
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Said Dermime,
National Center for Cancer Care and
Research, Qatar

REVIEWED BY

Yuan Liu,
Shanghai Jiao Tong University, China
Alaaeldin Shablak,
Hamad Medical Corporation, Qatar
Mariam Almuftah,
Qatar Foundation, Qatar

*CORRESPONDENCE

Ling Gao
ling.gao@whu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 16 July 2022

ACCEPTED 17 October 2022
PUBLISHED 01 November 2022

CITATION

Xia M, Wang S, Ye Y, Tu Y, Huang T
and Gao L (2022) Effect of the
m6ARNA gene on the prognosis of
thyroid cancer, immune infiltration,
and promising immunotherapy.
Front. Immunol. 13:995645.
doi: 10.3389/fimmu.2022.995645

COPYRIGHT

© 2022 Xia, Wang, Ye, Tu, Huang and
Gao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 01 November 2022

DOI 10.3389/fimmu.2022.995645
Effect of the m6ARNA gene on
the prognosis of thyroid cancer,
immune infiltration, and
promising immunotherapy
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Tiantian Huang1 and Ling Gao1*

1Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University,
Wuhan, China, 2Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University,
Wuhan, China
Background: Accumulating evidence suggests that N6-methyladenosine

(m6A) RNA methylation plays an important role in tumor proliferation and

growth. However, its effect on the clinical prognosis, immune infiltration, and

immunotherapy response of thyroid cancer patients has not been investigated

in detail.

Methods: Clinical data and RNA expression profiles of thyroid cancer were

extracted from the Cancer Genome Atlas-thyroid carcinoma (TCGA-THCA) and

preprocessed for consensus clustering. The risk model was constructed based

on differentially expressed genes (DEGs) using Least Absolute Shrinkage and

Selection Operator (LASSO) and Cox regression analyses. The associations

between risk score and clinical traits, immune infiltration, Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment

Analysis (GSEA), immune infiltration, and immunotherapy were assessed.

Immunohistochemistry was used to substantiate the clinical traits of our samples.

Results: Gene expression analysis showed that 17 genes, except YHTDF2, had

significant differences (vs healthy control, P<0.001). Consensus clustering

yielded 2 clusters according to their clinical features and estimated a poorer

prognosis for Cluster 1 (P=0.03). The heatmap between the 2 clusters showed

differences in T (P<0.01), N (P<0.001) and stage (P<0.01). Based on univariate

Cox and LASSO regression, a risk model consisting of three high-risk genes

(KIAA1429, RBM15, FTO) was established, and the expression difference

between normal and tumor tissues of three genes was confirmed by

immunohistochemical results of our clinical tissues. KEGG and GSEA analyses

showed that the risk DEGs were related mainly to proteolysis, immune

response, and cancer pathways. The levels of immune infiltration in the high-

and low-risk groups were different mainly in iDCs (P<0.05), NK cells (P<0.05),

and type-INF-II (P<0.001). Immunotherapy analysis yielded 30 drugs

associated with the expression of each gene and 20 drugs associated with

the risk score.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.995645/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.995645/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.995645/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.995645/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.995645&domain=pdf&date_stamp=2022-11-01
mailto:ling.gao@whu.edu.cn
https://doi.org/10.3389/fimmu.2022.995645
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.995645
https://www.frontiersin.org/journals/immunology


Xia et al. 10.3389/fimmu.2022.995645

Frontiers in Immunology
Conclusions: Our risk model can act as an independent marker for thyroid

cancer and provides promising immunotherapy targets for its treatment.
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Introduction

Thyroid cancer is one of the most common tumors in

human subjects (1, 2). The main types of thyroid cancer

include papillary carcinoma (PTC), follicular thyroid cancer

(FTC), undifferentiated thyroid cancer (ATC) and medullary

thyroid cancer (MTC) (3). The incidence of thyroid cancer has

been increasing (4). At present, the incidence rates of thyroid

cancer are 7.4 and 22.0 per 100,000 for males and females in the

United States (US), respectively (5). In addition, thyroid cancer

is usually asymptomatic (6), and at autopsy, 35.6% of the Finnish

population had occult thyroid cancer (7). Currently, most

thyroid cancers are curable with conventional treatments such

as surgery, radioactive iodide (RAI) therapy,thyroid stimulating

hormone (TSH) suppression therapy for local or localized

disease (8) and bioinformatics is also a useful tool to analyze

sequencing results and clinical data, construct a prognostic

model and seek involved pathways or therapeutic targets,

particularly in tumor research (9–11). Therefore, using a panel

of susceptible genes with RNA/DNA sequencing techniques to

identify high-risk patients is advocated for the early diagnosis of

high-risk patients and precision medicine (12, 13).

