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Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints

and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form

that mainly involves the spine and sacroiliac joint, leading to the loss of

flexibility and fusion of the spine. Compared to other diseases in SpA, AS has

a very distinct hereditary disposition and pattern of involvement, and several

hypotheses about its etiopathogenesis have been proposed. In spite of

significant advances made in Th17 dynamics and AS treatment, the

underlying mechanism remains concealed. To this end, we covered several

topics, including the nature of the immune response, the microenvironment in

the articulation that is behind the disease’s progression, and the split between

the hypotheses and the evidence on how the intestine affects arthritis. In this

review, we describe the current findings of AS and SpA, with the aim of

providing an integrated view of the initiation of inflammation and the

development of the disease.

KEYWORDS
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Introduction

Ankylosing spondylitis (AS) is a classic type of inflammatory disease that starts

usually with an inflammation in the sacroiliac (SI) joint and ends with the fusion of the

spine with a pathognomonic feature called the “bamboo spine”. It belongs to a group of

diseases named spondyloarthritis (SpA), featuring inflammation flaring up in the spine,

peripheral joints, ligaments, and tendons.
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Along with the rapid advancement in medicine, the

classification of SpA keeps changing, which in turn inspires as

well as limits the way we study it. Initially, AS was recognized as

a kind of disease related to rheumatoid arthritis (RA) or

rheumatoid spondylitis (1). RA has the hallmark of persistent

symmetrical peripheral polyarthritis, including in the hands and

feet, and it can affect the cervical spine, causing neck pain and

stiffness, while AS usually begins with inflammation in the

bilateral lumbosacral joints and less frequently involves

peripheral joint inflammation; though, AS was not clearly

distinguished from rheumatoid disorders until the discovery of

the rheumatoid factor and anti-citrullinated protein antibody

(ACPA) (2). In 1974, Moll and Wright grouped non-RA

inflammatory diseases into an inter-related family named

‘seronegative spondyarthrides’, including AS, psoriatic arthritis

(PsA), reactive arthritis (also known as Reiter’s disease),

inflammatory bowel disease (IBD), etc (3). This classification

scheme was not widely accepted, yet it did mark off diseases that

have considerable comorbidity rates and share signaling cellular

pathways in hindsight (4, 5). The classification criteria launched

by the Assessment of Spondyloarthritis International Society

(ASAS) in 2009 is regarded as a landmark in AS classification,

recognizing axSpA as the only entity in comparison to peripheral

SpA (pSpA), and the term ‘ankylosing spondylitis’ was

fundamentally replaced by ‘radiographical axSpA (r-axSpA)’

(6). These criteria were modified for better classification of the

patients and recognition of the medical demand for axSpA that

presents unreadable or mild radiographical change (non-

radiographical axSpA, or nr-axSpA). However, as a practical

standard in classifying patients and avoiding people with

unprovoked inflammation in their back but no MRI sign, the

term axSpA limits efficient discussion on more closely inter-

related constellation of features, including SI damage, HLA-B27,

and anterior uveitis that is much more prevalent in former

defined AS patients than the other kinds of axSpA or r-axSpA,

such as PsA (7). Therefore, AS, as a concept that may or may not

manifest on individuals simultaneously, still affords us a useful

model to explore the mechanism of pathogenesis.

The pathogenic mechanism of AS remains obscure, but

several hypotheses about the initiating process have been

proposed. The first one is a direct inference based on ‘self-

nonself’ immunology that autoinflammation should be

attributed to specific arthritogenic peptides, i.e., aiming to

discover a molecular mimicry between the foreign and self-

peptide. Despite growing evidence of T-cell clonal expansion in

patients, the existence of conclusive common antigens is still

challenging to verify (8). Some other theories involve the

conformational plasticity of the most critical risk gene, HLA-

B27, which has a high prevalence of genetic variants among AS

patients (9), as the cause of AS. A series of researches highlights

the unfolded protein response (UPR), which is activated during

the biosynthesis process of HLA-B27 alleles in the endoplasmic

reticulum (ER), due to its consequences of inflammation and
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autophagy. An error-prone folding process of specific HLA-B27

alleles can instigate endoplasmic reticulum stress (ERS), which

activates the UPR and leads to necrotic death and cytokine

secretion. Surface-expressed HLA-B27 molecules with

unconventional conformation may activate the immune

system through the intrinsic HLA monitoring receptor, the

killer immunoglobulin-like receptors (KIRs) expressed by

CD4+ T cells, and natural killer (NK) cells.

Deep understanding of T cell-mediated inflammation has

spawned the cytokine blockade strategy, but little is known why

this strategy leads to overreaction and underreaction in different

situations. In this review, we present organized evidence about

how pathophysiological factors contribute to AS development,

analyze the consistency among different hypotheses, and make

an attempt to reconcile immunological understanding in other

fields with findings in AS.
Cause of AS: Infection or danger?

The danger theory and AS

A successful immune response would be a quick strong

response targeting invading foreign organisms by recognizing its

antigenic components via immunoglobulin receptors, as the

prototypical ‘self-nonself’ theory indicates. Two major

modified versions of the theory have been raised to describe

the nature of the ligands, known as Charles Janeway’s

‘infectious-nonself’ theory and Polly Matzinger’s ‘danger

model’ (10, 11). An adaptive immune response is initiated by

the activation of nonclonally rearranged receptors, for instance,

the interaction between LPS and Toll-like receptors (TLRs).

Janeway proposed these ligands possessing an exogenous

nature related to infectious pathogens, termed ‘pathogen-

associated molecular patterns (PAMPs)’, while Matzinger held

the view that the immune system is more concerned with

dangerous conditions, in which chemical substances, named

by ‘danger-associated molecular patterns (DAMPs)’, are

recognized by the immune system.

With growing knowledge of stimulatory and inhibitory

signaling pathways of immunocytes, the canonical model has

been expanded. It was known that the activation of naïve T cells

requires a primary response when PAMP/DAMPs or cytokine-

activated antigen-presenting cells (APCs) simultaneously deliver

antigens to TCR (signal one) and costimulatory signals (signal

two); while memory T cells only react after re-encountering the

same antigen (epitope). However, the bystander activation

process is not dependent on antigen encountering. Early in the

90s, Tough et al. have already confirmed that both CD4 and CD8

T cells can be activated with bacterial/viral PAMP but TCR

signaling, namely, LPS and poly(I:C) (12, 13). Recent discoveries

in animal models such as experimental autoimmune

encephalomyelitis (EAE), a model induced by autoantigen to
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mimic human multiple sclerosis (MS), confirmed that most of

the infiltrating T cells are not provided with autoantigen-

specificity, while the severity of inflammation could be rescued

by knocking down TLRs (14).

