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Background: T-cell–T-cell interactions play important roles in the regulation of

T-cells’ cytotoxic function, further impacting the anti-tumor efficacy of

immunotherapy. There is a lack of comprehensive studies of T-cell types in

bladder urothelial carcinoma (BLCA) and T-cell-related signatures for predicting

prognosis and monitoring immunotherapy efficacy.

Methods: More than 3,400 BLCA patients were collected and used in the present

study. The ssGSEA algorithm was applied to calculate the infiltration level of 19 T-

cell types. A cell pair algorithmwas applied to construct a T-cell-related prognostic

index (TCRPI). Survival analysis was performed to measure the survival difference

across TCRPI-risk groups. Spearman’s correlation analysis was used for relevance

assessment. The Wilcox test was used to measure the expression level difference.

Results: Nineteen T-cell types were collected; 171 T-cell pairs (TCPs) were

established, of which 26 were picked out by the least absolute shrinkage and

selection operator (LASSO) analysis. Based on these TCPs, the TCRPI was

constructed and validated to play crucial roles in survival stratification and the

dynamicmonitoring of immunotherapy effects. We also explored several candidate

drugs targeting TCRPI. A composite TCRPI and clinical prognostic index (CTCPI)

was then constructed, which achieved a more accurate estimation of BLCA’s

survival and was therefore a better choice for prognosis prediction in BLCA.

Conclusions: All in all, we constructed and validated TCRPI based on cell pair

algorithms in this study, which might put forward some new insights to

increase the survival estimation and clinical response to immune therapy for

individual BLCA patients and contribute to the personalized precision

immunotherapy strategy of BLCA.
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Introduction

Bladder cancer (BC) is a malignant tumor that occurs on the

bladder mucosa, which is the most common malignant tumor of

the urinary system and one of the top ten common tumors

among all cancer types (1). BC can occur at any age, even in

children (1). Its incidence rate increases with age, and the high

incidence age is 50–70 years old (1). According to the

pathological types and histological classification of bladder

cancer from the World Health Organization (WHO),

bladder cancer can be categorized into several types, including

bladder urothelial carcinoma (BLCA), bladder squamous cell

carcinoma, bladder adenocarcinoma, and so on (2, 3). Among

them, BLCA is the main type in BC, accounting for more than

90% of the total number of patients with BC (2). There are

573,278 new cases and 212,536 new deaths worldwide in 2020,

according to GLOBOCAN 2020 (4). According to data

contributed by the American Cancer Society, there will be

about 81,180 newly confirmed BC patients and 17,100 more

BC deaths in the United States in 2022 (5). The 5-year survival

rate of BC patients depends on the severity of the disease.

Generally speaking, a 5-year survival rate reaches 77%. When

cancer spreads to the surrounding tissue or nearby lymph nodes

or organs, the 5-year survival rate drops to 38%. What is more

concerning, the 5-year survival rate is just 6% if BC distant

metastasis occurs (2, 6). Overall, there is no significant

improvement in the 5-year survival rate with improved early

diagnosis and treatment of BLCA (6).

Immunotherapy is a type of cancer treatment that helps the

immune system fight cancer (7). At present, more and more studies

have indicated that tumors could be treated with immunotherapy

effectively and safely (8–10). Although immunotherapy has been a

hot research field and has actually brought hope to cancer patients,

there are still some challenges in cancer immunotherapy (11).

Clinical data show that although some cancer patients with

overexpressed PD-L1 have a positive response to checkpoint

inhibitors (CPI), a large part of them are not sensitive to CPI

treatment (11). Even if some patients are reactive to CPI, the tumor

will eventually recur (11, 12). So revealing the important molecular

and cellular drivers of CPI treatment of primary and secondary

immune escape and further improving the efficacy of

immunotherapy must be a big challenge (11, 12). T cells are

crucial effectors of anti-tumor immunity (13, 14). The anti-tumor

efficacy of immunotherapy mainly depends on T cells’ cytotoxic

function (15, 16). T-cell–T-cell interaction (including CD8+ T cell-

Th17, CD8+ T cell-Treg, etc.) plays an important role in the

regulation of T cells’ cytotoxic function (17, 18). The interaction

between them can produce inflammation cytokines, alter the T-cell

lineage landscape, and exhaust T-cells’ cytotoxic functions,

ultimately leading to immune escape and resistance to

immunotherapy (18–21). Therefore, exploring the T-cell–T-cell

interaction function will be an essential strategy for better-

conducting cancer immunotherapy.
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In this research, through the utilization of meta-multiple

gene expression cohorts, we first measured the T-cell infiltration

level of each sample among these cohorts. Then, a T-cell pair

(TCP) was established by using the 19 T-cell types collected from

previous studies to simulate T-cell–T-cell interaction. We

immediately developed and verified a T-cell-related prognostic

index (TCRPI), which might play a crucial role in prognosis

prediction, and immunotherapy efficacy monitoring.
Materials and methods

Collection of BLCA cohorts and the
related clinical characterization

BLCA expression cohorts were retrieved from several public

databases, including ArrayExpress (n = 2), Gene Expression

Omnibus (GEO) database (n = 20), The Cancer Genome Atlas

(TCGA) database (TCGA-BLCA), the cBioPortal website

(MSKCC), and a large phase 2 trial (IMvigor210) (Table S1).

Only a BLCA cohort with more than 20 BLCA samples and

related survival and clinical information was collected and used

in the present study. A total of 25 BLCA cohorts with survival

information were included in our study. The related pieces of

literatures on these cohorts are shown in Table S1. TCGA-BLCA

microarray data were first downloaded from the TCGA

database. The R package “DEseq.2” (22) was used for

normalization and log2 transformation. For E-MTAB-1803, E-

MTAB-4321, and MSKCC, the expression profiles were directly

retrieved from the related website. The dataset IMvigor210 was

also retrieved from its related website (http://research-pub.Gene.

com/imvigor210corebiologies), and the normalization was also

performed via “DEseq.2.” For the GEO cohorts platformed on

Affymetrix, we generated the raw CEL files and applied the

robust multichip average (RMA) method for normalization via

the R package “affy” (23). For the GEO cohorts platformed on

Illumina, we directly retrieved the normalized expression

profiles from the GEO database. The package “sva” (24) in R

software was used for the meta-entire cohort via the 25 collected

cohorts, through the following three steps: data preprocessing;

merging; and ComBat-adjusted handling. In total, 44 normal

samples from 3,429 BLCA patients were included in the meta-

entire cohort, 3,134 of had with complete clinical information.
Application of cell pair algorithm to
construct T-cell-related prognostic index

Based on a widely accepted literature review, a total of 19 T-cell

types were collected in the present study (25–36). The gene sets of

the same T-cell type from different literature were combined, and

the non-T-cell types were excluded (Table S2). These T-cell types

included CD4+ T cells, CD8+ T cells, cytotoxic T cells, etc. Because
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of the large number of publications about these T-cell types (Table