M6A is a ubiquitousRNAmodification in eukaryotes (14) and is

involved in a variety of biological processes, such as embryonic

development, apoptosis, spermatogenesis, and circadian rhythms

(15–17). The modification consists of three processes: catalysis,

recognition, and removal, which are completed by m6A

methyltransferase “writers”, m6A binding protein “readers” and

demethylase “erasers”, respectively (18–20). Methyltransferases

include METTL3/14, RBM15, RBM15B, WTAP, KIAA1429, and

ZC3H13, which are critical in regulating stem cell pluripotency, cell

differentiation, and the circadian cycle. RNA-binding proteins,

including YTHDC1/2, YTHDF1/2, HNRNPC, ELF3, IGF2BP2

and CBLL1, play an important role in recognizing RNA

methylation information and participating in the translation and

degradation of downstreamRNA.Demethylase consists of FTO and

ALKBH5, which mediate RNA demethylation and play a role in

energy homeostasis, adipocyte differentiation, and fertility in mice

(21–24).Dysregulationofm6Ahasbeen linked tocancerprogression

(25–30). The effect ofm6A-related genes on cancers has been widely
02
studied, such as breast cancer (31), gastrointestinal cancer (32),

urothelial carcinoma (33), gastric cancer (34). In pancreatic cancer,

ALKBH5-mediated upregulation of DDIT4-AS1 maintains

pancreatic cancer stemness and inhibits chemosensitivity through

activation of themTORpathway (35).METTL14 regulates themiR-

30c-2-3p/AKT1S1 axis to inhibit gastric cancer progression through

mediatedmAmodificationsof circORC5(36).Less researchhasbeen

done onm6A in thyroid cancer, but recent studies have revealed that

METTL3 inhibits the progression of papillary thyroid carcinoma

(37).With the development of recent years, in addition to surgical or

conventional treatment, cancer immunotherapy has also made

amazing progress in thyroid cancer (38, 39), but the relationship

between thyroid cancer and immunity is also unclear.

To further understand the function of m6A-related genes in

thyroid cancer, we selected 17 m6A-related genes (40–42) for

clinical correlation analysis, immune infiltration analysis and

immunotherapy analysis. In this study, thyroid cancer patients

were divided into 2 clusters using consensus clustering based on

the expression of 17 m6A-related genes. Differences in clinical

traits between the two cohorts were analyzed. In addition, we

developed a risk model by LASSO regression for predicting

overall survival (OS) and further explored the relationship

between the risk score and biological processes (BPs), cellular

components (CCs), molecular function (MF), pathways,

outcomes, immune infiltration and immunotherapy.
Materials and methods

Ethics statement

Data for all subjects were obtained from the internet and

signed informed consent by default. Analysis of thyroid tissues

from this study was carried out under the recommendations of

the Regional Ethics Committee guidelines and institutional

policies and the Ethics Committee of Renmin Hospital of

Wuhan University. Thyroid nodule tissue was obtained from

patients with malignant or benign thyroid nodules. All patients

signed informed consent forms. Freshly harvested thyroid

tissues were used for immunohistochemical staining.
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Data processing

RNA expression quantification data (510 cancers vs. 58

normal) and the corresponding clinical data of the THCA

cohort were obtained from the TCGA database (https://portal.

gdc.cancer.gov/) (43). The fragments per kilobase of exon model

per million mapped fragments (FPKM) values were normalized

with the transcripts per million (TPM) method and then

converted (log2+1) in TCGA. The clinical information of all

thyroid patients is shown in Supplementary Table S1. The

GSE33630 dataset (49 cancers vs. 45 normal) and GSE60542

(33 cancers vs. 35 normal) cohort in our study were downloaded

from the GEO database (http://www.ncbi.nlm.nih.gov/geo)

(44).The protein-protein interaction (PPI) diagram of 17

m6A-related genes was constructed in the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING) network

(https://string-db.org/) (45). PPI genes were analyzed by

Cytoscape software. The genetic database used for GSEA data

analysis is “MSigdb” (46).
Differential expression analysis

Differentially expressed genes (DEGs) in normal and tumor

thyroid samples were screened by the “limma” package. We

extracted the expression matrix of the 17 m6A-related genes,

including METTL3/14, RBM15, RBM15B, WTAP, KIAA1429,

ZC3H13, YTHDC1/2, YTHDF1/2, HNRNPC, ELF3, IGF2BP2,

CBLL1, FTO, and ALKBH5. The R packages “heat-map” and

“vioplot” were used to show the differential expression of 17

m6A-related genes in normal and tumor samples. The

correlation between 17 m6A-related genes was constructed by

the R package “correlation”.
Protein-protein interaction

We uploaded 17 m6A-related genes to the Search Tool for

the Retrieval of Interacting Genes/Proteins (STRING) network

to construct a protein-protein interaction (PPI) network to show

the association between m6A-related genes.
The relationship between clusters and
clinical traits after clustering analysis

The “ConsensusClusterPlus” package was used to cluster

data according to the expression of 17 m6A-related genes in 568

thyroid cancer samples. The consensus matrix and cumulative

distribution function (CDF) were used to calculate the optimal

number of clusters. The difference in clinical traits between the
Frontiers in Immunology 03
two clusters was illustrated by the R packages “survival” and

“heat-map”.
Risk model construction and clinical
correlation analysis

Univariate Cox analysis was used to evaluate the prognostic

value of 17 m6A-related genes with which HR<1 or >1 was

regarded as a protective gene or risk gene, respectively. Whether

there was an association between genes and prognosis was

determined by the P value (p<0.05). To avoid overfitting, least

absolute shrinkage and selection operator (LASSO) regression

analysis was performed using the “glmnet” package. The risk

score of each patient was calculated by the following formula:

Risk Score  ¼  on
i=1coef (i) ∗ x(i)

Coef(i) and x(i) are regression coefficients and gene

expression levels, respectively.