Perhaps two suppositions could be made on the initial stage

of AS: 1) the production of autoantigen has a feature of tissue-

specific expression, incurring attack directed by adaptive

immunity; or 2) there is a persistent damaged tissue in the

axis, releasing signals and priming and bystander-activating

immune cells. These signals, either DAMPs or pathogen-

associated molecular patterns (PAMPs), can work to offset

peripheral tolerance and allow the immune system to attack

itself (Figure 1).
Searching for antigens

Molecular mimicry is a common etiological mechanism

caused by similar antigenic epitopes shared between self and

foreign antigens. Hence, an infection-driven immune response

would result in a self-reactive immune system and unresolved

inflammation. Early results suggested Klebsiella pneumoniae, a

Gram-negative bacterium causing pneumonia and sepsis, as a

potential candidate. It was first related to AS development due to

its fecal carriage and increased serum antibody levels compared

to those in HLA-B27-negative patients (15). Then members

from Enterobacteriaceae including Yersinia, Salmonella, and

Shigella are considered as potential candidates for causing

typhoid fever and sequelae of arthritis. The cross-reactivity
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between HLA-B27 and K. pneumoniae was well-studied (16,

17), and underlying molecular mimicry was found, including a

homologous hexa- or octapeptide from K. pneumoniae

nitrogenase (residues 188-193) and HLA-B*2701 (residues 72-

77) (18, 19), a tetrapeptide from bacterial pullulanase and

collagens (20), and a dodecapeptide from bacterial dipeptidase

and collagens (21). The same situation was revealed for Candida

albicans infection, a dimorphic fungus colonizing the intestinal

mucosa, where some research suggests a positive correlation

among patients (22) but others did not (23, 24). These

conflicting results might be an outcome of the complexity of

the intestinal microbiome, where either commensal or

pathogenic bacteria generate antibody response, and their

function as facultatively causal, consequential, and bystanders

to diseases requires arduous work to confirm.

A macroscopic demonstration was given by a recent meta-

analysis incorporating 1.3 million cases of AS and 7.6 million

healthy controls, which found that there was no significant

contribution from bacterial infection (RR [95% CI] = 0.70

[0.10–4.78]), even though previous infections increase the AS

risk (25). In comparison, viral infection significantly contributes

to AS (RR [95% CI] = 1.43 [1.22–1.66]) (25). HLA-B27 can

recognize and present peptides of various viral origins, including

influenza A, human immunodeficiency virus (HIV), hepatitis C

virus (HCV) (26–29), etc. At the same time, a follow-up study

showed that former HPV infection increases the risk of AS (30).

Two cohort studies suggested an inverse effect of HIV infection

on AS development, suggesting the protective role of an

overactivated immune system against viral infection (31, 32).
FIGURE 1

Three different ways resting/naïve T lymphocytes become activated. Activation by the first encounter requires naïve lymphocytes associated
with professional antigen-presenting cells, namely, dendritic cells. The second encounter with the antigen is enough to generate a fast, strong
response for memory lymphocytes in the resting state. Hypotheses based on the canonical first/second encounter models led to an exploration
of potential cross-reactive antigens that elicit spondyloarthritis after pathogen infection. With improved knowledge of the immune regulatory
network, the antigen-independent activation of T cells has been identified, which provides a possible pathway for autoreactive T cells that
bypasses central tolerogenesis mechanisms.
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However, even if viral infections increase the susceptibility to AS,

it elicits another question about the role of HLA-B27 molecule

during this process. Since most peptide-presenting function is

inherent to HLA-B27 allotypes (33), these observations suggest

that the risk of persistent viral infection is not dependent on a

specific antigen but on the pathogenic induction of immune

response (unless an epitope expansion occurs).
Recent advances

Both computational biology and transcriptomics have made

great progress in recent years. A host of studies have been

conducted with 16S rRNA sequencing and shotgun

metagenomic sequencing in search of specific intestinal

microorganisms enriched in AS patients. Some bacterial

peptides derived from the enriched population are found to

match HLA-B27 epitopes according to the prediction tool (the

immune epitope database, IEDB) (34, 35). One peptide from

Bacteroides fragilis mimicking human type II collagen is

suggested to be able to interact with HLA-B27 and stimulate

the IFN-g production of PBMC (34). However, it is uncertain

whether the pro-inflammatory effect of that peptide depends on

carrying the HLA-B27 allotype or heterogeneous inflammatory

state among AS patients and healthy controls, the direct binding

between HLA-B27 and the peptide appear unlikely in the

original study (36). Besides, few consensuses have been

reached among other studies: some research confirmed the

difference of both microbiota diversity and abundance of

specific species, associated with HLA-B27 (37, 38); one

suggested that HLA-B27 is not involved in the shift of

microbiota during the disease (39), and some discovered an

insignificant difference in a-diversity between the AS and HC

groups, although specific species correlate with disease activity

(40–42). Clonal expansion of CD4+ and/or CD8+ T cells is also

analyzed with immune repertoire sequencing, implying specific

antigen-TCR binding in AS (43–45). However, inferring the

CDR3 sequences to antigen epitopes is still challenging.

Schittenhelm et al. utilized mass spectrometry to enrich HLA-

B27 binding peptides with different affinities among HLA-B27

allotypes, but there was only a slight change in abundance (46).

Nonetheless, research combining the peptidome and TCR motif

brought about some consensual outcomes that disease-related

HLA-B27 serotypes bind peptides with C-terminal elongation

and specific amino acids are enriched (43, 47, 48). As some

studies suggest, this could either be fundamental for the cross-

reactive immune response or a consequence of a malfunctioning

MHC assembly (48, 49).

In brief, although many research studies suggested a role of

HLA-B27 as a direct antigen or mediator of pathogen entry,

there are limited clues supporting the causal relation that AS is a

sequel to this molecular mimicry process. Instead, HLA-B27 has

a potential in providing immunostimulation according to recent
Frontiers in Immunology 04
investigations for its intercellular and intracellular function. For

instance, HLA is under the surveillance of the immunoglobulin-

like receptor (KIR) family by the killer cell. KIRs have

extraordinary polymorphism and the capability to ‘license’

killer cell function during sensing altered HLA expression and

conformers (50). Moreover, it is noteworthy that HLA-B27-

related hypotheses could be overrepresented, since only a small

percentage of HLA-B27-positive individuals are prone to

develop the disease (51); AS patients could be likewise

misdiagnosed for carrying HLA-B27, according to a recent

study in Spain (52).
From injury to inflammation

Enthesitis and synovitis

Our lumbar spine and lower extremities experience high

mechanical stress as upright standing species. In the attachment

of the tendon or ligament to the bone, the connective part (the

enthesis) is easily damaged by stress. This could be one reason

why inflammation of entheses, or enthesitis, usually occurs at

these sites, particularly in AxSpA (53). Entheses have a similar

structure to the growth plate (epiphyseal plate), in which

expansion and differentiation of chondrocytes make up a

continuous gradient from the uncalcified tendon to the

calcified bone. They and their adjacent tissue synovium,

named ‘synovio-entheseal complexes (SECs)’ (54), are likely to

represent a highly vulnerable part to inflammation. In 1971,

John Ball made a very insightful conclusion based on

pathological evidence that AS has less destructive erosive

synovitis than rheumatoid disease, with unique inflammatory

enthesopathy (55). A more modern view of enthesopathy today

might be that the repetitive microtrauma as a consequence of

body movement could provide a very early signal to initiate SpA

and be regarded as a prodromal symptom of it (56, 57). By

unloading physical stress in the hind limbs of TNF-

overexpressing mice, Jacques and colleagues proved that

enthesitis and osteophytes develop only under adequate

mechanical stimulation, which was later confirmed in both

collagen-induced arthritis (CIA) and collagen antibody-

induced arthritis (CAIA) models (58, 59). A discrepancy in

body weight bearing leads to different levels of inflammation in

different parts of the tarsal and metatarsal bones, reminding us

of how AS erodes large joints. However, this model may

elucidate only one piece of the genuine disease development in

humans. Although the site of enthesitis is found to be connected

with bone erosion in humans (60), a cohort covering HLA-B27+

subclinical SpA patients revealed that most individuals reported

arthralgia, 19% reported inflammatory back pain, and only 5%

reported enthesitis (61). The difference between the hypothesis

and the findings highlights that enthesitis may be needed for

bone lesions rather than inflammation and encourages more
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planned comparative studies to determine what happens in the