S2), there was no doubt about the rel iabil i ty and

comprehensiveness of the 19 cell types. Then single-sample gene

set enrichment analysis (ssGSEA) was applied to measure the T-

cell infiltration level in each BLCA sample via the R package

“GSVA” (37); in the present study, the normalized enrichment

score (NES) was defined as the T-cell infiltration level. To avoid

differences between different data cohorts, and improve the use of

multiple cohorts, we then attempted to construct a T-cell-related

prognostic index (TCRPI) via the cell pair algorithm; in the present

study, a T-cell pair score (TCPs) was defined as 1 when the NES of

T-cell type a was greater than the NES of T-cell type b. If the NES

of T-cell type a was less than the NES of T-cell type b, the TCPs

were assigned as 0. Some TCPs with constant values (zero or one)

were removed for further analysis to minimize the biases caused by

the platform-dependent preferential measurement. We

immediately contained these TCPs for identifying prognostic

TCPs by using survival analysis (the log-rank test method),

based on the meta-entire cohort. Then we randomly divided the

meta-entire cohort into a meta-training cohort, a meta-testing 1

cohort, a meta-testing 2 cohort, and a meta-testing 3 cohort

according to a ratio of 1:1:1:1. Via the package “glmnet” (38) in

R software, we conducted a least absolute shrinkage and selection

operator (LASSO) penalized Cox regression analysis of these

prognostic TCPs based on the meta-training cohort. The

coefficients of the TCPs in the multivariate Cox proportional

hazards model were used for TCRPI construction. The TCRPI of

each BLCA patient was calculated by using the following formula:

TCRPI =on
i=1Coefi � TCPsi

In which Coef represents the regression coefficient and TCPs

represent the T-cell pair score of each TCP (T-cell pair). With

the aim of splitting BLCA patients into high- and low-risk

groups, we performed time-dependent receiver operating

characteristic (ROC) curve analysis via the R package

“survivalROC” (39), using the meta-training cohort. “5 years”

was set as the time point for this analysis, and the TCPs showing

the shortest distance between the ROC curve and the point were

further determined as the grouping cutoff value in the present

study. BLCA patients across the meta-training cohort, meta-

testing 1 cohort, meta-testing 2 cohort, and meta-testing 3

cohort were separated into high-risk group and low-risk group

(TCRPI-risk groups), respectively.
Exploration of the association between
TCRPI and survival, clinical characteristics,
and genomic alterations of BLCA patients

To explore the prognostic value of the TCRPI, we then

conducted a survival analysis by using the R package “survival.”

The survival differences between TCRPI-risk groups were

measured via the four cohorts. The prognostic role of the
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TCRPI was also validated via the meta-entire cohort and

TCGA-BLCA data. A log-rank test was used to measure the

survival difference; a P-value of <0.05 was considered

statistically significant. Furthermore, we attempted to explore

the clinical difference between low-and high-risk groups.

Several clinical indicators such as age, gender, stage, and

grade were included for assessing clinical differences. Fisher’s

exact test was used to determine the statistical differences

among the groups; a P-value of <0.05 was considered

statistically significant. The single-nucleotide variant (SNV)

data of the BLCA, which contained 407 samples, were also

obtained from the TCGA database. The mutation landscape in

BLCA patients grouped by TCRPI was presented by applying

the R package “maftools” (40). Furthermore, we downloaded

the Masked Copy Number Segment (MCNS) data by using the

R package “TCGAbiolinks” (41). Genomic Identification of

Significant Targets in Cancer (GISTIC) was applied to calculate

the CNV variation type (gain or loss) and frequency of genes in

the TCGA-BLCA cohort via the module GISTIC_2.0 on the

GenePattern website (https://cloud.genepattern.org/). The R

package “maftools” was used for the visualization of the CNV

analysis results among the groups.
Association between TCRPI and several
mutation, and immune indices

The homologous recombination deficiency (HRD) score

represents dist inct types of genomic scarring and

chromosomal instability caused by deoxyribonucleic acid

repair deficiency and is thus regarded as a powerful biomarker

of a given cancer (42). Therefore, the HRD scores for the TCRPI

risk groups were calculated to compare their chromosomal

instability with the Wilcox test. Besides, the mRNA stemness

index (mRNAsi) has been identified as a novel predictor

associated with stem-like indices and tumor prognosis (43). So

that we collected the mRNAsi, mDNAsi, EREG-mDNAsi, and

EREG-mRNAsi from previous research and further explored the

differences among the TCRPI groups. Microsatellite instability

(MSI) occurs because of functional defects in DNA mismatch

repair in tumor tissue. MSI accompanied by DNA mismatch

repair defects is an important tumor marker in the clinic (44).

For the present study, we calculated the MSI for each sample

from the TCGA-BLCA cohort via the R package “PreMSIm”

(45). The index of cytolytic activity (CYT) is measured as a new

biomarker of immunotherapy that could characterize the

antitumor immunity of CD8+ cytotoxic T cells and

macrophages. We then evaluated the CYT score for each

sample across the TCGA-BLCA data; in detail, the CYT score

was defined as the mean expression of PRF1 and GZMA (46). In

addition, the difference between the TCRPI risk groups was also

measured using the Wilcox test. A P-value of <0.05 was

considered significant.
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Correlation of TCRPI with a set of
bladder cancer signature and
immunotherapy-predicted pathways

Several genetic signatures positively related to the clinical

response to the anti-PD-L1 agent (atezolizumab) in BLCA were

collected from Mariathasan’s study (47, 48). Some therapeutic

signatures containing oncogenic pathways that might form non-

inflammatory TME, gene characteristics related to targeted

therapy, and gene signatures for radiotherapy response

prediction were also retrieved. Then we explored the

association between TCRPI and these bladder cancer

signatures and immunotherapy-predicted pathways.
Correlation of TCRPI with immune
related features

To further explore the potential functions of TCRPI and

provide an immune landscape for TCRPI, we calculated the

immune score, stromal score, and tumor purity for each BLCA

sample via the R package “ESTIMATE” (49). The T-cell

dysfunction and exclusion (TIDE) used for the response to

immunity treatment was also quantified for BLCA samples. The

TIDE scores of BLCA samples from the TCGA-BLCA cohort were

evaluated and retrieved via the website: http://tide.dfci.harvard.

edu/. In addition, Thorsson et al. defined six immune-related

subtypes (C1–C6) through a pan-cancer analysis of immune

subtypes (50). C1 represented wound healing. C2 represented

IFN-g dominant. C3 represented inflammatory. C4 represented

lymphocyte depleted. C5 represented immunologically quiet. C6

represented TGF-b dominant. We attempted to explore the

differences between these subtypes and the TCRPI. The authors

of this study also defined 56 molecular signatures associated with

immune characteristics (50). Thus, we measured the correlation of

TCRPI with these signatures. In view of the major significance of

immune checkpoints (ICPs) and immunogenic cell death (ICD)

modulators for tumor immunity, the associations of TCRPI with

ICPs and ICDmodulators were explored. Also, we collected several

common bladder cancer biomarkers from previous studies,

including CFH (51), FGFR3 (52), NMP22 (53), and TERT (54).