Based on their risk score being below or above the median

risk score, 449 THCA samples were divided into two subgroups:

the high-risk group and the low-risk group. The distribution of

the risk score, survival curve, heatmap of the 3 genes in the

model, and receiver operating characteristic (ROC) curve were

analyzed. The relationship between the risk score and clinical

traits, such as fustat, age, gender, stage, and tumor, nodes and

metastases (TNM) stage, was also assessed. A nomogram was

created using the package “rms”, and the ROC curve was used to

prove the validity of the model. We further combined clinical

traits with univariate and multivariate Cox regression analyses

using the “survival” package. Analysis variables included age,

gender, stage, TNM stage, and risk score. Finally, Cox regression

analysis was used to analyze the relationship between each

clinical trait and survival probability. The Wilcoxon test was

used to calculate the relationship between each clinical trait and

risk scores.
Differential gene enrichment analysis
between the high- and low-risk groups

Patients with THCA were divided into high- and low-risk

groups based on the median risk score. |log2FC|≥1和false

discovery rate (FDR)<0.05 as a screening criterion for

differential genes between the two groups (high- and low-risk

groups). Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were performed

using the “cluster profile” package based on the selected risk

DEGs. GSEA was performed using GSEA version 4.2.3 based on

data from the high- and low-risk groups. Set the minimum gene

set as 15 and the maximum gene set as 500, and resampling a
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thousand times, a P value of< 0.05 and an FDR of< 0.25 were

considered statistically significant.
Immune infiltration analysis and
immunotherapy

We used the R package “limma” of the “normalize

BetweenArrays” function to reduce batch effects that may exist

between or within the two cohorts to merge the gene information

in GSE33630 and GSE60542.The “ssGSEA” package was used to

calculate the immune infiltrating cell score for the TCGA and

GEO cohorts, and the score was used to compare immune

function and immunological pathways between the high- and

low-risk groups, and the relationship between risk score and

immune function and immunological pathway was also

discussed. To assess the potential impact of the risk score on the

immune checkpoint response, we used the “limma” package to

calculate the difference between the high- and low-risk groups, |

log2FC|≥1 and false discovery rate (FDR)<0.05 as significance. We

used the data from Genomics of Drug Sensitivity in Cancer

(GDSC) (https://www.cancerrxgene.org/) database (47, 48)and

The Cancer Therapeutics Response Portal (CTRP)(https://

portals.broadinstitute.org/ctrp/) database (49) to obtain the

relationship between the expression levels of three genes

(RBM15, KIAA1429, FTO) and immunotherapeutic drugs. In

addition, drug sensitivity and CCLE expression data were

obtained from the PRISM Repurposing dataset (https://depmap.

org/repurposing) (50) to assess the relationship between drugs

and risk scores.
Immunohistochemistry

Immunohistochemistry (IHC) was performed as previously

described (51). Rabbit antihuman antibodies (FTO antibody

(No. DF8421, Affinity Biosciences, Cincinnati, OH, USA),

RBM15 antibody (No. DF12061, Affinity Biosciences USA),

KIAA1429 antibody (No. 25712-1-AP, Proteintech, Rosemont,

IL, USA), were used at 1:500 dilutions. The secondary antibody

was peroxidase-labelled antibody (rabbit IgG (H+L) KPL,

Baltimore, MD, USA).
Results

Research technology road map

The flow chart of this study is shown in Figure 1. By using

expression data from the TCGA-THCA cohort, 16 m6A-related

genes were selected that differed between normal and tumour

samples (|Log2FC|>1, FDR<0.05). Risk model based on the three

m6A-related genes were then constructed using and LASSO
Frontiers in Immunology 04
regression analysis, and risk scores were also calculated. Patients

were classified into high- and low-risk groups based on the

median value of their risk scores in the TCGA-THCA cohort

and were further used for subsequent clinical, immune

infi l t r a t i on , mu t a t i on , en r i chmen t ana l y s i s and

immunotherapy analysis. GEO cohort was also used to

validation the immune function with risk score. Finally, in

vitro validation was performed using thyroid cancer and

normal tissues.
Expression of 17 m6A-related genes in
the TCGA-THCA cohort

First, the TCGA-THCA cohort in the TCGA database was

analyzed to compare the expression of 17 m6A-related genes in

normal and tumor tissues (|Log2FC|>1, FDR<0.05). As shown in

the heatmap and violin diagram, there were significant

differences in 16 genes between normal and tumor tissues,

including significantly upregulated expression of HNRNPC,

IGFBP2, ELF3, and RBM15B and downregulated expression of

ZC3H13, FTO, KIAA1429, WTAP, YTHDC1, YTHDC2,

ALKBH5, RBM15, METTL3, METTL14, YTHDC1, and

CBLL1 in the TCGA-THCA cohort (Figures 2A, B). Spearman

correlation analysis further supported the relationship between

m6A-related genes (P<0.05), such as KIAA1429 and FTO,

KIAA1429 and METTL14, ZC3H13 and METTL14, which

were significantly positively correlated; ALKBH5 was

negatively correlated with IGFBP1; and CBLL1 was negatively

correlated with ELF3. Taking KIAA1429 and METTL14 as an

example, the correlation coefficient=0.78, P<0.0001, indicating

that there is a strong correlation between them (Figure 2C). A

protein-protein interaction (PPI) network of the 17 m6A-related

genes was constructed (Figure 2D). Next, we used the

“Cytohubba” software to calculate the 17 genes and obtained

11 hub genes with the highest scores after calculation: ALKBH5,

FTO, METTL14, KIAA1429, RBM15, RBM15B, METTL3,

ZC3H13, YTHDC1, YTHDF1, and YTHDC (Figure 2E).
Consensus clustering of 17 m6A-related
genes yielded two clusters