early stages of the disease.
Nonantigenic stimuli from cartilage

Modeled after human RA, the phenotype discovered in both

CIA and CAIA mice may still offer some insights into the

mechanism of AS development, as efforts to screen cartilage

biomarkers for diagnostic and prognostic utility found that

peptides derived from type II collagens are correlated with

tissue destruction and AS severity (62, 63). It was suspected

that type II collagen, the major component of hyaline cartilage, is

a potential target antigen during the disease process (64).

Similarly, Zou and his colleagues demonstrated that the G1

domain of aggrecan, a large proteoglycan in articular cartilage, is

a targetable epitope in AS and RA patients (65, 66). They found

that G1 peptide-specific CD8+ T cells exist in more than half of

the patients, which unfortunately elicited no further exploration.

In retrospect, CD8+ T cells, even in terms of adaptive immunity,

have a questionable role in disease initiation. As shown by the

HLA-B27/hub2m rat model, CD8+ T-cell deficiency does not

influence the process of SpA initiation (67, 68). Moreover, the

pathological imbalance in CD8+ T-cell frequency is not

influenced by TNFa inhibition therapy, which has proven its

efficacy in treating AS patients (69). It was not until Plow and

Kollias developed CIA in Rag1-/- immune-deficient mice that the

nonantigenic function of type II collagen became obvious (70).

Lambert et al. identified a specific fragment derived from type II

collagen, named Coll2-1, which can activate synoviocytes to

secrete IL-8 (CXCL8) in a TLR-4-dependent manner (71).

In addition to collagen, hyaluronan is an essential

component of the extracellular matrix (ECM) and synovial

fluid (SF) which is degraded rapidly with aging and

inflammation (72). In AS patients, serum hyaluronic acid is

also slightly elevated (p = 0.04) and is correlated with some

clinical features, such as c-reactive protein (CRP) test, Schober’s

test, and the finger-to-floor distance (73). The effect of

hyaluronan in inflammation is related to its molecular weight;

lower-molecular-weight hyaluronic acid has been reported to

facilitate the immune response by binding TLR2 and TLR4 (74,

75), while higher-molecular-weight hyaluronic acid has been

demonstrated to be anti-inflammatory through the CD44

signaling pathway (76). Parallel to these findings, it has been

shown that TLR1 and TLR2 are strongly expressed in primary

human chondrocytes (77). The expression of TNFa and TLR1/2

could even be drastically upregulated by TNFa or TLR1/2

stimuli. Moreover, chondrocytes are able to worsen cartilage

degradation by the upregulation of matrix metalloproteinases

(MMPs), cathepsin B, and L, which antagonizes the MMP

inhibitor (TIMP-1/2) and downregulates ECM proteins (78–

80). These findings collectively suggest a very proinflammatory

function of chondrocytes during AS development.
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Landscape of innate immunity in AS

Generally, AS is characterized by neutrophil and macrophage/

monocyte expansion and synovial infiltration. The hemogram of

AS patients shows an elevated neutrophil to lymphocyte ratio

(NLR), platelet to lymphocyte ratio (PLR), and monocyte to

lymphocyte ratio (MLR) compared to healthy individuals (81–

83). All of these features are positively correlated with ESR and

CRP, wherein MLR is believed to be a better diagnostic parameter

than the others. Immunohistology also demonstrated shared

features among non-RA SpA, including AS, PsA, ReA, and JIA,

and CD163+ M2 macrophage and neutrophil counts were greater

in synovial biopsies than in RA and HC (84–86). This specific

myelopoiesis pattern could be attributed to different causes,

including enhanced monopoiesis/neutropoiesis in the bone

marrow (BM) and extramedullary sites, noncanonical precursor

differentiation, and the pro-survival effect of cytokines.

In addition to the commonly discussed effect of elevated

inflammatory cytokines such as GM-CSF or M-CSF, it has been

suggested that monocytes can be generated with an alternative

protocol in AS. A traditional paradigm of monocyte

differentiation involves sequential binary decisions from

granulocyte and monocyte progenitors (GMPs) to monocyte/

DC progenitors (MDPs) and finally to common monocyte

precursors (CMPs). Since the identification and nomenclature

of myeloid cells in the published literature may face a problem of

consistency (87), detailed cell identities will not be overly

emphasized. It has been proposed by Yáñez et al. that GMP and

MDP are derived independently from GMP and are both able to

generate so-called Ly6Chi ‘classical’ monocytes in mice, which

stands for different means of emergency monopoiesis (88). Two

diverse microbial components have been demonstrated to induce

different responses. Lipopolysaccharide (LPS), which is

conventionally recognized by TLR4 and TLR2 to a degree,

stimulates both neutrophil and (neutrophil-like) monocyte

differentiation from GMPs, while unmethylated CpG,

recognized by TLR9, stimulates monocyte and conventional DC

production (88). In line with their observations, increasing

evidence suggests a similar process in AS myelopoiesis. In

curdlan-injected SKG mice, myelopoiesis is skewed toward

GMP, and extramedullary proliferation of GMP is induced by

GM-CSF secreted by CD4+ T cells and mast cells (89). In humans,

monocytes from HLA-B27+ AS patients show an adaptation

toward a GMP-driven neutrophil-like phenotype when

challenged by LPS and cytokines (90).

Moreover, the adaptation of innate immunity, mediated by

epigenetic reprogramming, could last a long time. This so-called

‘trained immunity’ has been proven in vaccine- or adjuvant-

treated models; for instance, mice treated with b-glucan (a

PAMP that activates dectin-1) show increased myeloid cell

expansion and enhanced proinflammatory cytokine

production from monocytes (91, 92). Mitroulis et al. have

demonstrated that hematopoietic stem cells (HSC) from mice
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treated with b-glucan can preserve a biased differentiation

pattern that prefers GMP differentiation after being transferred

to irradiated recipient mice for 12 weeks (93). Since AS patients

have TLR stimulants including hyaluronan, collagen fragments,

and TNFa floating in the SF and peripheral blood (PB), this

novel mechanism of innate immunity training can be regarded

as a theoretical underpinning of cellular pathogenesis.

It has been well studied that damaged synovium/entheses are

able to produce various kinds of inflammatory cytokines and

chemokines, engaging in myeloid cell recruitment, activation,

polarization, and even osteoclast (trans-) differentiation.

Entheseal mesenchymal cells from a mouse model have been

demonstrated to secrete CXCL1 and CCL2 (MCP1), which bind

CXCR2 and CCR2/4, respectively, in response to mechanical

stress (59). Ex vivo mesenchymal stem cells (MSCs) from AS

patients also show increased CCL2 production (94).

