumor immune

response by blocking cGAMP transfer from tumor cells to

immune cells to trigger the STING pathway (84). Hypoxia, a

feature of solid cancers, upregulates RNASEH2A via HIF2a,
which may limit activation of the cGAS-STING signaling by

reducing nuclear DNA release. Hypoxia is associated with poor

prognosis of hepatocellular carcinoma (85). In a mouse model of

ovarian cancer, the SETDB1-TRIM28 complex inhibited the

formation of micronuclei in the cytoplasm, thereby inhibiting

the activity of the cGAS-STING pathway and suppressing anti-

tumor immunity (86). TIM-3 may inhibit the activation of the

cGAS-STING pathway by suppressing the uptake of extracellular

DNA by DCs, which has been demonstrated in breast cancer

models (87).

Thus, blocking the mechanism underlying the inhibition of

the cGAS-STING pathway may be an option for the treatment of

tumors with suppressed activity of the cGAS-STING, though the

existing intervention methods remain immature. In contrast,

using agonists to activate the cGAS-STING signaling pathway,

thereby antagonizing the inhibitory signals of this pathway and

reversing the immunosuppressive state, may be a more feasible

approach, which is expected to break the resistance bottleneck of

these tumor immunotherapies.
5 Immune combination therapy of
the cGAS-STING

As previously mentioned, the regulation of tumor immunity

by the cGAS-STING pathway is dichotomous; therefore, STING

agonists applied alone may carry the side effect of

immunosuppression. However, combined STING agonists with

other suitable antitumor therapies can mechanistically synergize,

as demonstrated in clinical and preclinical models (Figure 1).
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5.1 Combination therapy to promote
tumor antigen release and presentation

Due to the low mutational burden and low expression of

antigen-presentation markers, “immune cold tumors” lack

infiltration of CTLs both inside and at the margins of the

tumor, which respond poorly to immune checkpoint inhibitors

(ICIs) and are often associated with poor prognosis (88–90).

Therefore, such combination therapies are essential to overcome

the immune deficiency and convert cold tumors into hot tumors.

5.1.1 STING agonists in combination
with chemotherapy

STING agonists in combination with chemotherapy have

shown promising efficacy in preclinical trials. The combination

of cisplatin and cGAMP showed effective CXCR3-dependent

antitumor effects in a mouse model of head and neck squamous

cell carcinoma (HNSCC) (91). However, several clinical trials of

STING agonists in combination with chemotherapy have been

completed without achieving expected efficacy. The poor

performance of the STING agonist ASA404 in clinical trials

may be due to the fact that ASA404 selectively binds to mice, but

not to human STING. Therefore, STING agonists with higher

affinity for humans need to be rationally designed to enhance

antitumor efficacy.

5.1.2 STING agonists in combination with DNA
damage response inhibitors

Homologous recombination repair (HRR)-deficient tumors

result in a higher tumor mutational load, including KEAP1-

mutated non-small cell lung cancer (NSCLC) (92), BRCA1/2-

deficient tumors (93, 94), microsatellite instability (MSI)

colorectal cancer (CRC) (95), and small cell lung cancer (SCLC)

(66) characterized by widespread deletion of two key regulators of

the cell cycle checkpoint pathway, TP53 and RB1. Such tumors

exhibit sensitivity to DDR inhibitors, and persistent high levels of

DNA damage in their cells contribute to activation of the cGAS-

STING pathway. It was revealed that combination therapy of

DDR inhibitors (including PARP inhibitor olaparib and CHK1

inhibitor prexasertib) and STING agonists demonstrated

beneficial therapeutic effects in such tumors, superior to both

drugs monotherapy (66, 92–95). Thus, combination therapy with

DDR inhibitors and STING agonists is expected to be a promising

treatment for HRR-deficient tumors.
5.1.3 STING agonists as vaccine adjuvants
Recently, several studies have demonstrated that STING

agonists can serve as adjuvants for tumor vaccines and exert

beneficial effects in antitumor therapy. Matteo Rossi et al. (96)

discovered that the combination of STING agonists with

therapeutic protein vaccines significantly reduced the rate of

tumor growth and improved the efficacy of therapeutic
frontiersin.org
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vaccination, which was demonstrated in a variety of mouse tumor

models. CDGSF, a novel STING agonist that induces a “hot”

tumor microenvironment to inhibit melanoma progression, has

been shown to induce a robust adaptive immune response as an

adjuvant to SARS-CoV-2 stinger protein and has great potential to

be an adjuvant for cancer vaccines (97).
5.2 STING agonists combined with
VEGFR blockers to promote the
trafficking and infiltration of T cells

The combination of STING agonists and VEGFR

blockers collaboratively drives the infiltration of CTLs into

the tumor core, which is essential for “immune excluded

tumors”. In immune excluded tumors, CTLs aggregate at the

tumor border but cannot invade the tumor interior, possibly

due to the lack of T-cell chemokines or abnormal tumor

vascular formation barriers (69). Anlotinib, a tyrosine

kinase inhibitor (TKI), inhibits tumor angiogenesis by
Frontiers in Immunology 05
blocking multiple targets such as VEGFR, PDGFR, and

FGFR. A recent study revealed that the antitumor effects

of anlotinib were also associated with activation of the

cGAS-STING pathway, which was confirmed in a mouse

model of gastric cancer (98). Another study confirmed that

triple immunotherapy with STING agonists, anti-VEGFR2

antibodies, and anti-PD-1 or anti-CTLA-4 antibodies was

more potent and durable in mouse models of lung and colon

cancer, extending survival in mice resistant to ICIs or anti-

angiogenic therapy (53).