To further understand the overall role of m6A-related genes

in the TCGA-THCA cohort, consensus clustering analysis was

performed on 568 TCGA-THCA samples based on the

expression profiles. Duplicate samples were removed, and

similar samples were grouped into one class. To determine the

optimal number of clusters, we varied the total number of

clusters from 2 to 9 and examined the cumulative density

function (CDF) curve of the consensus matrix (Figures 3A, B).

Finally, K=2 is taken as the optimal cluster number according to

the consensus matrix (Figure 3C). These subgroups can also be
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distinguished in principal component analysis (PCA)

(Figure 3D). The Kaplan-Meier curves showed a significant

difference in survival probability between the two clusters,

with Cluster 1 having a longer OS (P<0.05) (Figure 3E). To

determine whether there was a significant difference in clinical

traits between the two clusters, a clinically relevant heatmap was

produced. Based on the heatmap, we observed significant

differences in stage (P<0.01), T stage (P<0.01), and N stage

(P<0.001) between the two subgroups (Figure 3F).
Construction and value of the risk model

Univariate Cox regression analysis produced four genes

(IGFBP2, KIAA1429, RBM15, and FTO). The forest map

showed that KIAA1429, RBM15, and FTO were risk factors

(HR>1), and IGFBP2 was a protective factor (HR<1). IGFBP2

was not included in the LASSO regression analysis because it was

not a hub gene in 17 m6A-related genes (Figure 4A). Three risk

factors (KIAA1429, RBM15, and FTO) were selected, and

LASSO regression analysis was performed. These 3 genes

(KIAA1429, RBM15, and FTO) were retained according to the

minimum partial likelihood bias (Figures 4B, C). For the TCGA-

THCA cohort, the risk score was calculated by the following
Frontiers in Immunology 05
formula:

Risk Score  ¼  ð0:6518 ∗RBM15 expressionÞ + ð0:1832 ∗
 KIAA1429 expressionÞ + ð0:0507  ∗  FTO expressionÞ
The 449 samples were scored according to a risk scoring

formula and were classified as high-risk and low-risk by the

median of the risk score (there were 224 high-risk samples and

225 low-risk samples, with the middle 2 values 2.209 and 2.211,

respectively). We also described the sample distribution for the

three m6A-related genes, risk assessment subgroups, and

survival conditions (Figure 4D). The accuracy of the risk score

was evaluated by calculating the area under the ROC curve

(AUC=0.744) (Figure 4E). There were significant differences in

survival probability between the high- and low-risk groups

(P=1.784e-02), and the overall survival of patients with thyroid

cancer was poor in the high-risk group (Figure 4F). We

constructed a prognostic nomogram using risk score and

clinical traits such as survival, age, gender, stage, T stage, N

stage and M stage. (Figure 5A). The c-index of the model

population was 0.959 95% confidence interval (CI) (0.939-

0.987), P value=1.091e-223. The nomogram can effectively

predict the overall survival time of patients with THCA. ROC

curve analysis showed that the AUC was 0.538 at 1 year, 0.791 at

5 years, and 0.749 at 10 years (Figure 5B). Then, univariate Cox
FIGURE 1

Study flow-chart. Based on the data in TCGA database, the expression data and clinical data were combined to construct a risk model for
prognostic analysis, enrichment analysis and immune correlation analysis.
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regression analysis showed that age, stage, T stage and risk score

were correlated with the prognosis of patients (P<0.05).

Multivariate Cox regression analysis showed that age and risk

score could be independent prognostic indicators (P<0.05)

(Figures 5C, D).
Clinical subgroup analysis

We extracted the clinical data of age, gender, stage, and TNM

stage to further explore the relationship between clinical traits and
Frontiers in Immunology 06
survival probability. Then, we eliminated the samples for which