Correspondingly, CCR2+ M2 macrophages (CD163+) are

largely increased in PB and synovial biopsies of SpA patients

and are correlated with AS disease activity (86, 95–97). This axis

participates not only in chemotaxis but also shapes the

polarization of macrophages, as CCR2 blockade polarizes

macrophages toward an inflammatory M1 phenotype (98, 99).

Neutrophil infiltration may also benefit from CCL2/CCR2, as

high CCR2 expression and responsiveness are observed in RA

patients and an antigen-induced arthritis (AIA) mouse model

(100). Research on the neutrophil-specific chemokine CXCL8

shows controversial outcomes, as synovial CXCL8 has been

suggested to be elevated only in the SF of RA, aside from

other SpA (101, 102), while serum CXCL8 is higher in PsA

and AS than in RA (103). These results further suggest a stepwise

recruitment protocol of AS wherein neutrophils are recruited by

endogenous chemoattractants through vessels and are eventually

assembled by TLR stimuli and/or complement components in

articulate tissues (104).
The IL-23/IL-17 axis

The findings of nonantigenic immune activation do not

necessarily cancel the importance of adaptive immunity. In

contrast, the reduction in the severity of disease in immune-

deficient mice confirms a harmful influence of activated

lymphocytes, when the IL-23/IL-17 axis has been long

suspected to play important role in AS development. In the

canonical model of the IL-23/IL-17 axis, the inflammatory IL-17

family as well as other cytokines such as IL-22, TNFa, IL-6 is

secreted by Th17 cells, which is induced and maintained by IL-

23. A general activation of this axis in AS is proven by an

elevated level of IL-23 and IL-17 found in a wide range of AS

patients (105–107). Other than Th17 cells, tissue-resident innate

immunocytes, such as gdT17 cells and ILC3s, possess a

comparable ability in secreting IL-17 and IL-22 (108–110).

These cells are the innate counterpart of Th17 cells and have
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been proven to drive SpA development in IL-23-overexpressing

mouse models.

However, after achieving a favorable response rate in PsA

and CD, IL-23 blockers failed to show efficacy in treating AS

(111–113). Despite evidence from animal models that IL-23-

driven IL-17 can stir up enthesitis and SpA (108–110), its

causality to AS development has never been settled. According

to current evidence, the indeterminate relationship between IL-

23 and IL-17 can be explained by redundant IL-17-inducing

pathways. Cuthbert et al. firstly reported that the Vd1 subset of

gdT lacking IL-23R is able to secrete IL-17 and IL-22 under anti-

CD3/CD28 (mimicking TCR stimulation) or phorbol myristate

acetate (PMA) stimulation (114), which provides a

substitutional mechanism for IL-23/IL-17 axis. Another

potential IL-23-independent activator is prostaglandin E2

(PGE2), a principal mediator of inflammation, which is widely

observed to be elevated among AS patients that made the

response rate to NSAIDs that inhibits the biosynthesis of

PGE2 a criterion for AS diagnosis. Early studies reveal its

capability to stimulate IL-17 production and proliferation

synergistically with IL-23 in vitro (115, 116), while later an IL-

23-independent manner is found on Th17 cells from methylated

bovine serum albumin (mBSA)-induced RA model mice as well

as RA patients (117, 118). PGE2 is transduced through the

prostaglandin E2 receptor 2 subtype (EP2) and the 4 subtype

(EP4) expressed on the T cell surface. Under normal conditions,

the signaling pathway from PGE2 to the Th17 effector function

is regulated in a negative feedback manner, where RAR-related

orphan receptor-g (RORC), the lineage-defining transcriptional

factor of Th17, silences EP2 expression by directly binding to its

protein coding gene PTGER2 (119). However, the pathogenic

Th17 from MS patients shows impaired binding to PTGER2,

resulting in an unsuppressed EP2 level and stronger PGE2

signaling. Considering strengthened PGE2 signaling in AS

patients compared to HC (120), it remains to be seen that the

lacking regulatory capacity of PGE2 signaling could promote AS

development by activating Th17 cells. Likewise, a heterogeneity

in inflammatory signaling has also been identified in PsA, in that

patients with higher skin scores have lower arachidonic acid-

derived oxylipins (such as PGE2); on the contrary, those with

higher oxylipins are associated with enthesitis (121). This is

corroborated by better cutaneous response and limited

osteoarticular response to IL-23 inhibitors observed in PsA

patients (122). The parallel pro-inflammatory role of IL-23

and PGE2 in both diseases is worthy of further examination.

Searching an inhibitor for IL-17-producing cells brings us to

a deeper understanding of IL-17 function. Interesting results are

found in screened RORC inhibitors, in that ideally suppressing

Th17 function should rescue animal models from developing

inflammation. Guendisch et al. first reported that the RORC

inhibitor cpd 1 efficiently reduces major Th17 cytokines,

including IL-17A, IL-17F, and IL-22, resulting in attenuation

in mBSA-immunized antigen-induced arthritis rats (123).
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Another RORC antagonist, BIX119, has been reported to ablate

IL-17 production selectively while sparing IL-22-producing

subsets in human SpA- and CD-derived cells (124, 125). Van

Tok and colleagues found that using the same compound in vivo

reduced serum IL-17A, IL-17F, and IL-22 but accelerated the

mean onset and worsened the severity in the HLA-B27/hub2m
rat model (126). This paradoxical effect may easily remind us of

anti-IL17 treatment in IBD patients (127), but no intestinal

inflammation or weight loss was detected in these rats. This

counterintuitive problem brings about a deeper examination of

the capacity of Th17, in that if it is not a consequence of an

imbalanced intestinal immunity, the loss of IL-17 or IL-22

should contribute to the pathogenicity in another way. Chong

et al. revealed that the neutralization of IL-17A with a

monoantibody abolished the expression of IL-24 and enhanced

IL-17F and GM-CSF secretion in autoimmune uveitis and its

model (128). They suggested that autocrine IL-17 activates

NFkB, leading to IL-24 production, which in turn represses

IL-17F and GM-CSF production via the SOCS1/3 pathway. This

discovery was later supported by a study in EAE mice, where

Rorc-/- increases GM-CSF production in CD4+ T cells and

splenocytes (129). These two elegant studies describe the

positive and negative feedback in Th17-cell functioning, where

GM-CSF could stimulate macrophages to produce more IL-23 to

skew Th17 polarization and increase GM-CSF production,
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which is suspended when a high concentration of IL-17A

activates SOCS1/3 and blocks the expression of GM-

CSF (Figure 2).

Human Th17 cells are long-lived inflammatory cells, with

abundant antiapoptotic gene expression as well as a stem-cell-

like phenotype (130). Th17 population is more likely to be self-

maintained after differentiation, considering their remarkable

capacity to proliferate in resistance to immunosuppression

compared with Th0/1/2 (131). In an HLA-B27/Hub2m
mouse model, van Tok et al. showed that anti-IL23R

treatment only has a prophylactic protective effect, while

anti-IL17A is able to halt inflammation and block new bone

formation (132). This may answer the question of why the

IL23R polymorphism is associated with AS occurrence rather

than its severity (133).