5.3 Combination therapy to facilitate the
recognition and killing of tumor cells
by T cells

5.3.1 STING agonists in combination with
chimeric antigen receptor -T cell therapy

CAR-T cell therapy is one of the promising anti-cancer

therapies that has achieved excellent efficacy in treating
FIGURE 1

The cGAS-STING pathway regulates each step of the cancer-immunity cycle. Combination therapy of STING agonists can target different steps
of the cancer-immunity cycle and contribute to solving immunotherapy challenges in the corresponding immune types of tumors. APC,
antigen-presenting cell; PD-L1, programmed death-ligand 1; DDR, DNA damage response; VEGF, vascular endothelial growth factor; IDO,
indoleamine 2,3-dioxygenase; ICIs, immune checkpoint inhibitors; CAR-T cell, chimeric antigen receptor-T cell. By Figdraw.
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hematologic tumors (99), but has a lower success rate in

treating patients with solid tumors, which may be due to

insufficient infiltration of CAR T cells into tumor tissue,

immunosuppression TME-induced functional suppression,

and CAR T cell exhaustion (100, 101).

In situ mouse mammary tumor model, administration of

STING agonists DMXAA or cGAMP at sites distant from the

tumor significantly enhanced the efficacy of Th/Tc17 CAR T

cells, which may be related to the upregulation of chemokines

CXCL9 and CXCL10 by STING agonists to promote the

infiltration of CAR T cells into the tumor tissue. Furthermore,

sustained tumor regression was only achieved in combination

with anti-PD-1 monoclonal antibodies, possibly due to anti-PD-

1 antibodies reversing CAR T-cell exhaustion (102). Feng Ji et al.

also confirmed that PARPi can activate the cGAS-STING

pathway to enhance the efficacy of CD70 CAR-T cells on renal

cancer (103).

5.3.2 STING agonists in combination with
immune checkpoint inhibitors

“Hot tumors” already contain large numbers of infiltrating T

cells that were once activated but are depleted or malfunctioning

due to the expression of a range of immunosuppressive

receptors, including CTLA4 and PD-1 (69). As mentioned

previously, activation of the cGAS-STING pathway promotes

the infiltration of CTLs into tumor tissue and upregulates the

expression of PD-L1 on the surface of cancer cells. While the

therapeutic efficacy of immune checkpoint inhibitors (ICIs)

correlates with the baseline infiltration level of CTLs in tumor

tissue. Therefore, the combination of STING agonists and ICIs

for the treatment of immune hot tumors may synergize.

The combination of STING agonists and ICIs is currently

achieving some efficacy in clinical trials. A multicenter Phase 2

clinical trial demonstrated a complete response of 16.7% and a

partial response of 83.3% (NCT03937141) when ADU-S100 (a

STING agonist) and pembrolizumab were used together in the

treatment of recurrent or metastatic head and neck cancer. An

open-label phase 1 clinical trial for patients with advanced

metastatic solid tumors showed that Mn2+, which can activate

cGAS in combination with anti-PD-1 antibodies, has promising

efficacy, with an objective response rate of 45.5% and a disease

control rate of 90.9% (NCT03991559) (40). In preclinical model

of HPV + oral cancer, intratumoral injection of STING agonist

combined with systemic treatment with anti-PD-1 antibodies

and anti-CTLA-4 antibodies resulted in sustained tumor

regression in 71% of mice, significantly higher than the

efficacy of PD-1blocker alone (104). In mouse melanoma

models with B16F10 and BRAF mutations, the combination
Frontiers in Immunology 06
use of LP-cGAMP and anti-PD-L1 antibody achieved stronger

and more durable efficacy than LP-cGAMP or anti-PD-L1

alone (105).
5.3.3 STING agonists in combination with
IDO inhibitors

In immunosuppressed tumors, immune infiltration is present

in the tumor lesion, but the degree of infiltration is not high (69).

As previously mentioned, while activation of the cGAS-STING

pathway promotes immune infiltration, it also upregulates the

expression of the immunosuppressive factor IDO. Therefore,

combining STING agonists with IDO inhibitors may be a

promising option to reverse immunosuppression and promote

immunosuppressed tumors to become hot tumors, thereby

improving the efficacy of ICIs.

The combination of STING agonist and IDO inhibitor is

currently in preclinical. In a mouse colorectal cancer model, the

STING agonist diABZI in combination with the IDO inhibitor

1-MT significantly inhibited tumor growth, promoting the

recruitment of CTLs and inhibiting the infiltration of

MDSCs (75).
6 Conclusion and perspectives

The cGAS-STING pathway mediates various aspects of the

cancer immune cycle (CIC) to enhance or attenuate anti-tumor

immune responses. Combination therapy of STING agonists can

target different steps of the cancer-immunity cycle and

contribute to solving immunotherapy challenges in the

corresponding tumor immune-phenotype. In addition, the

activity of the cGAS-STING pathway is inhibited in several

tumors due to negative regulation by multiple mechanisms such

as TIM-3, ENPP1.

However, the following challenges need to be solved

for STING agonists to be clinically applied on a large scale.

First, for specific patients, whether STING agonists are

immunopromoting or immunosuppressive is unclear and may

be related to their tumor type and immune microenvironmental

characteristics, which need to be further explored. Second, STING

agonists with higher affinity for humans need to be rationally

designed to enhance antitumor efficacy. Third, more potential

STING agonist combination therapy strategies need to be

explored, such as STING agonist in combination with TIM-3

inhibitor, ENPP1 inhibitors.

In summary, we believe that the cGAS-STING pathway

manipulation will have a promising future in tumor immunotherapy.
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