information was missing and carried out Cox regression analysis on

the remaining samples to obtain the clinical traits and survival

probability as well as the relationship between the clinical traits and

risk score.According toourfindings, age>65hada significantly lower

chanceof survival thanage≤65 (P<0.001) (Figure6A). Stage I-II, T1-

T2 and M0 patients had a significantly higher chance of surviving

than stage III-IV, T3-T4 and M1 patients (P<0.05). In contrast,

neither gender nor N stage seemed to significantly affect survival

probability (Figures 6B-F). Regarding the differences in clinical traits

between the high- and low-risk groups, the high- and low-risk
B C

D E

A

FIGURE 2

Expression of 17 m6A RNA modification genes in thyroid cancer tissues vs. cancer adjacent tissues and their correlation. (A) Vioplot visualizing
the 17 m6A RNA methylation genes differentially in thyroid cancer. (B) Expression levels of 17 m6A RNA methylation genes (METTL3/14, RBM15,
RBM15B, WTAP, KIAA1429, ZC3H13, YTHDC1/2, YTHDF1/2, HNRNPC, ELF3, IGF2BP2, CBLL1, FTO and ALKBH5)in thyroid cancer tissues vs.
cancer adjacent tissues (blue bar represents cancer adjacent and red represents thyroid cancer). The higher or lower the expression, the darker
the color (red is up-regulated and green is down-regulated). (C) The Spearman correlation analysis was used to determine the relationships
between each individual 17 m6A RNA methylation genes in thyroid cancer. (D) The PPI diagram of 17 m6A RNA methylation genes. (E) The
cytohubba software analysis yielded the hub genes in the 17 genes. (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 was considered significant.)
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groups’ survival probabilities were significantly different (P<0.05) for

patientswhowereover 65 and inStages III-IV (SupplementaryTable

S2). Additionally, the risk scores between the T1-T2 and T3-T4

groups differed significantly (P<0.05). However, other clinical traits

(age, gender, stage, N, andM) did not appear to be associated with a

difference in risk scores (Supplementary Table S3).
Functional analysis based on the
risk model

To further explore the functional difference between the high-

and low-risk groups,weused theRpackage “limma” to screenDEGs,

and the screening standard was set to FDR<0.05 and |log2FC|≥1. A
Frontiers in Immunology 07
total of 76 DEGs were screened between the high-risk and low-risk

groups in the TCGA cohort. Among these genes, 49 genes in risk

DEGs were upregulated, and the remaining 27 genes were

downregulated. Next, we performed GO, KEGG, and GSEA

analyses based on 76 risk DEGs. GO and KEGG analyses showed

that risk DEGs were related mainly to proteolysis, lipid metabolism,

and immune response (Figures 7A, B).GSEA showed that riskDEGs

were related mainly to the cancer pathway (Figure 7C).
Immune infiltration and immunotherapy

We further compared the enrichment fractions of immune

cells and the activity of immune-related pathways between the
B C

D

E

A

F

FIGURE 3

Identification of consensus clusters by 17 m6A RNA modification genes in thyroid cancer (A, B) Consensus clustering cumulative distribution
function when data is divided into 2-9 clusters. (C) Thyroid cancer RNA expression quantification data in TCGA were divided into two different
clusters. (D) Principal component analysis of the total RNA expression profile in the TCGA dataset. in the cluster 1: red, and the cluster 2: blue.
(E) The OS of cluster 1 was significantly higher than that of cluster 2 (p<0.05). (F) Relationship between 17 genes and clinicopathological factors,
including age, gender, stage, fustat, cluster 1 or cluster2, the stage of TNM.
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high- and low-risk groups in the TCGA-THCA cohort. A

comparison of the various infiltrative immune cells in tumors

showed that the degree of DC, iDC and NK-cell infiltration was

higher in the low-risk group than in the high-risk group, while

other immune cells did not differ between the two groups

(Figure 8A). In the TCGA cohort, the activity of the

Type_II_IFN pathway was significantly higher than the

activity of the low-risk group, while the activity of the

APC_costimulation pathway was higher in the low-risk group.

The other 11 immune pathways showed little difference between

the high-risk and low-risk groups (Figure 8B). Next, we further

investigated the relationship between risk scores and individual

immune cells and validated it using GEO data. TCGA data

showed that risk score was significantly positively correlated

with Type-II-IFN-Response pathway, and this conclusion

was also confirmed in GEO database (Figures 8C, D). We

used volcano plots to show the differences in immune

checkpoints between high- and low-risk groups, P value of

< 0.05 and |log2FC|>1 were considered statistically significant

(Figure 8E). Furthermore, we mapped the relationship between

the risk groups and immune checkpoints (Figure 8F). Using the

GDSC and CTRP databases, we summarized the correlation
Frontiers in Immunology 08
between gene expression and drug sensitivity across cancers, and

the 30 drugs with the strongest correlation are listed (Figures 9A,

B). Furthermore, we analyzed the association between risk scores

and responsiveness to nontumor drugs through the PRISM

database (Figure 9C). The results showed that 20 drugs,

including PD-168393, ibrutinib, lapatinib, AS703026,

trametinib, PD-0325901, cobimetinib, binimetinib,

RO4987655, TAK733, SCH900776, inosine, NSC23766,

sulforaphane, BMS3445541, diphenhydramine, 2,3-DCPE,

niraparib, mercaptopurine and tacedinaline, had correlations

with risk scores.
Expression of RBM15, KIAA1429, and FTO
in benign thyroid nodule tissue vs thyroid
cancer tissues