Taken together, disintegrated connective tissues

accumulated during the mechanical trauma of the synovium-

entheses or cartilage provide enough danger signals to stimulate

both innate and adaptive immunity. As a chronic disease, the

innate arm can act quickly to injured articulation and sustain a

proinflammatory effect by alternating the differentiation

program; al though there lacks direc t ev idence of

bystander activation in AS, there are alternative ways for the

adaptive arm to activate and be activated, while stimulating

innate immunity.
FIGURE 2

Potential effector axis of Th17 cells independent of IL-23 stimulation. From top to bottom: Prostaglandin E2 plays a critical role in ankylosing
spondylitis by activating Th17 cells in an RORC-dependent pathway. Despite its multifaceted proinflammatory effects, IL-17 may overrepresent
Th17 function. The paradoxical inflammation induced by the RORC blockade elicits the discovery of the intrinsic negative feedback of IL-17,
where the IL-24 autocrine induced by IL-17 regulates cytokine production by SOCS1/3. In contrast, GM-CSF, a secret weapon of Th17, is not
under the regulation of RORC. GM-CSF secretion by T cells or nonimmune cells may represent a protocol of the early stage in response to a
broad range of tissue damage and DAMPs via TLR and TNFR signaling, as well as a particular pathogenic pathway in autoimmune disease.
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HLA-B27 tuned immunity

Non-conventional conformers of
HLA-B27

In addition to mechanical stress, Polachek et al. discovered an

increased risk of enthesitis in PsA with HLA-B27-positive results

among 225 patients (134). A similar effect of HLA-B27 occurs in

juvenile idiopathic arthritis (JIA) (135). It seems that HLA-B27

alone is capable of perpetuating enthesitis or arthritis in the lower

extremities. In the first part of this article, we mentioned that

misfolded HLA-B27 is supposed to play a dual role in AS

pathogenesis. Conventional MHC molecules are composed of

one HLA molecule and a b2m molecule to form a functional

MHC heterodimer. The unconventional conformations of HLA-

B27may exist as a free heavy chain (FHC) on the surface or form a

homodimer (B272) via a disulfide bond on Cys67 (136). The

presence of unconventional HLA-B27 has been reported in the

intestine and joints of SpA patients (133, 137, 138). They can bind

or be recognized by a set of receptors related to the KIR family,

including KIR3DL2, leukocyte immunoglobulin-like receptor

LILRB2, and the homologous paired immunoglobulin-like

receptors (PIRs) of mice (139, 140). Samples from AS patients

showed proliferative KIR3DL2+ CD4+ T cells and NK cells

producing significantly more IL-17 than KIR3DL2- cells, which

could be reproduced ex vivo by coculturing KIR3DL2+ cells with

B272- expressing APCs (141, 142). This reaction could even be

rescued by a B272
- binding monoclonal antibody, which inhibits

the proliferation and survival of KIR3DL2+ cells as well as the

production of cytokines in vitro (133, 143). Along with these

findings, the idea of HLA-B27 as a KIR stimulant is consistent

with the GWAS results, in that the proinflammatory function of

KIR-bearing cells is suppressed in people carrying protective

HLA-B27 variants or the ERAP1 variant that causes less non-

conventional HLA-B27 surface expression (144–146).
Unfolded protein and endoplasmic
reticulum

The formation of an unconventional HLA-B27

conformation is also considered to be inflammatory as a

trigger of the unfolded protein response (UPR). MHC class I

molecules are assembled in the ER and bind endogenous

proteins originating from the cytosol (147). Perturbation

during this process may cause protein accumulation and

impaired ER function. The conformational change of HLA-

B27 is commonly detected via conformation-specific

antibodies such as ME-1 and W6/32, which can detect folded

HLA-B27, and HC10, which is reactive against unfolded or

partially folded proteins (148). It has been reported since 2002

that after HLA-B27 heavy chain (HC) synthesis, there can be

HC10-reactive peptide accumulation in the ER, while hours
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later, W6/32-reactive peptides emerge (149). This could be

worsened without sufficient b2m or tapasin, a binding protein

of ABC transporter TAP. A recent study precisely measured the

timing-consumption of different alleles. It takes 3.5 h for

susceptible HLA-B*2705 to construct the MHC-peptide

complex and 30–90 min for nonsusceptible B*2706 and

B*2709 (150). It has also been hypothesized that this

prolonged time course may increase the possibility of

oxidation at Cys67 and promote B272 formation (149, 151).

UPR orchestration involves one sensor protein, BiP, and

three main pathways: inositol requiring 1 (IRE1), protein kinase

R-like ER kinase (PERK), and activating transcription factor 6

(ATF6). Finally, the mammalian target of rapamycin (mTOR)

and the c-Jun N-terminal kinase (JNK) pathways are initiated

and maintain proteostasis through a reduction in protein

synthesis, induction of chaperone molecules, and degradation

of severely misfolded proteins via the ER-associated degradation

(ERAD) pathway (152). In HLA-B27/hub2m rats, enhanced

UPR has been detected in intestinal macrophages with

increased inflammatory cytokines, including IFNg and IL-23

(153, 154). A similar difference has been observed in AS patients.

Samples from peripheral blood (PB), BM, and SF demonstrated

that the expansion of proinflammatory plasmacytoid dendritic

cells (pDCs) is accompanied by the upregulation of the PERK

pathway (155). Macrophages from PB or SF show the

upregulation of UPR as measured by mRNA differential

expression, enabling MHC surface expression and the

secretion of cytokines, including TNFa and IFNg (156–158).
In contrast, Ambarus and colleagues found no evidence of

UPR in B27-positive macrophages from PB and SF using the

same markers as in previous studies (BiP, CHOP, ERdj4) (159).

It is contended by Ciccia that autophagy (MAP1LC3A, ATG5/

12) but not UPR is activated in AS (160). They investigated

intestinal biopsies from AS and Crohn’s disease (CD) patients

with both immunohistochemistry and RT-qPCR, and only

ERAD ubiquitin ligase SYVN1 was colocalized with HLA-B27

FHCs. In contrast, the findings from the team of Rik Lories

support the downregulation of autophagy-related genes

(ATG16L1, IRGM, HSP90AA1) in PB (161). Further research

revealed autophagy dysfunction with the downregulation of

MAP1LC3A and ATG5/12/16L1 in PBMCs, covering all

markers used in the previous study (162). This dysfunction is

attributed to a decrease in the autophagy mediator

lncRNA GAS5.