We also compared the expression differences among TCRPI risk

groups. The Wilcox method was used for statistical evaluation.

ssGSEA was then applied to define the scores of 28 previously

reported immune cells to measure the immune cell components

among TCRPI risk groups.
Role of TCRPI in response to anti-PD-1/
L1 immunotherapy

We obtained two gene expression cohorts containing

immunotherapy and survival information for this step. The
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expression matrix of cohort IMvigor210, patients who were

treated with atezolizumab (an anti-PD-L1 antibody), was first

normalized via the method we previously described. In total, we

included 192 BLCA patients in the depth analysis. Furthermore,

the expression matrix of cohort GSE78220, patients who were

treated with pembrolizumab (an anti-PD-1 antibody), was also

retrieved via the GEO database. We used the R package “limma”

(55) for normalization. As a result, 27 patients, including their

immunotherapy and survival information, were included. Our

priority was to explore survival differences across the TCRPI-risk

groups by implementing the “survival” package in R software.

Moreover, the TCRPI difference between different response

groups (CR, PR, PD, and SD) was explored, and the Kruskal–

Wallis test was chosen in the present study. Moreover, using the

R package “pROC” (56), we plotted receiver operating

characteristic (ROC) curves to measure the prediction values

of TCRPI for immunotherapy response. The area under the

curve (AUC) was also evaluated to quantify the predictive value.
Construction and verification of a
composite TCRPI and clinical prognostic
index (CTCPI)

To obtain the prediction value of TCRPI and compare the

prognostic accuracy of TCRPI with other BLCA-related

signatures, we collected three existing molecular signatures,

including a 3-gene signature (57), a 6-gene signature (58), and

a 12-gene signature (59). For these signatures, the concordance

index (C-index) was calculated and considered the comparing

standard. Moreover, TCRPI and several clinical indicators

(gender, age, stage, and grade) were included for multivariable

Cox proportional regression assessment by using the six cohorts.

The features showing a significant value (P <0.05) were used to

establish the CTCPI. Similarly, we also evaluated the C-index of

the CTCPI via six cohorts. In addition, the prognostic

performances of continuous TCRPI and CTCPI scores were

compared using the C-index as the standard. The restricted

mean survival (RMS) curve was used for visualizing the

continuous C-index. RMS represents the life expectancy at 10

years for patients with different indicators (60). The higher the

RMS time ratio, the greater the prognostic potential.
Drug sensitivity exploring

Then we attempted to identify several novel therapeutic

drugs that could provide novel choices for BLCA treatment.

Based on related drug information from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (61), the R package

“pRRophetic” (62) was used for drug response prediction.

Ridge’s regression was first used to estimate the maximal

inhibitory concentration (IC50) of each patient. Then 10-fold
frontiersin.org
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cross-validation was used to measure the accuracy of the

estimation. We further divided the patients into high- and

low-risk groups according to the level of TCRPI, and the

Wilcoxon rank-sum test was used to measure significance.

P <0.05 was considered significant.
Statistical analysis

Continuous variables were analyzed using Student’s t-tests, U-

tests, or nonparametric rank-sum tests. Categorical variables were

analyzed using Chi-squared tests or Fisher’s exact tests. The T cell

infiltration levels for BLCAs were estimated using ssGSEA via the

R package “GSVA.” The cell pair algorithm was conducted as we

mentioned above. Prognostic analyses were performed using

Kaplan–Meier survival analysis and Cox univariate and

multivariate analyses. Survival results were summarized using

“forestplot” (R package). TCRPI was developed using the

regression coefficient and T-cell pair score of TCPs. All data

were analyzed with SPSS 22.0 for Windows (SPSS, Chicago, IL,

USA) and R 4.0.3 (http://www.r-project.org/). The results with

P <0.05 were considered statistically significant.
Results

TCRPI construction and its role in
survival, clinical and invasiveness

A total of 19 T-cell types were collected and included in the

present study. Then ssGSEA was used for the NES calculation of

these T cells. Multivariate Cox analysis was obtained to measure

the prognostic value of the 19 kinds of T cells (Table S2).

Figure 1A described a comprehensive landscape of T-cell

interactions, cell lineages, and their roles in the overall survival

(OS) of BLCA patients. These T-cell types were separated into

four clusters via the “hclust” method. Almost all of these T cells

showed a strong positive correlation with each other. Several T-

cell types showed negative correlations, such as central memory

CD4+ T cells, which had a weak negative correlation with Tfh

cells. As for the prognostic values of these T-cell types, these

were inconsistent. We defined several kinds of T cells, including

T helper cells (HR = 0.057, P <0.001), CD8+ T cells (HR = 0.044,

P <0.001), and Tfh cells (HR = 0.189, P = 0.006) as favorable

factors for the OS of BLCA patients. While some other T-cell

types containing central memory CD4+ T cells (HR = 3.845, P =

0.008), Th-1 chemokines (HR = 1.366, P = 0.043) were identified

as risk factors for BLCA’s OS. Figure 1B shows the TCRPI

construction process. A total of 171 T-cell pairs (TCPs) were

generated based on the NES of each T-cell type (Table S3). Then

105 TCPs identified by log-rank testing were further included in

the LASSO algorithm (Table S4). A total of 26 TCPs were

screened out (Figures 1C, D), 14 of which were generated by
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21 T-cell types were picked out by multivariate Cox regression

analysis and further used for TCRPI construction (Figure S1A,

Table S5). According to the results of the time-dependent ROC

curve at 5 years (Figure 1E, the area under the curve (AUC) =

0.751), BLCAs were categorized into two TCRPI0-risk groups

(high and low) with the TCRPI cutoff value of 1.0231. Via the

meta-training dataset (n = 783), it was concluded that BLCA

patients in the TCRPI low-risk group (n = 375) had better OS

compared to those in the TCRPI high-risk group (n = 408), as

shown in Figure 2A (P <0.001). We reached the same conclusion

via meta-testing cohort 1 (n of high-risk set = 425, n of low-risk

set = 358, Figure 2B), meta-testing cohort 2 (n of high-risk set =

424, n of low-risk set = 360, Figure 2C), meta-testing cohort 3 (n

of high-risk set = 403, n of low-risk set = 381, Figure 2D), meta-

entire cohort (n of high-risk set = 1,660, n of low-risk set = 1,474,

Figure 2E), and TCGA-BLCA cohort (n of high-risk set = 262, n

of low-risk set = 142, Figure 2F). The TCRPI distribution of

BLCA patients in the six cohorts is shown in Figures S1B–M.We

further explored the clinical differences among TCRPI-risk

groups (Table S6). In the meta-training dataset, patients

classified into the TCRPI high-risk set had a higher stage

(P <0.001) and grade (P <0.001) than these of patients

classified into the low-risk group (Figure 3A). The same

conclusion was reached by using meta-testing cohort 1

(Figure 3B), meta-testing cohort 2 (Figure 3C), meta-testing

cohort 3 (Figure 3D), meta-entire cohort (Figure 3E), and the

TCGA-BLCA cohort (Figure 3F). There was no difference in age

or gender between high-risk group patients and low-risk group

patients, which was further validated by using meta-testing

cohort 1 (Figure 3B), meta-testing cohort 2 (Figure 3C), meta-

testing cohort 3 (Figure 3D), meta-entire cohort (Figure 3E), and

the TCGA-BLCA cohort (Figure 3F). Also, BLCA patients with

lower TCRPI were less vulnerable to dying by comparison with

those with higher TCRPI by using all six cohorts (Figures 3A–F).