Immunohistochemistry result revealed that the staining

intensity of 3 genes (RBM15, FTO, and KIAA1429) were

higher in thyroid cancer tissue than in benign thyroid nodule

tissue in our specimens which is consistent with bioinformatic

analysis (Figure 10).
B C

D E F

A

FIGURE 4

Risk signature with three m6A RNA methylation modulators. (A) Univariate Cox regression analysis of the 17 m6A RNA methylation genes in
TCGA dataset; the hazard ratios (HR), p value, 3 genes (KIAA1429, FTO, RBM15) are identified (p<0.05, HR>1). (B, C) 3 genes (KIAA1429, FTO,
RBM15) with p value<0.05 and HR>1 were selected according to the criteria to construct the best predictive gene signatures, and the risk score
of the TCGA dataset was calculated using the coefficients obtained by LASSO algorithm. (D) Chart of clinical significance-prognostication-risk
factors. Compared with the low-risk group, the high-risk group had higher expression levels of 3 genes and higher mortality rate. (E) The ROC
curve (AUC) of high-risk and low-risk group, the risk signature is credible (AUC=0.744). (F) The survival curve of high-risk and low-risk group,
the overall survival of patients with thyroid cancer was poor in the high-risk subgroup.
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Discussion

In this study, based on data from the TCGA-THCA cohort,

we obtained DEGs between normal and tumor tissues and

identified 3 m6A-related genes (KIAA1429, RBM15, and FTO)

to construct a risk model and verified its credibility. Based on the

risk model, the differences in enrichment pathways, immune

function, and immunotherapy between the high- and low-risk

groups were compared. Small molecule drugs can be designed

for intervention based on the risk score and immune

checkpoints, which has the potential to improve the treatment

of chemotherapy, radiotherapy, and even immunotherapy. The

risk model also provides a new possible avenue for exploring the

treatment of thyroid cancer based on the risk score.

We analyzed the expression of 17 m6A-related genes in

thyroid cancer and adjacent tissues and found that except for

YTHDF2, the other 16 genes were differentially expressed in

thyroid cancer. In particular, HNRNPC, RBM15B, IGFBP2, and
Frontiers in Immunology 09
ELF3 were upregulated, while the other 12 genes were

downregulated in thyroid cancer tissues. In addition, there

were multiple correlations between m6A-related genes. For

example, KIAA1429 and FTO, KIAA1429 and METTL14, and

ZC3H13 and METTL14 were significantly positively correlated.

ALKBH5 was negatively correlated with IGFBP1 and CBLL1

with ELF3. The correlation between some of these genes has

been reported, which is consistent with the conclusions of this

paper (52–55).

Based on the expression of 17 m6A-related genes in TCGA-

THCA cohort, we identified two distinct molecular clusters.

Compared with Cluster 1, Cluster 2 had worse survival

probability. The results showed that there were significant

differences between the two groups in the clustering analysis.

Therefore, we further built the risk model. To further select

genes related to prognosis and establish a risk model, we used

univariate Cox analysis to select 3 genes with unfavorable

prognosis: RBM15, KIAA1429, and FTO. LASSO regression
B

C D

A

FIGURE 5

Nomogram and cox regression analysis. (A) Novel prognostic nomogram was built by using the risk score and clinical features, such as gender,
risk, stage and age. (B) The ROC curve analysis of 1 year,5years and 10 years. (C) Univariate Cox regression analysis of the association between
clinicopathological factors (including the risk score) and overall survival of patients in the group of high risk and low risk. (D) Multivariate Cox
regression analysis of the association between clinicopathological factors (including the risk score) and overall survival of patients in the in the
group of high risk and low risk.
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analysis was further used to calculate the risk scores of each

clinical dataset, and the data were divided into low- and high-

risk groups based on the median risk scores of all samples. Three

genes for constructing the risk model have been shown to be

associated with cancer. A study on breast cancer showed that

KIAA1429 can be a carcinogenic factor of breast cancer by

regulating CDK1 independently of m6A (56). RBM15 is an

important factor in X chromosome silencing and is expressed in

breast tissue (40, 57–59). Studies have also shown that estrogen

can independently increase the expression of the RBM15 gene

and is associated with the occurrence of breast diseases (59). The

FTO gene is highly expressed in breast cancer (60), acute

myeloid leukaemia (AML) (27), and glioblastoma (61) and

promotes the progression of these cancers, and related drugs

have been developed. However, FTO showed low expression in

bladder cancer (62). The carcinogenic role of FTO seems to be

controversial. In addition to being associated with cancer, FTO is

also associated with immunity. KIAA1429 has been shown to

affect a variety of cancers through different pathways, including

promoting the progression of hepatocellular cancer through the

posttranscriptional modification of m6A relying on GATA3 and

regulating cell proliferation in gastric cancer by directly targeting
Frontiers in Immunology 10
c-jun mRNA (62, 63). Immunosuppressants have been reported

to be widely used in the clinical treatment of malignant tumors,

including thyroid cancer (64). RBM15 expression was positively

correlated with immune-infiltrating cells in renal clear cell

carcinoma (KIRC), brain low-grade glioma (LGG), and

pancreatic adenocarcinoma (PAAD). In addition, RBM15

expression was strongly correlated with immune checkpoint

markers in PAAD (65). In addition, some studies have found

that downregulation of FTO in the chorionic villi destroys

immune tolerance and angiogenesis at the maternal-fetal

interface, leading to abnormal methylation and oxidative stress

and ultimately to spontaneous abortion (66).