The function of autophagy is highly contextual, and both

increased and decreased autophagy may be involved in disease

(163). Autophagy can improve the clearance of pathogenic

proteins (164), inhibit apoptotic cell death (165), and obstruct

the NLRP3 inflammasome via the autophagic removal of NLRP3

activators (166). In the context of autoinflammatory disease,

autophagy seems to be more protective. Rapamycin could induce

autophagy by blocking the mTOR pathway. Treating HLA-B27/

hub2m rats with rapamycin is able to reduce misfolded proteins
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by 50% and the severity of disease (167, 168). In humans, it can

downregulate the IL-17 and TNFa secretion by PBMCs and

inhibit the osteogenic differentiation of fibroblast-like

synoviocytes ex vivo (169). With misfolded HLA-B27

accumulating in the ER, autophagy could be induced as a

compensatory method for survival but could eventually be

disrupted, leading to a remodeled inflammatory phenotype

and cell death. This is very likely to occur in antigen-

presenting cells, as they are both MHC-bearers and cytokine-

producers. In other inflammatory conditions, it has been proven

that imbalanced autophagy in dendritic cells and macrophages is

extremely pathogenic (170). In contrast, autophagy promotes

the production of lysophosphatidylcholine (LPC), an apoptotic

inducer and chemotaxin, and the well-known ‘eat-me’ signal

phosphatidylserine (PtdSer) (67). These signals promote the

scavenging of inflammatory or even antigenic cellular

contents. It can be expected that researchers will make better

use of autophagy in treating AS. Recent attempts to induce

autophagy and apoptotic death in synovial fibroblasts have

identified emodin (171) and a combined TNF antagonist and

ferroptosis inducer treatment to exert an anti-inflammatory

effect (172).
HLA-B27-related proteins

Beyond HLA-B27, ERAP1, a peptide-trimming enzyme in

the ER, is the second strongest risk gene for AS (173). Causing a

shift in the peptidome presented by the peptide-MHC complex

(174), the pathophysiological effect of ERAP1 is tightly bound to

the abnormal assembly of the peptide HLA-B27 (175, 176). In

2013, Kirino et al. discovered that HLA-B51-related BD is

associated with ERAP1 alleles in a recessive model based on

Turkish and Japanese patients (rs17482078, combined OR [95%

CI] = 4.56 [2.88–7.22]), strongly suggesting an independent

effect of ERAP1 (177). Following this study, additional SNPs

of ERAP1, whether protective or detrimental, were identified

among Han Chinese and Turks (178, 179). Kuiper et al. also

found that birdshot uveitis, which is prone to affect the HLA-

A29+ population, was significantly associated with ERAP1,

including rs10044354 (OR [95% CI] = 2.07 [1.58–2.71]) and

rs2287987 (OR [95% CI] = 2.01 [1.51–2.67]) (180). Given the

association with MHC-I risk genes, these diseases were classified

by McGonagle et al. into a unified group of ‘MHC-I-opathy’,

which provided a good reason for us to explore the commonality

in ER dynamics other than the particularity of HLA-B27 (181). It

has also been suggested that ERAP1 could intervene in the

cleavage or shedding of cell surface receptors of inflammatory

cytokines, which after cleavage bind to cytokines without

inducing intracellular signals and thus exhibit an inhibitory

function. Cui et al. first found that the level of membrane-

associated TNF receptor 1 (TNFRI) is negatively correlated with

ERAP1 expression without direct protein–protein interactions,
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suggesting that ERAP1 may assist TNFRI sheddase function

(182). That sheddase was later identified as the tumor necrosis

factor-alpha-converting enzyme (TACE, or ADAM17) (183).

However, several clinical studies verified an increased level of

soluble TNFRI in both AS and RA, correlating with ESR and

CRP, while it decreased after infliximab or etanercept treatment

(169, 184). This makes ERAP1 unlikely to be detrimental by

reducing decoy receptors to amplify inflammatory signals.

Collectively, mutations in ERAP1 and HLA-B27 seem to be

constantly monitored by a proteostasis network composed of the

intracellular UPR, which is meant to correct abnormal folding

but could ultimately become apoptotic and proinflammatory,

and be subjected to intercellular surveillance by NK cells via the

surface MHC sensor and KIR family. All of these aspects place

accumulative stress on the entheseal or synovial tissue and are

probably shared by other MHC-I-related diseases. This

presumed mechanism may also evoke an idea of AS treatment

by downregulating MHC-I expression in the opposite way as the

intrinsic ability of immune escape in tumor cells.
The potentiality and actuality of
gut-joint migration

Comparison between IBD and AS

Up to 50% of AS patients have subclinical intestinal

inflammation, while approximately 10% develop overt IBD,

which remarkably resembles CD (185). CD and AS share

indisputable similarities. They share many gene variants that

are either protective or susceptible, including IL-23R, ERAP1,

NOD2, CARD15, etc. Some bacteria, such as Ruminococcus

gnavus, have been confirmed to be involved in the dysbiosis of

both of them (186–188). Enhanced T-cell maturation occurs

even in the noninflamed part of the intestinal mucosa from SpA

patients, with an increase in the number of lymphoid follicles,

CD11c+ dendritic cells, CD68+ macrophages, and CD11a+ pan-

lymphoid cells. The pathological features of the AS intestine

resemble the early phase of chronic CD, including mixing

infiltrating cells and villous atrophy (189–191). However, they

differ in several aspects. Recruited CD14+ macrophages

accumulate in the LP (lamina propria) of CD, where the

proinflammatory microenvironment polarizes half or more

macrophages toward the M1 phenotype (192–195). At the

same time, macrophages in the AS intestine are mainly tissue-

resident and undergo M2 polarization (95, 193). What’s more,

CD has an increase in regulatory T cells (Tregs) in the intestinal

mucosa but a huge decrease in the PB, suggesting a

decompensation in the immunotolerogenesis of CD (196, 197),

while AS brings no significant change of Tregs count of PB, but

an upregulation in LP comparing to HC (198, 199). As a result,

IL-17-producing cells controlled by Tregs are more polarized

and proliferative in CD than in AS (199–202), leading to the
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impaired barrier function reflected by Paneth cell malfunction.

Overall, CD and AS are not the same diseases even in the

local intestine.

The gastrointestinal system is highly complicated, and it could

be problematic to expect a stimulus to penetrate the intestinal

homeostasis and affect specific aspects of articulation. Taurog et al.

reported that rats cultured in germ-free conditions cannot develop

arthritis or colitis until the gut microbiome is reimported (203).

However, considering that even pulse dosing of antibiotics could

impact the expansion and development of intestinal immunocytes

(196, 197, 204), it could be deduced that a germ-free environment

impedes the maturation and proliferation of intestinal

lymphocytes, comprising up to 20% of total lymphocytes in the

body (205). Many studies have implied that intestinal microbiota

leads to local immune dysregulation through its metabolites and

the breakdown of the intestinal barrier, of which the stimulus is

transduced thoroughly to articulation through the immune system.
Gut-joint chemotaxis

The migration hypothesis holds the same rationale as the

idea of bacterial infection-driven AS, in that there is spatial

proximity between the sacroiliac joint and the draining lymph

nodes located in the lower gastrointestinal tract and the pelvic

floor. Cellular identification provides much evidence that cells

expressing gut-specific markers are present in inflamed joints.