Higher tumor mutation burden (TMB), as well as higher somatic

mutation rates, were correlated with stronger anti-cancer

immunity. Figure 3G showed the mutation landscape of the

top 30 high-frequency mutated genes in BLCA patients via

TCGA data. There was a trend that the TCRPI-high risk

group contained higher TMB compared to the TCRPI-low risk

group (Figure 3H), as well as a higher number of mutated genes

(Figure 3I). We also calculated the G-score for the two risk

groups. Compared to the TCRPI-low risk group (Figure 3K),

there was a higher mutation rate in the TCRPI-high risk group

(Figure 3J). 6p22.3 was the idiosyncratic amplification type in

the TCRPI-high risk group. It was known that the basal subtype

was associated with more aggressive cancers; Figure 3L indicated

that BLCA patients with the basal-like subtype had higher

TCRPI levels compared with those with the non-basal-like

subtype (P <0.01). Thus, the result indicated that the risk score

level was positively associated with bladder cancer invasiveness.

Lindgren et al. (63) defined two subtypes of BLCA (MS1, MS2),

further proving that BLCAs of the MS2 subtype were correlated
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with aggressive growth and poor prognosis. We also suggested

that BLCAs from the MS2 subtype had higher TCRPI levels

compared with those from the MS1 subtype (Figure 3M,

P <0.05). Taken together, TCRPI was positively associated

with bladder cancer invasiveness, which might certainly

predict aggressive cancer features.
Evaluation of the TCRPI with other highly
trustworthy indices

HRD score represents distinct types of genomic scarring and

chromosomal instability caused by deoxyribonucleic acid repair

deficiency and is thus regarded as a powerful biomarker of a

given cancer. Samples in the TCRPI-high risk group showed

higher HRD scores compared to those in the TCRPI-low risk

group (P <0.05, Figure 4A). As a novel predictor associated with

stem-like indices and tumor prognosis, we found that the

mRNAsi in the TCRPI-low risk group were higher than those

in the TCRPI-high risk group (P <0.001, Figure 4B). As for

mDNAsi (Figure 4C) and EREG-mDNAsi (Figure 4D), there

were no statistical differences among TCRPI-risk groups.

Figure 4E indicates that the EREG-mRNAsi in the TCRPI-low
Frontiers in Immunology 06
risk group were lower than those in the TCRPI-high risk group

(P <0.05, Figure 4E). As a genomic characteristic for cancers,

MSI is defined based on defective DNA mismatch repair. MSI

has been identified as a meaningful marker for cancer diagnosis

and treatment across a set of cancer types. A tendency has been

proven that BLCAs in the TCRPI-high risk set showed greater

MSI (Figure 4F), MSIsensor score (Figure 4G), and MSI

MANTIS score (Figure 4H) than those in the TCRPI-low risk

group. The cytolytic activity (CYT) score is a new index of

cancer immunity calculated from the mRNA expression levels of

GZMA and PRF1. We concluded that there was a trend that

BLCA patients with higher TCRPI had higher CYT scores

compared to those with lower TCRPI (Figure 4I). The details

about these indices are shown in Table S7.
Correlation of TCRPI with bladder
cancer related pathways and immune-
related features

Then the correlation between TCRPI and previous bladder

cancer-related pathways and immunotherapy-related pathways

was explored. Figure 5A indicated that the TCRPI was positively
A B

D EC

FIGURE 1

Survival landscape of the 19 T-cell types and T-cell related prognostic index (TCRPI) construction. (A) Cellular interaction and survival landscape
of the 19 T-cell types. These T-cell types were separated into four clusters, the connection lines between cell types were divided into two kinds:
red represents positive correlation, while blue represents negative correlation. The green dot in the T cell represents favorable factors for OS,
while the black dot represents risk factors for OS. (B) The flow diagram of the TCRPI construction. (C, D) Plot of partial likelihood deviance for
the 26 TCPs associated with survival in the training set. (E) Time-dependent ROC curve for TCRPI in the meta-training cohort at 5 years.
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related to EMT differentiation, immune differentiation, smooth

muscle, myofibroblasts, interferon response, and keratinization.

The TCRPI also showed a significantly negative association with

mitochondria and neuroendocrine differentiation (Figure 5A).

The TCRPI also showed associations with several pathways

among the immunotherapy-related pathways (Figure 5B). The

TCRPI was positively related to the cell cycle, progesterone-

mediated oocyte maturation, and viral carcinogenesis

(Figure 5B). There was no statistical difference in the immune

score (Figure 5C) and tumor purity (Figure 5E) across TCRPI-

risk groups. As shown in Figure 5D, patients classified into the

TCRPI-high risk group showed a higher level of the stromal

score (P <0.001) compared to the TCRPI-low risk group. A

higher level of TIDE score indicated that patients were less likely

to benefit from ICI treatment. Figure 5F concluded that BLCA

patients in the TCRPI-low risk group were probably closer to

benefiting from ICI treatment than they were from

chemotherapy (Figure 5F, P <0.001). Patients in TCRPI-risk

groups mainly overlapped with C1 and C2 (Figure 5G).

Meanwhile, 14% of patients in the TCRPI-low risk group were

classified into C4, and more patients in the TCRPI-high risk

group were categorized into C1 compared to patients in the
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TCRPI-low risk group (Figure 5G). The relationship between the

TCRPI and 56 molecular signatures was collected from previous

studies. The TCRPI was positively associated with Th2 cells, Th1

cells, the TGFbeta response, neutrophils, mast cells, M2

macrophages, M0 macrophages, and the CTA score

(Figure 5H). Furthermore, the TCRPI was negatively

correlated with TCR Shannon, TCR richness, stromal faction,

SNV neoantigens, silent mutation rate, and aneuploidy score

(Figure 5H). In addition, we tried to explore the correlation

between TCRPI and immune modulators, including ICPs and

ICD modulators. Figure 6A showed the correlation of TCRPI

with ICPs. The TCRPI was positively related to VTCN1,

TNFSF9, TNFSF4, TNFRSF8, PDCD1LG2, NRP1, LAIR1,

ICOSLG, CD86, CD70, CD44, CD276, and CD200, while

negatively related to TNFRSF25, TNFRSF14, TMIGD2,

LGALS9, KIR3DL1, CD160, and BTNL2 (Figure 6A).