We found that the survival rate of the high-risk group was

significantly lower than that of the low-risk group. Next, we

constructed a nomogram to further improve the predictive

power, which showed that the predictive nomogram could be

applied to the TCGA-THCA cohort. As the total clinical score

increased, the survival probability of the patient gradually

decreased. The C-index of this nomogram reached 0.959,

indicating the reliability of the nomogram. We also analyzed

the differences in survival probability for each clinical subgroup,

and there were significant differences in survival among age,
B C

D E F

A

FIGURE 6

Relationship between clinical subgroups and survival probability. (A) Difference in survival probability between age > 65 years and age ≤65 years.
(B) Difference in survival probability between Male and Female. (C) Difference in survival probability between Stage I-II and Stage III-IV.
(D) Difference in survival probability between T1-T2 and T3-T4. (E) A. Difference in survival probability between N0 and N1. (F) Difference in
survival probability between M0 and M1.
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stage, and T-stage subgroups. In order to explore the impact of

multiple clinical traits and risk score on the prognosis of

patients, we further performed a multivariate Cox analysis,

which showed that age and risk score were indeed

independent risk factors for the prognosis of thyroid cancer

patients. The risk score, as an independent risk factor for

prognosis, has also been studied in other diseases (40).In

conclusion, this risk model has higher diagnostic power than

previous cluster analyses and is more helpful in assessing

patient prognosis.

In addition, according to the GO, KEGG and GSEA analyses

of the DEGs in the high- and low-risk groups, the analysis results

showed that the functions of the risk DEGs were related mainly

to proteolysis, immune response, and cancer pathway. In the

process of tumor migration, proteolytic enzymes can degrade the

basement membrane, make cancer cells through the basement

membrane, and migrate elsewhere, in which proteolytic enzymes

play an important role in the process of tumor invasion and

metastasis. For example, some proteases in thyroid cancer are

elevated in tumors (67):transmembrane protease serine 4
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promotes thyroid cancer proliferation through cAMP response

element-binding protein (CREB) phosphorylation (68), and the

HIV protease inhibitor nefinavir induces apoptosis of thyroid

medulla cancer cells by downregulating RET signalling (69).

These results suggest that the formation mechanism of thyroid

cancer in the high-risk group was related to the action of

proteolytic enzymes. In our study, the GO results showed that

differences in immune function between the high-risk and low-

risk groups were manifested mainly in monocyte differentiation,

lymphocyte differentiation and B-cell activation. GSEA showed

that there were significant differences between the high-risk and

low-risk groups in the ERBB pathway and small cell lung cancer

pathway, which overlapped with our results of immune function

analysis and further demonstrated that our prognostic model

was inseparable from cancer and immunity.

Currently, the treatment of thyroid cancer is limited mainly

to surgical resection (70, 71), which can improve the survival

probability of patients. However, the treatment of thyroid cancer

has expanded, and great progress has been made with anticancer

drugs. Immunotherapy has become an important part of thyroid
B

C

A

FIGURE 7

GO, KEGG and GSEA analysis of risk signature. (A) The GO diagram was made according to the high- and low-risk group. (B) The KEGG diagram
was made according to the high and low-risk group. (C) Gene set enrichment analysis was performed according to the high and low-risk group.
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cancer treatment (72–77). Therefore, we performed immune

analysis for the high- and low-risk groups. In this study,

compared with the low-risk group, the immune infiltration

levels of dendritic cells, iDCs and NK cells in the high-risk
Frontiers in Immunology 12
group were lower, but Type II IFN pathway activity was higher.

Moreover, we can see that Type II IFN pathway activity are

significantly positively correlated with risk score in both TCGA

and GEO cohorts. The decrease in dendritic cells, iDCs and NK
B

C D

E F

A

FIGURE 8

Immune function and immune checkpoint analysis. (A) Correlation between high and low-risk group and various immune cells in thyroid cancer
and adjacent tissues. (B) Correlation between high and low-risk group and various immune functions in thyroid cancer and adjacent tissues.
(C) The relationship between risk score and immune cells and functions in TCGA cohort. (D) The relationship between risk score and immune
cells and functions in GEO cohort. (E) Volcano plot of the distribution of immune checkpoint-associated genes in high- and low-risk groups.
(F) Expression of the immune checkpoint in the high-and low-risk groups. ("ns" means “no significance” *p<0.05, **p<0.01, ***p<0.001, p<0.05
was considered significant).
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cells, which are key cells in the immune response and suppress

the development of primary tumors and metastases (78–82),

may be related to the lower survival rate in the high-risk group.

Type II IFN has a rejection effect on highly immunogenic tumors

(83). IFN-g, the only type II IFN, binds to the type II IFN

receptor and activates Jak1 and Jak2, which then further

activates STAT1. The activated STAT1 homodimer binds to

the IFN-g activation site in the promoter of some ISGs to

regulate immune function (84). However, it has also been

shown that long-term exposure to IFN-g can lead to immune

escape due to cell desensitization and immune editing (85, 86).

Its expression was elevated in the high-risk group, suggesting

that Type-II IFN is involved in the antithyroid cancer effect in

the high-risk group of thyroid cancer. The increased expression

of Type-II IFN in high-risk group indicates that it may be

involved in the anti-thyroid cancer effect, but it cannot exclude

that it is involved in the immune escape of thyroid cancer.