For example, Ciccia et al. identified a group of classic monocytes

(CD14++CD16+) in the synovium expressing CCR9, which

directs gut homing under homeostatic conditions, suggesting

that gut-derived monocytes participate in AS development

(206). The gut could be the major source of circulating

antigen-experienced T cells that could be activated in the joint,

and CCL20 could be the most important chemokine in this

process. Ridley and colleagues reported that KIR3DL2+ CD4+

Th17 cells expressing gut-homing CCR9 are expanded in the PB

in patients with AS (142). They predominantly express CCR6

(207), and its only ligand, CCL20, has been shown to be elevated,

particularly in the SF, in AS and RA patients (155, 208). CD14+

myeloid cells isolated from human enthesis tissues and adjacent

bones have been shown to be the primary CCL20 producer after

ex vivo induction by LPS and IFNg (209). In addition, tendon

stromal cells also have the capacity to secrete CCL20 after IL-23

overexpression (210). The migration of mucosal-associated

invariant T (MAIT) cells, which travel around the PB and

barrier tissue, is also largely dependent on the CCL20–CCR6

interaction (211–213). As a consequence, Gracey et al. found a

reduced frequency of MAIT cells in blood but an increased

number of IL-17+ MAIT cells in the SF (214), while Toussirot et

al. observed that IFN-g+/IL-17A+ MAIT cells were increased in

the PB of AS patients (215). Interestingly, resident memory

CD8+ T cel ls (named CD8+ TRM and marked by

CD8+CD69+CD103+) were also found to expand in both the
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inflamed mucosa and PB of HLA-B27+ SpA patients, secreting

IFNg (216). They were believed to never leave the tissue in which

they reside; however, newly reported evidence suggests that they

have the potential to leave their resident tissues, which is called

‘retrograde migration’, and produce circulating effector cells

(217). Since few studies concern their migration in response to

inflammation, their migration could be CCL20-CCR6

dependent based on discovery in tumor-infiltrating CD8+

TRM, and the cytokine pattern in articulation as hereinafter

described (218, 219). TCR repertoire sequencing from AS

patients has already identified an oligoclonal expansion shared

by the intestine and joints, expressing cytokines such as IFNg,
IL-10, and TNFa upon ex vivo stimulation (220). A more direct

and decisive model is needed, similar to that established by Duc

and colleagues in the MS model, whereby disrupting gut

homing, they prevented inflammatory cells from getting

primed and activated, therefore protecting the mice against

developing EAE (221).
Joint retention of cells from the gut

Chemotaxis is only one aspect of cell recruitment; the other

aspects of adhesion and retention require the interaction of

adhesion molecules expressed on high endothelial venules

(HEVs) or synovial tissues during this step (222). By

blocking the binding between integrin and adhesion

molecules, anti-integrin biologics prevent immune cells from

extravasating and reaching inflammatory sites, to the benefit of

both clinical treatment and research. Natalizumab and

vedolizumab are two popular anti-integrin biologics used in

treating IBD: vedolizumab selectively antagonizes integrin

a4b7 while natalizumab blocks a4b1 and a4b7 by binding

the a4 subunit (223, 224). With a similar mechanism of action,

vedolizumab but not natalizumab is associated with SpA,

causing sacroiliac arthritis or arthralgias, particularly as de

novo cases (225–227). This leads to the conjecture that the

additional blockade of the a4b1 of vedolizumab, which plays

an important role in ileal homing (228), deflects immunocytes

towards articulation. Inflamed joints have abundant ligands for

a4b1-binding, including VCAM-1, ICAM-1, and fibronectin.

VCAM-1 and ICAM-1 are already proven to be elevated

significantly under the inflammatory situation in humans

and mice (229–233). The RGD motif containing the three

amino acids Arg-Gly-Asp presented in the classical integrin

ligand is also found in several ECM proteins, including

unraveled fibronectin fragments from the inflamed cartilage

(234). In OA patients, fibronectin fragments have been

confirmed to interact with chondrocytes, as chondrocytes

from the inflamed tissue specifically express a2b1, a4b1, and
a6b1 to bind these ECM proteins (235). Fibronectin

controlling T cell recruitment is also revealed in the human

dermis recently (236).
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Besides integrin a4b1, a4b7 is also shared by joint-homing

and gut-homing. Mucosal vascular addressing cell adhesion

molecule 1 (MAdCAM-1) preferentially interacts with integrin

a4b7, directing lymphocyte traffic to intestine. Previous studies

shows a putative role for MAdCAM-1 and a4b7 in mediating the

BM-homing of hematopoietic cells (237). Ciccia et al. discovered

a4b7-expressing ILC3 existing in the intestine, PB, and BM from

AS patients (238). A recent finding brings a new perspective to this

problem, suggesting that the conformer switch of a4b7 is

controlled by CCL25-CXCL10 (239). The CXCL10-activated

integrin selectively binds to VCAM-1, while CCL25 induces an

extended conformation that binds MAdCAM-1. Correspondingly,

the expression level of CCL25 and CXCL10 shifts between the

intestinal epithelium and synovium (101, 240). This novel

mechanism may further strengthen the ability for T cells to

switch their target from gut to joint, utilizing the same integrin

binding to different adhesion molecules (Figure 3). This deduction

is partially confirmed by new findings. For example, Qaiyum et al.

discovered that mature CD8+ T cells enriched in the SF of AS have
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a distinct expression pattern of integrins, including a1, aE
(CD103), b1, and b4 (of course, they did not bring the

universally expressed a4 into the comparison) (241).

Combining clinical evidence and characteristics of

immunocytes plus inflamed tissues, a growing body of

evidence has provided a framework of the cytological gut-joint

axis, which strengthens the idea of gut microbiota-driven

disease. Though the synergism and antagonism that exist

between intestinal bacteria and the crosstalk with the intestinal

immune system remain difficult to investigate, it can be expected

that the maneuver of gut-derived cells through recruitment and

retention would become a promising target for AS intervention,

as it has shown potential in the treatment of MS (221, 242).
Conclusion

In summary, evidence suggests that there is a radial network

in AS pathogenesis, where IL-17-producing T cells play a central
FIGURE 3

Shared mechanism of recruitment between intestine and articulation in AS. The ligand-receptor pair CCL20-CCR6 constitutes the predominant
chemoattraction route of Th17 targeting both intestine and inflamed articulation. Emerging evidence has shown that both tissues express
compatible adhesion molecules including VCAM-1, ICAM-1, and MAdCAM-1 for integrin binding, allowing Th17 cells to enter the inflammatory
site. Mechanical stress remodeled ECM provides not only T cell stimulant, as the aforementioned hyaluronan and collagen fragment, but also
fibronectin fragments that are able to bind and stimulate Th17 cells via integrin a4b1.
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role in sensing danger signals and amplifying immune response.

On the one hand, the mechanical damage of articulation

provides abundant T cell stimulants that may bypass antigen

encountering to bystander-activate immune response, yet

further investigation on bystander activation in AS is much

required. On the other hand, the molecular mechanism of HLA-

B27 misfolding and non-conventional presentation becomes

apparently associated with immune activation. Although it

could still be inaccurate to assert that the AS is not driven

directly by any infection, no certain arthritogenic peptide nor

molecular mimicry matches have been identified from benchside

to bedside. We already know that inflamed joints have a large

number of stimuli of TLR and other innate receptors, and that

innate immune cells are not only able to respond but also

maintain an inflammatory immune memory, which gives

weight to the role of non-immune and innate immune cells in

autoinflammatory disease. Similarly, alternative pathways have

been identified by researchers besides the IL-23/IL-17 axis,

where non-immune and innate immune cells are involved

through the upstream inducer PGE2 and downstream effector

GM-CSF. Furthermore, the transportation between the gut and

the joint, through chemotaxis and adhesion, is very clear and

shall play an important role in relaying influence from

microbiota to autoinflammatory disease.