Moreover, the TCRPI was positively related to PANX1,

P2RY2, P2RX7, LRP1, IFNAR2, HGF, FPR1, EIF2AK4, and

ANXA1, while negatively correlated to EIF2AK1, and EIF2A

(Figure 6B). Furthermore, the TCRPI showed no significant

relationship with four bladder cancer biomarkers (Figure 6C).

Then we explored the association between TCRPI and 28
A B
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C

FIGURE 2

Survival difference across the TCRPI-high risk and TCRPI-low risk groups. (A) Overall survival curve for TCPRI in the meta-training cohort.
(B) Overall survival curve for TCPRI in the meta-testing cohort 1. (C) Overall survival curve for TCPRI in the meta-testing cohort 2. (D) Overall
survival curve for TCPRI in the meta-testing cohort 3. (E) Overall survival curve for TCPRI in the meta-entire cohort. (F) Overall survival curve for
TCPRI in the TCGA-BLCA data.
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immune cell types (Figures 6D, E). The TCRPI was positively

related to 14 immune cell types (activated dendritic cell, central

memory CD8 T cell, central memory CD4 T cell, etc.)

meanwhile negatively related to nine immune cell types (Type

17 T helper cell, T follicular helper cell, etc.), whereas it was

coincident with Figure 5H.
The TCRPI could predict the
immunotherapeutic benefit

Immunotherapies represented by PD-L1 and PD-1 blockade

have undoubtedly emerged as major breakthroughs in cancer

treatment. In IMvigor210, BLCA patients in the TCRPI-high set

(n = 123) hadmeaningfully shorter survival (P = 0.0083, Figure 7A),

compared to BLCAs classified into the TCRPI-low set (n = 69). The

predictive value of the TCRPI for anti-PD-L1 immune therapy was

further confirmed (Figures 7B–E). Patients divided into the TCRPI-

low risk group were more likely to be helped by anti-PD-L1 therapy

(Figures 7B, D), which was validated by the Kruskal–Wallis test (P =

0.12, Figure 7C) and theWilcox test (P = 0.019, Figure 7E). Patients

with CR states showed the lowest TCRPI level among all the anti-

PD-L1 response states (Figure 7C). TCRPI was indicated to be a
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predictive biomarker for immunotherapy benefits (AUC: 0.614,

Figure 7F) through the efficacy of anti-PD-L1 therapy exploration.

Furthermore, by cohort GSE78220, we also explored whether

TCRPI could play a role in the response to anti-PD-1 treatment.

Patients divided into the TCRPI-high set showed worse survival by

comparison with the TCRPI-low set (P = 0.018, Figure 7G).

Similarly, patients in the TCRPI-low risk group could respond to

anti-PD-1 immunotherapy better compared with those classified

into the TCRPI-high set (Figures 7H, J), as concluded by the

Kruskal–Wallis test (P = 0.076, Figure 7I) and the Wilcox test

(P = 0.025, Figure 7K). The TCRPI was then concluded to be a

suitable prediction application for anti-PD-1 therapy benefits

(AUC: 0.749, Figure 7L). When taken together, the present study

obviously demonstrated that TCRPI was correlated with anti-PD-

L1/PD-1 immune therapy response, which might make a

contribution to the prediction of response to immunotherapy.
Predictive value comparison of TCRPI
with several molecular signatures

To determine whether the TCRPI was better than the

previous prognostic signatures, three multiple gene
A B
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FIGURE 3

Association of TCRPI with clinical features and genomic correlations with TCRPI in the TCGA-BLCA data. The differences of clinical features
(living status, age, gender, stage, and grade) across TCRPI-risk groups via meta-training cohort (A), meta-testing cohort 1 (B), meta-testing
cohort 2 (C), meta-testing cohort 3 (D), meta-entire cohort (E), and the TCGA-BLCA cohort (F). (G) The oncoplot of the top 30 mutated genes
that were associated with TCRPI. (H) Association of TCRPI with TMB. (I) Association of TCPRI with mutation number. (J) G-score distribution
among the TCRPI-high risk group. (K) G-score distribution among the TCRPI-low risk group. (L) Association of TCPRI with molecular subtypes
(basal-like, non-basal-like) using cohort E-MTAB-1803. (M) Association of TCPRI with molecular subtypes (MS1, MS2) using cohort GSE32894.
NS, no significance, *P <0.05, **P <0.01.
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signatures were collected and included in the present study.

As shown in Figure 8A, the TCRPI showed the best

prognosis prediction potential compared to the 3-gene

signature, 6-gene signature, and 12-gene signature in the

meta-training cohort, meta-testing cohort 1, meta-testing

cohort 3, and meta-entire cohort. But in the TCGA-BLCA

cohort, the TCRPI did not perform as well as the 12-

gene signature.
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Construction of CTCPI and its
prognostic role

To maximize the use of the TCRPI in the prognosis

prediction of BLCA patients, we immediately contained the

TCRPI and several essential clinical factors (gender, age,

stage, grade) in the multivariable Cox analysis via a meta-

training cohort (Figure 8B). Age (HR = 1.9, P <0.001) and
A B
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FIGURE 4

Association of TCRPI with other highly trustworthy indices. (A) HRDscore. (B) mRNAsi. (C) mDNAsi. (D) EREG-mDNAsi. (E) EREG-mRNAsi. (F)
MSI. (G) MSI sensor score. (H) MSI MANTIS score. (I) CYT score. NS, no significance, *P <0.05, ***P <0.001.
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Stage (HR = 1.7, P <0.001) were then screened out and

generated with TCRPI (HR = 1.4, P <0.001) to construct

CTCPI. The prognostic value of age and stage were also

validated by meta-testing cohort 1 (Figure S2A), meta-

testing cohort 2 (Figure S2B), meta-testing cohort 3 (Figure

S2C), meta-entire cohort (Figure S2D), and the TCGA cohort

(Figure S2E). Based on these results of the Cox test, the

CTCPI of BLCA patients was defined as Age ∗ 0.627 +

Stage ∗ 0.538 + TCRPI ∗ 0.334. Significantly improved

estimation of survival was realized by CTCPI (Figure 8C),
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validated by RMS curves in the meta-training cohort (mean

C-index: CTCPI: 0.81, TCRPI: 0.69, P <0.001, Figure 8D),

meta-testing cohort 1 (mean C-index: CTCPI: 0.80, TCRPI:

0.63, P <0.001, Figure 8E), meta-testing cohort 2 (mean C-

index: CTCPI: 0.76, TCRPI: 0.59, P <0.001, Figure 8F), meta-

testing cohort 3 (mean C-index: CTCPI: 0.77, TCRPI: 0.61, P

<0.001, Figure 8G), meta-entire cohort (mean C-index:

CTCPI: 0.78, TCRPI: 0.63, P <0.001, Figure 8H), and

TCGA-BLCA cohort (mean C-index: CTCPI: 0.67, TCRPI:

0.58, P <0.001, Figure 8I).
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FIGURE 5

Correlation of TCRPI with bladder cancer-related pathways and immune-related features. (A) Association of TCRPI with bladder cancer related
pathways. (B) Association of TCRPI with immunotherapy response related pathways. (C) Association of TCRPI with immune score. (D)
Association of TCRPI with stromal score. (E) Association of TCRPI with tumor purity. (F) Association of TCRPI with TIDE. (G) Association of
TCRPI with immune subtypes. (H) Association of TCRPI with 56 molecular signatures. NS, no significance, *P <0.05, **P <0.01, ***P <0.001.
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Response to drug response

After categorizing BLCAs into TCRPI-high- and TCRPI-

low-groups, the relationship between TCRPI and medical

treatment was examined. As mentioned above (Figure 9A),

drugs from the GDSC database with reported therapeutic

potential for cancer were analyzed. As the results indicated,

BLCAs in the TCRPI-high group were more sensitive to 38

drugs, while BLCAs in the TCRPI-low group were more

sensitive to 26 drugs (Table S9). Moreover, the top six drugs

for BLCAs in the TCRPI-high group, including KIN001.135,

AZD.0530, Bexarotene, AZD6482, Pazopanib, and Midostaurin,

are shown in Figure 9B. We also showed the top six drugs for

BLCAs in the TCRPI-low group in Figure 9C. The results

indicated that TCRPI could predict increased sensitivity to

these therapeutic drugs in BLCA patients.
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Discussion

T cells are the most numerous type with complex functions

in lymphocytes (64). For instance, helper T cells have the

function of assisting humoral immunity and cellular

immunity, suppressor T cells could inhibit cellular immunity

and humoral immunity, and cytotoxic T cells have the function

of killing target cells (64). They are brave soldiers formed in the

body to resist disease, infection, and tumors (65). T cells have

been proven to be essential effectors in anti-tumor immunity. T-

cell–T-cell interactions such as CD8+ T cell-Th17 and CD8+ T

cell-Treg could regulate the cytotoxic function of T cells, further

impacting the anti-tumor efficacy of immunotherapy. Some

recent studies of BLCA have also focused on T cells. Oh et al.

concluded CD4 T cells could kill autologous cancers in an MHC

class II-dependent fashion, which could be suppressed by
frontiersin.org
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FIGURE 6

Immune landscape of TCRPI in BLCA. (A) Association of TCRPI with ICPs. (B) Association of TCRPI with ICD modulators. (C) Association of
TCRPI with four bladder cancer biomarkers. (D) A heatmap showed the immune infiltration levels of the 28 immune cell types defined by
ssGSEA. (E) Association of TCRPI with 28 immune cell types defined by ssGSEA. NS, no significance, *P <0.05, **P <0.01.
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FIGURE 7

TCRPI is a prognostic biomarker and predicts immunotherapeutic benefit. (A) Kaplan–Meier curves for patients with high (n = 125) and low (n =
67) TCRPI in the IMvigor210 cohort. (B) Rate of clinical response [complete response (CR)/partial response (PR) and stable disease (SD)/
progressive disease (PD)] to anti-PD-L1 immunotherapy in high or low TCRPI groups in the IMvigor210 cohort. (C) Distribution of TCRPI in
groups with different anti-PD-L1 clinical response statuses. (D) Rate of clinical response [complete response (CR), partial response (PR), stable
disease (SD) and progressive disease (PD)] to anti-PD-L1 immunotherapy in high or low TCRPI groups in the IMvigor210 cohort. (E) Distribution
of TCRPI in groups with different anti-PD-L1 clinical response statuses. (F) ROC curve measuring the predictive value of the TCRPI. (G) Kaplan–
Meier curves for patients with high (n = 10) and low (n = 17) TCRPI in the GSE78220 cohort. (H) Rate of clinical response [complete response
(CR)/partial response (PR) and stable disease (SD)/progressive disease (PD)] to anti-PD-1 immunotherapy in high or low TCRPI groups in the
GSE78220 cohort. (I) Distribution of TCRPI in groups with different anti-PD-1 clinical response statuses. (J) Rate of clinical response (complete
response (CR), partial response (PR), stable disease (SD) and progressive disease (PD)) to anti-PD-1 immunotherapy in high or low TCRPI groups
in the GSE78220 cohort. (K) Distribution of TCRPI in groups with different anti-PD-1 clinical response statuses. (L) ROC curve measuring the
predictive value of the TCRPI.
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regulatory T cells (66). A cytotoxic CD4 T cell-related index was

further constructed by them, predicting clinical response for 244

metastatic bladder cancer patients treated with anti-PD-L1 (66).

Liu et al. indicated that intratumoral TIGIT + CD8 + T-cell

infiltration determined a worse prognosis and immune evasion

for BLCA patients (67). Eckstein et al. established a cytotoxic T-

cell-related index that could predict survival benefits in BLCAs

after radical cystectomy and adjuvant chemotherapy (68). The

above research proved the importance of T cells in survival, anti-

tumor immunity, and therapy response in BLCA. But none of

them considered the integrity and comprehensive interaction of

T cell types. Since there were a set of T-cell types, it was of urgent

need to give a landscape of these T-cell types in BLCA. A total of

19 T-cell types were collected from a previous study, and the

infiltration level of each of them was evaluated for over 3,100

samples from public databases by using ssGSEA. The ssGSEA

algorithm scored the individual samples independently without

considering other samples in gene expression cohorts, which
Frontiers in Immunology 13
could overcome the calculation error caused by the multiple

platforms of cohorts. Then a T-cell pair algorithm was applied to

measure the interactions of T-cell types and further construct a

T-cell-related prognostic index (TCRPI). Also, the cell pair

algorithm only involves pairwise comparison within the cell

infiltration level cohort of a sample, which allowed us to use

samples from multiple platforms. The impact of TCRPI on

survival was then measured. We found that BLCA patients

with higher TCRPI were less likely to show better survival.

This indicated that TCRPI was a risk indicator for survival and

prognosis in BLCA patients. The clinical difference among

TCRPI-risk groups was also explored; BLCA patients

categorized into the TCRPI low-risk group were less likely to

die and progress to an advanced stage or high-grade BLCA. The

5-year survival rate for advanced BLCA was as low as 4%, which

was consistent with the present study.