Compared with the low-risk group, CD44 and NPR1 were

significantly increased in the high-risk group. CD44 is encoded

by 20 exons that are alternatively spliced to generate the CD44

standards (CD44s) and the CD44 variants (CD44v) (87). Recent

studies have shown that abnormal levels and variant forms of

CD44 are expressed in a variety of tumor types (88–95). High

expression of CD44 is thought to be associated with poor

prognosis in cancer, and in addition to this, CD44 v6 and v3
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have been reported to be associated with cancer metastasis.

Inhibition of CD44 has a cancer-inhibiting effect. It has been

shown that inhibition of CD44 inhibits the development of colon

tumors (96) in mice and suppresses the proliferation and

metastasis of liver and ovarian cancer cells (97, 98). NRP1 is

also involved in the cell proliferation, migration, and invasion

associated with cancer progression (99). In colorectal cancer,

inhibition of NRP1 was able to inhibit metastasis of colorectal

cancer cells (100). Moreover, NRP1/mdm2-targeted d-peptide

supramolecular nanodrugs have been shown to be highly

effective and less toxic for the treatment of hepatocellular

carcinoma, with strong anti-cancer activity against SK-Hep-1

cells in vitro and in vivo, without significant host toxicity,

making them a promising treatment for hepatocellular

carcinoma (101). In summary, the CD44 and NRP1 inhibitors

to treat cancer patients with high-risk scores are promising.

From the perspect ive of the re lat ionship between

immunotherapy drugs and risk score, the drugs for patients

with high risk score mainly focus on the class of teninib drugs,

and these drugs may provide new insights into the treatment of

thyroid cancer.

Finally, we verified the expression of 3 genes in thyroid

cancer and thyroid nodule tissues by immunohistochemistry.

Compared with the thyroid nodule tissues, the expression of 3

genes was increased in thyroid cancer tissues, indicating that the
BA

C

FIGURE 9

The Relationship between risk scores and drug sensitivity. (A) The relationship between risk score and drug sensitivity in the CTRP database.
(B) The relationship between risk score and drug sensitivity in the GDSC database. (C) The relationship between risk score and drug sensitivity in
the PRISM database.
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3 genes constructed as models were also associated with the

development of thyroid cancer.
Conclusion

Based on bioinformatics and in vitro experiments, we

determined that there were differences in the expression of the

m6A-related gene in thyroid cancer. The risk model was able to

predict the survival probability of patients with thyroid cancer

and confirmed that the risk score was an independent risk factor

for thyroid cancer. In addition, enrichment analysis of the high-

low risk group confirmed that there were significant differences

in proteolysis, immune response, and cancer formation in the

high/low-risk group. Further analysis of immune function

showed that there were differences in DCs, iDCs, NK cells,

and Type II IFN response between the two groups. In addition,

immune checkpoint analysis yielded two immune (CD44 and

NRP1) checkpoints with therapeutic potential. Finally, the
Frontiers in Immunology 14
immunodrug analysis identified 20 drugs that were associated

with risk scores.

There is no doubt that there are some limitations to the

study. First, all analyses were based on retrospective data from a

public database. In addition, we have only performed a simple

study on the relationship between BP, CC, MF, pathway,

outcome, immune function and immunological pathways,

immune checkpoint, and THCA and the actual effects of

proteolytic, iDCs, NK cells, and Type-II IFN. However, this

study systematically analyzed the expression differences of m6A-

related genes in thyroid cancer and constructed a risk model that

could evaluate the survival, prognosis, and immunotherapy

of patients.
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FIGURE 10

Representative immunohistochemical staining of RBM15, KIAA1429, FTO in benign thyroid nodule tissue and thyroid cancer tissue.
(A) Immunohistochemical image of FTO in thyroid cancer tissue. (B) Immunohistochemical image of FTO in benign thyroid nodule tissue.
(C) Immunohistochemical image of RBM15 in PTC tissue. (D) Immunohistochemical staining image of RBM15 in benign thyroid nodule tissue.
(E) Immunohistochemical image of KIAA1429 in PTC tissue. (F) Immunohistochemical image of KIAA1429 in benign thyroid nodule tissue.
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SUPPLEMENTARY TABLE 1

The baseline information of patients. The clinical information of all thyroid

patients, including survival status, age, gender, stage, T stage,N stage and
M stage.

SUPPLEMENTARY TABLE 2

Differences in survival probability between high - and low-risk groups in

each clinical subgroup. A. Differences in survival between high - and low-
risk groups at age ≤65 years. B. Differences in survival between high - and

low-risk groups in female. C. Differences in survival between high - and
low-risk groups in Stage I-II.D. Differences in survival between high - and

low-risk groups at age > 65 years. E.Differences in survival between high -
and low-risk groups in male. F. Differences in survival between high - and

low-risk groups in Stage I-II.G. Differences in survival between high - and

low-risk groups in T1-T2 stage. H. Differences in survival between high -
and low-risk groups in N0 stage. I. Differences in survival between high -

and low-risk groups in M0 stage. J. Differences in survival between high-
and low-risk groups in T3-T4 stage. K. Differences in survival between

high - and low-risk groups in N1 stage. L. Differences in survival between
high - and low-risk groups in M1 stage.

SUPPLEMENTARY TABLE 3

The differences in risk scores between clinical subgroups A-F. Differences
in risk scores among clinical characteristics subgroups (age, sex, stage,
TNM stage). (* p<0.05, ** p<0.01, *** p<0.001, p<0.05 was

considered significant.)
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