Nevertheless, we are still trapped in a framework dominated

by adaptive immunity, while various pivotal aspects of this

protocol remain to be discussed. For example, peripheral

tolerogenesis is not emphasized as an equal measure, which

could be more important in explaining why many HLA-B27-

positive people remain healthy. In addition, bone homeostasis,

which regulates the balance of osteoporosis and ectopic

ossification, is rarely mentioned, along with other adjacent

tissues, since every part of our bodies should be considered as

one piece of the immune system. With scientists’ endeavors to

decipher this disease over the years, we are finally brought to the

stage where the great majority of issues have been identified,

although they are not fully understood. This enables us to join

every piece of knowledge together to better assist patients and

embrace the nature of the complexity of how the body works.
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88. Yáñez A, Coetzee SG, Olsson A, Muench DE, Berman BP, Hazelett DJ, et al.
Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors
independently produce functionally distinct monocytes. Immunity. (2017) 47
(5):890–902.e4. doi: 10.1016/j.immuni.2017.10.021
frontiersin.org

https://doi.org/10.3390/ijms21249608
https://doi.org/10.3389/fimmu.2019.01179
https://doi.org/10.3389/fimmu.2019.01179
https://doi.org/10.1002/art.1780401015
https://doi.org/10.1002/art.1780401015
https://doi.org/10.1186/s13075-018-1724-7
https://doi.org/10.1186/s13075-018-1724-7
https://doi.org/10.1016/j.semarthrit.2021.07.011
https://doi.org/10.3899/jrheum.120233
https://doi.org/10.1136/ard.30.3.213
https://doi.org/10.1177/1759720x12444175
https://doi.org/10.1136/rmdopen-2020-001480
https://doi.org/10.1136/annrheumdis-2013-203643
https://doi.org/10.1038/s41467-018-06933-4
https://doi.org/10.1038/s41467-018-06933-4
https://doi.org/10.1002/art.23755
https://doi.org/10.1002/acr.24743
https://doi.org/10.1002/art.20870
https://doi.org/10.1002/art.20870
https://doi.org/10.1093/rheumatology/ken148
https://doi.org/10.1093/rheumatology/ken148
https://doi.org/10.1016/s0198-8859(99)00148-2
https://doi.org/10.1016/s0198-8859(99)00148-2
https://doi.org/10.1093/rheumatology/keg230
https://doi.org/10.1136/ard.2004.024455
https://doi.org/10.4049/jimmunol.170.2.1099
https://doi.org/10.4049/jimmunol.170.2.1099
https://doi.org/10.1002/art.24599
https://doi.org/10.1002/art.24599
https://doi.org/10.1186/s13075-020-02226-8
https://doi.org/10.1016/j.joca.2019.07.009
https://doi.org/10.3389/fvets.2019.00192
https://doi.org/10.3389/fvets.2019.00192
https://doi.org/10.1007/s10067-007-0757-0
https://doi.org/10.4049/jimmunol.177.2.1272
https://doi.org/10.4049/jimmunol.181.3.2103
https://doi.org/10.1016/j.bbrc.2010.10.135
https://doi.org/10.3109/17453674.2013.854666
https://doi.org/10.1093/rheumatology/38.1.34
https://doi.org/10.1016/s0014-5793(99)00897-2
https://doi.org/10.1038/nrrheum.2010.196
https://doi.org/10.1080/14397595.2018.1564165
https://doi.org/10.1186/s42358-020-0113-5
https://doi.org/10.1016/j.intimp.2018.02.008
https://doi.org/10.1186/ar1698
https://doi.org/10.1002/art.22024
https://doi.org/10.1186/ar1501
https://doi.org/10.1038/nri3712
https://doi.org/10.1016/j.immuni.2017.10.021
https://doi.org/10.3389/fimmu.2022.996103
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiong et al. 10.3389/fimmu.2022.996103
89. Regan-Komito D, Swann JW, Demetriou P, Cohen ES, Horwood NJ,
Sansom SN, et al. GM-CSF drives dysregulated hematopoietic stem cell activity
and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis.
Nat Commun (2020) 11(1):155. doi: 10.1038/s41467-019-13853-4

90. Karow F, Smiljanovic B, Grün JR, Poddubnyy D, Proft F, Talpin A, et al.
Monocyte transcriptomes from patients with axial spondyloarthritis reveal
dysregulated monocytopoiesis and a distinct inflammatory imprint. Arthritis Res
Ther (2021) 23(1):246. doi: 10.1186/s13075-021-02623-7

91. Moorlag S, Khan N, Novakovic B, Kaufmann E, Jansen T, van Crevel R, et al.
b-glucan induces protective trained immunity against mycobacterium tuberculosis
infection: A key role for IL-1. Cell Rep (2020) 31(7):107634. doi: 10.1016/
j.celrep.2020.107634

92. Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, Cirovic B, de
Bree LCJ, Damen M, et al. b-Glucan-Induced trained immunity protects against
leishmania braziliensis infection: a crucial role for IL-32. Cell Rep (2019) 28
(10):2659–2672.e6. doi: 10.1016/j.celrep.2019.08.004

93. Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M, Grinenko T, et al.
Modulation of myelopoiesis progenitors is an integral component of trained
immunity. Cell. (2018) 172(1-2):147–161.e12. doi: 10.1016/j.cell.2017.11.034

94. Xie Z, Wang P, Li J, Li Y, Wang S, Wu X, et al. MCP1 triggers monocyte
dysfunctions during abnormal osteogenic differentiation of mesenchymal stem
cells in ankylosing spondylitis. J Mol Med (Berl) (2017) 95(2):143–54. doi: 10.1007/
s00109-016-1489-x

95. Zhao J, Yuan W, Tao C, Sun P, Yang Z, Xu W. M2 polarization of
monocytes in ankylosing spondylitis and relationship with inflammation and
structural damage. Apmis. (2017) 125(12):1070–5. doi: 10.1111/apm.12757

96. De Rycke L, Vandooren B, Kruithof E, De Keyser F, Veys EM, Baeten D.
Tumor necrosis factor alpha blockade treatment down-modulates the increased
systemic and local expression of toll-like receptor 2 and toll-like receptor 4 in
spondylarthropathy. Arthritis Rheumatol (2005) 52(7):2146–58. doi: 10.1002/
art.21155

97. Solmaz D, Tekinalp A, Avci O, Turgut B. Ccr2 expression was increased in
patients with ankylosing spondylitis independent from disease activity. Ann
Rheumatic Dis (2015) 74:495–6. doi: 10.1136/annrheumdis-2015-eular.2492
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risk factor for behçet's disease in HLA-B*51 carriers. Ann Rheum Dis (2016) 75
(12):2208–11. doi: 10.1136/annrheumdis-2015-209059

180. Kuiper JJW, Setten JV, Devall M, Cretu-Stancu M, Hiddingh S, Ophoff RA,
et al. Functionally distinct ERAP1 and ERAP2 are a hallmark of HLA-A29-
(Birdshot) uveitis. Hum Mol Genet (2018) 27(24):4333–43. doi: 10.1093/hmg/
ddy319

181. McGonagle D, Aydin SZ, Gül A, Mahr A, Direskeneli H. 'MHC-i-opathy'-
unified concept for spondyloarthritis and behçet disease. Nat Rev Rheumatol
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