HRD leads to a defect in the repair pathway of double-strand

breaks, causing a high sensitivity to PARP inhibitors (PARPi),
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FIGURE 8

Construction of a Composite TCRPI and clinical prognostic index (CTCPI). (A) C-index comparison between TCRPI, 3-gene signature, 6-gene
signature, and 12-gene signature. (B) Forest plot for the Hazard Ratios (HRs) of high vs low TCRPI risk groups via a meta-training cohort.
(C) C-index comparison between TCRPI and CTCPI. Restricted mean survival (RMS) curves for continuous TCRPI and CTCPI in the meta-
training cohort (D), meta-testing cohort 1 (E), meta-testing cohort 2 (F), meta-testing cohort 3 (G), meta-entire cohort (H), and the TCGA-BLCA
cohort (I). NS, no significance, *P <0.05, ***P <0.001.
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which have been used as a biomarker for therapy decision-

making (69). As a recent study reported, the HRD score could

also predict response to neoadjuvant chemotherapy in some

cancer types, such as triple-negative breast cancer (70). BLCA

patients in the TCRPI-high risk group showed higher HRD

scores. mRNAsi was a novel predictor associated with stem-like

indices and tumor prognosis. In the present study, we found that

TCRPI was negatively associated with mRNAsi, which

represented mRNAsi as a protective factor for the survival of

patients with BLCA. Pan et al. concluded higher mRNAsi in

BLCA were associated with better overall survival (71), which

was consistent with our result. MSI occurs because of functional

defects in DNA mismatch repair in tumor tissue. MSI

accompanied by DNA mismatch repair defects is an important

tumor marker in the clinic. The CYT index is measured as a new

biomarker of immunotherapy that could characterize the

antitumor immunity of CD8+ cytotoxic T cells and

macrophages. In the present study, we also tried to explore the

relationship between TCRPI and them. No significant results

were obtained. Perhaps because the TCRPI might not act on

DNA mismatch repair. We have conducted studies showing that

the TCRPI could predict immunotherapeutic benefits; thus, we

thought the TCRPI impact on immunotherapy could be

achieved without targeting PRF1 and GZMA.

Then we attempted to characterize the immune landscape

across TCRPI-risk groups. The TCRPI might regulate some

bladder cancer-related pathways and immune related features;

in detail, the TCRPI was positively related to EMT

differentiation, immune differentiation, smooth muscle,
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myofibroblasts, interferon response, keratinization, cell cycle,

progesterone-mediated oocyte maturation, and viral

carcinogenesis. The TCRPI also showed a significantly

negative association with mitochondria and neuroendocrine

differentiation. A higher level of TIDE score indicated that

patients were less likely to benefit from ICI treatment.

Figure 5F concluded that BLCAs in the TCRPI-low risk set

might more likely benefit from ICI treatment. The correlation of

the intrinsic immune escape mechanism with the TCPRI in the

BLCA was also explored. The TCRPI was concluded to be

associated with some ICPs, including VTCN1, TNFSF9,

TNFSF4, TNFRSF8, PDCD1LG2, NRP1, LAIR1, ICOSLG,

CD86, CD70, CD44, CD276, and CD200, which indicated that

the TCRPI could be an effective indicator for immune

checkpoint blockage (ICB) therapy.

Tumor immunotherapy is a novel therapeutic option for

controlling and eliminating tumors by restarting and

maintaining the tumor immune cycle and restoring the

normal anti-tumor immune response (72). Because of its

excellent curative effect and innovation, it was rated as the

most important scientific breakthrough of the year by the

magazine Science in 2013. These days, an increasing number

of investigators have concentrated on exploring new immune-

related prognostic indicators and therapeutic targets for

immunotherapy. Further integrated analyses indicated that the

TCRPI was related to response to anti-PD-L1/PD-1 immune

therapy, which might help improve the predictive strategy for

immunotherapy. To maximize the application of the TCRPI in

the prognosis prediction of BLCA patients, we then constructed
A B
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FIGURE 9

Potential drugs for BLCA treatment exploration. (A) The flow diagram of the IC50 estimation and drug sensitivity estimation (38 drugs for
patients with a higher TCRPI, 26 drugs for patients with a lower TCRPI. (B) The top six drugs for BLCA patients with higher TCRPI treatment.
(C) The top six drugs for BLCA patients with lower TCRPI treatment.
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a CTCPI considering both the TCRPI and several clinical

features. The C-index improved from 0.69 to 0.81, which

significantly improved the estimation of BLCA’s survival.

There were some limitations to our study. Firstly, although

the TCPRI could distinguish well between high- and low-risk

groups, it was not clear if it could show positive performance as

we expected in clinical trials. Thus, we will further apply and test

this signature in clinical judgment for the prognosis of BLCAs.

Secondly, the roles of the TCRPI and T cells in BLCA

progression and prognosis must be explored and validated by

using in vivo and in vitro experiments. Thirdly, because the AUC

values for the TCRPI for immunotherapy were lower than 0.75,

we will perfect the TCRPI and validate its immunotherapy

predictive value by using our own data in the near future.

All in all, the work in this study put forward some new

insights to increase the survival estimation and clinical response

to immune therapy for individual BLCA patients through the

comprehensive analysis of T-cell types, which might contribute

to the personalized precision immunotherapy strategy of BLCA

over the next few decades.
Conclusions

All told, we constructed and verified a T-cell-related

prognostic index (TCRPI) in this study, which might be a

useful tool for prognosis prediction of BLCA and contribute to

identifying patients suitable for immunotherapy. A

comprehensive evaluation of the interactions of T cells in

BLCA would help us improve our cognition of the infiltration

characteristics and functions of T cells. This would guide more

effective immunotherapy strategies.
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Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture
from expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

50. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou YT, et al. The
immune landscape of cancer. Immunity (2018) 48:812–30. doi: 10.1016/
j.immuni.2018.03.023

51. Alvarez A, Lokeshwar VB. Bladder cancer biomarkers: current
developments and future implementation. Curr Opin Urol (2007) 17:341–6.
doi: 10.1097/MOU.0b013e3282c8c72b

52. Audenet F, Isharwal S, Cha EK, Donoghue M, Drill EN, Ostrovnaya I, et al.
Clonal relatedness and mutational differences between upper tract and bladder
urothelial carcinoma. Clin Cancer Res (2019) 25:967–76. doi: 10.1158/1078-
0432.CCR-18-2039

53. Sharma B, Kanwar SS. Phosphatidylserine: a cancer cell targeting biomarker.
Semin Cancer Biol (2018) 52:17–25. doi: 10.1016/j.semcancer.2017.08.012

54. Cheng L, Lopez-Beltran A, Wang M, Montironi R, Kaimakliotis HZ, Zhang
S. Telomerase reverse transcriptase (tert) promoter mutations in primary
adenocarcinoma of bladder and urothelial carcinoma with glandular
differentiation: pathogenesis and diagnostic implications. Mod Pathol (2021)
34:1384–91. doi: 10.1038/s41379-021-00776-z

55. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for rna-sequencing and microarray studies. Nucleic
Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

56. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. Proc:
an open-source package for r and s+ to analyze and compare roc curves. BMC
Bioinf (2011) 12:77. doi: 10.1186/1471-2105-12-77

57. Wu X, Lv D, Cai C, Zhao Z, Wang M, Chen W, et al. A tp53-associated
immune prognostic signature for the prediction of overall survival and therapeutic
responses in muscle-invasive bladder cancer. Front Immunol (2020) 11:590618.
doi: 10.3389/fimmu.2020.590618

58. Xu F, Tang Q, Wang Y, Wang G, Qian K, Ju L, et al. Development and
validation of a six-gene prognostic signature for bladder cancer. Front Genet (2021)
12:758612. doi: 10.3389/fgene.2021.758612

59. Jin K, Qiu S, Jin D, Zhou X, Zheng X, Li J, et al. Development of prognostic
signature based on immune-related genes in muscle-invasive bladder cancer:
bioinformatics analysis of tcga database. Aging (Albany NY) (2021) 13:1859–71.
doi: 10.18632/aging.103787
Frontiers in Immunology 17
60. Uno H, Claggett B, Tian L, Inoue E, Gallo P, Miyata T, et al. Moving beyond
the hazard ratio in quantifying the between-group difference in survival analysis. J
Clin Oncol (2014) 32:2380–5. doi: 10.1200/JCO.2014.55.2208

61. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res (2013) 41:D955–61. doi: 10.1093/nar/
gks1111

62. Geeleher P, Cox N, Huang RS. Prrophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One
(2014) 9:e107468. doi: 10.1371/journal.pone.0107468

63. Sjödahl G, Lauss M, Lövgren K, Chebil G, Gudjonsson S, Veerla S, et al. A
molecular taxonomy for urothelial carcinoma. Clin Cancer Res (2012) 18:3377–86.
doi: 10.1158/1078-0432.CCR-12-0077-T

64. Kishton RJ, Sukumar M, Restifo NP. Metabolic regulation of t cell longevity
and function in tumor immunotherapy. Cell Metab (2017) 26:94–109. doi: 10.1016/
j.cmet.2017.06.016

65. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T Cell anergy, exhaustion,
senescence, and stemness in the tumor microenvironment. Curr Opin Immunol
(2013) 25:214–21. doi: 10.1016/j.coi.2012.12.003

66. Oh DY, Kwek SS, Raju SS, Li T, McCarthy E, Chow E, et al. Intratumoral cd4
(+) t cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell (2020)
181:1612–25. doi: 10.1016/j.cell.2020.05.017

67. Liu Z, Zhou Q,Wang Z, Zhang H, Zeng H, Huang Q, et al. Intratumoral tigit
(+) cd8(+) t-cell infiltration determines poor prognosis and immune evasion in
patients with muscle-invasive bladder cancer. J Immunother Cancer (2020) 8:
e000978. doi: 10.1136/jitc-2020-000978

68. Eckstein M, Strissel P, Strick R, Weyerer V, Wirtz R, Pfannstiel C, et al.
Cytotoxic t-cell-related gene expression signature predicts improved survival in
muscle-invasive urothelial bladder cancer patients after radical cystectomy and
adjuvant chemotherapy. J Immunother Cancer (2020) 8:e000162. doi: 10.1136/jitc-
2019-000162

69. Wagener-Ryczek S, Merkelbach-Bruse S, Siemanowski J. Biomarkers for
homologous recombination deficiency in cancer. J Pers Med (2021) 11:612.
doi: 10.3390/jpm11070612

70. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al.
Homologous recombination deficiency (hrd) score predicts response to
platinum-containing neoadjuvant chemotherapy in patients with triple-
negative breast cancer. Clin Cancer Res (2016) 22:3764–73. doi: 10.1158/
1078-0432.CCR-15-2477

71. Pan S, Zhan Y, Chen X, Wu B, Liu B. Identification of biomarkers for
controlling cancer stem cell characteristics in bladder cancer by network analysis of
transcriptome data stemness indices. Front Oncol (2019) 9:613. doi: 10.3389/
fonc.2019.00613

72. Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their
consequences on gd t cell activation. Immunol Rev (2020) 298:84–98. doi: 10.1111/
imr.12925
frontiersin.org

https://doi.org/10.1002/ijc.2910260110
https://doi.org/10.1038/nature25501
https://doi.org/10.7150/thno.53649
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1097/MOU.0b013e3282c8c72b
https://doi.org/10.1158/1078-0432.CCR-18-2039
https://doi.org/10.1158/1078-0432.CCR-18-2039
https://doi.org/10.1016/j.semcancer.2017.08.012
https://doi.org/10.1038/s41379-021-00776-z
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3389/fimmu.2020.590618
https://doi.org/10.3389/fgene.2021.758612
https://doi.org/10.18632/aging.103787
https://doi.org/10.1200/JCO.2014.55.2208
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1158/1078-0432.CCR-12-0077-T
https://doi.org/10.1016/j.cmet.2017.06.016
https://doi.org/10.1016/j.cmet.2017.06.016
https://doi.org/10.1016/j.coi.2012.12.003
https://doi.org/10.1016/j.cell.2020.05.017
https://doi.org/10.1136/jitc-2020-000978
https://doi.org/10.1136/jitc-2019-000162
https://doi.org/10.1136/jitc-2019-000162
https://doi.org/10.3390/jpm11070612
https://doi.org/10.1158/1078-0432.CCR-15-2477
https://doi.org/10.1158/1078-0432.CCR-15-2477
https://doi.org/10.3389/fonc.2019.00613
https://doi.org/10.3389/fonc.2019.00613
https://doi.org/10.1111/imr.12925
https://doi.org/10.1111/imr.12925
https://doi.org/10.3389/fimmu.2022.994594
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Novel T-cell signature based on cell pair algorithm predicts survival and immunotherapy response for patients with bladder urothelial carcinoma
	Introduction
	Materials and methods
	Collection of BLCA cohorts and the related clinical characterization
	Application of cell pair algorithm to construct T-cell-related prognostic index
	Exploration of the association between TCRPI and survival, clinical characteristics, and genomic alterations of BLCA patients
	Association between TCRPI and several mutation, and immune indices
	Correlation of TCRPI with a set of bladder cancer signature and immunotherapy-predicted pathways
	Correlation of TCRPI with immune related features
	Role of TCRPI in response to anti-PD-1/L1 immunotherapy
	Construction and verification of a composite TCRPI and clinical prognostic index (CTCPI)
	Drug sensitivity exploring
	Statistical analysis

	Results
	TCRPI construction and its role in survival, clinical and invasiveness
	Evaluation of the TCRPI with other highly trustworthy indices
	Correlation of TCRPI with bladder cancer related pathways and immune-related features
	The TCRPI could predict the immunotherapeutic benefit
	Predictive value comparison of TCRPI with several molecular signatures
	Construction of CTCPI and its prognostic role
	Response to drug response

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


