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Background: Hepatocellular carcinoma (HCC) is an aggressive and

heterogeneous disease characterized by high morbidity and mortality. The

liver is the vital organ that participates in tyrosine catabolism, and abnormal

tyrosine metabolism could cause various diseases, including HCC. Besides, the

tumor immune microenvironment is involved in carcinogenesis and can

influence the patients’ clinical outcomes. However, the potential role of

tyrosine metabolism pattern and immune molecular signature is poorly

understood in HCC.

Methods: Gene expression, somatic mutations, copy number variation data,

and clinicopathological information of HCC were downloaded from The

Cancer Genome Atlas (TCGA) database. GSE14520 from the Gene Expression

Omnibus (GEO) databases was used as a validation dataset. We performed

unsupervised consensus clustering of tyrosine metabolism-related genes

(TRGs) and classified patients into distinct molecular subtypes. We used

ESTIMATE algorithms to evaluate the immune infiltration. We then applied

LASSO Cox regression to establish the TRGs risk model and validated its

predictive performance.

Results: In this study, we first described the alterations of 42 TRGs in HCC

cohorts and characterized the clinicopathological characteristics and tumor

microenvironmental landscape of the two distinct subtypes. We then
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established a tyrosine metabolism-related scoring system and identified five

TRGs, which were highly correlated with prognosis and representative of this

gene set, namely METTL6, GSTZ1, ADH4, ADH1A, and LCMT1. Patients in the

high-risk group had an inferior prognosis. Univariate and multivariate Cox

proportional hazards regression analysis also showed that the tyrosine

metabolism-related signature was an independent prognostic indicator.

Besides, receiver operating characteristic curve (ROC) analysis demonstrated

the predictive accuracy of the TRGs signature that could reliably predict 1-, 3-,

and 5-year survival in both TCGA and GEO cohorts. We also got consistent

results by performing clone formation and invasion analysis, and

immunohistochemical (IHC) assays. Moreover, we also discovered that the

TRGs signature was significantly associated with the different immune

landscapes and therapeutic drug sensitivity.

Conclusion: Our comprehensive analysis revealed the potential molecular

signature and clinical utilities of TRGs in HCC. The model based on five TRGs

can accurately predict the survival outcomes of HCC, improving our

knowledge of TRGs in HCC and paving a new path for guiding risk

stratification and treatment strategy development for HCC patients.
KEYWORDS

hepatocellular carcinoma, tyrosine metabolism, tumor microenvironment,
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Introduction

Hepatocellular carcinoma (HCC) is one of the most

common digestive system malignancies that endanger human

health. According to the latest research data released by the

World Health Organization (WHO), HCC ranks the sixth most

common and a third of mortality in all tumors worldwide (1, 2).

The onset of HCC is usually indetectable and characterized by

rapid progression, frequent metastasis, high recurrence, and

poor prognosis (3). Even with the improvement of major

clinical interventions, including surgery, drug-targeted therapy,

radiotherapy , chemotherapy, immunotherapy, and

transplantation, its prognosis remains poor, and the 5-year

overall survival is less than 20% (4–6). Therefore, it is urgently

needed to identify the novel molecular markers and develop a

prognostic model to stratify and customize a therapeutic strategy

for patients with HCC.

Tyrosine is an aromatic amino acid required for protein

synthesis in all organisms, and alternative energy for molecular

functions. The liver is the primary organ that participates in

tyrosine catabolism. Five enzymatic reactions catalyze the

tyrosine degradation. It has been reported that the disturbance

of tyrosine metabolism could cause a variety of diseases like

Huntington’ ‘s disease (7) and phenylketonuria (PKU) (8), as well
02
as some cancers, including gastroesophageal malignancy (9) and

lung cancer (10). Besides, previous studies also demonstrate that

patients who suffered from hereditary tyrosinemia are more

likely to develop HCC (11, 12). In HCC patients, the serum

tyrosine is frequently upregulated (13, 14), indicating an

imbalance tyrosine metabolic process in HCC. Nevertheless,

poorly is understood the molecular alteration and profile of

tyrosine catabolism in the development and progression of HCC.

Emerging evidence also indicates a crosstalk between tyrosine

metabolism and the tumor immune microenvironment (15, 16).

The tumor microenvironment (TME) plays a critical role in

cancer development and clinical outcome (17). Besides the

cancer cells, TME also comprises diverse cell types, including

endothelial cells, immune cells, fibroblasts, and inflammatory

cells, and extracellular components (growth factors, cytokines,

hormones, etc.). Through the circulation and lymphatic system,

malignant cells interact with neighboring cells and induce

immune tolerance by releasing cell signaling molecules. In

addition, tumor-infiltrating immune cells (TIICs) within the

TME can also influence cancer progression (18). Currently, the

majority of studies reveal only one or two tyrosine metabolism-

related genes (TRGs) and cell types, while numerous genes

interactions determine the antitumor impact. Therefore,

understanding the characteristics of TME cell infiltration
frontiersin.org
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mediated by multiple TRGs may provide insights into the

underlying mechanism of HCC tumorigenesis and immune

response prediction.

In this study, we extensively analyzed the HCC datasets from

The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) database to explore the expression patterns of

TRGs and obtained an intratumoral immune landscape. We first

stratified 371 patients with HCC into two distinct subtypes based

on the levels of TRGs expression and prognosis. Furthermore,

we established a scoring system for predicting survival outcomes

and characterizing the immune landscape of HCC. Additionally,

in combination with clinicopathological characteristics, our gene

signature showed improved risk stratification and therapeutic

predictive power for HCC, which provide new insights into

precision and individualized medicine.

Methods

HCC data acquisition and processing

We downloaded gene expression (fragments per kilobase

million, FPKM), the somatic mutations, copy number variation

data and prognostic and clinicopathological information on

HCC from the TCGA database. GSE14520 from the GEO

database was used for the subsequent validation. After

obtaining the raw microarray intensity “CEL” files, we

adjusted the background and normalized the quantiles by

using Robust Multichip Average. An average standard

deviation of 1 was used to scale the RNA expression data.

Gene expression of 424 samples (50 normal and 374 tumor

samples) from 371 patients were downloaded from TCGA. The

clinicopathological characteristics of the 371 HCC patients were

summarized in Supplementary Table 1. All the analyses were

performed with R (version 4.1.2) with R Bioconductor packages.
Consensus clustering of tyrosine
metabolism-related genes

We retrieved a total of forty-two TRGs from the MSigDB

(KEGG_TYROSINE_METABOLISM). Using the R package

“ConsensusClusterPlus,” we performed unsupervised consensus

clustering of TRGs and classified patients into distinct molecular

subtypes. The clusteringwas conducted using the following criteria:

first, the cumulative distribution function (CDF) curve upgraded

steadily and smoothly. Second, each group had a sufficient sample

size. Lastly, the correlation of intra-group correlations increased by

clustering, whereas inter-group correlations descended.
Functional enrichment analysis

To explore the potential mechanism underlying two tyrosine

metabolism subtypes involved in HCC, we performed the Gene
Frontiers in Immunology 03
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis using “clusterprofler” R

package (19). A p<0.05 and q<0.05 were set as the thresholds.

We then collected 50 gene sets of cancer hallmark-related

pathways from the Gene Set Enrichment Analysis (GSEA)

database. Meanwhile, the “GSVA” package was used to

calculate the enrichment score of correlated pathways. The

gene set “c2.cp.kegg.v7.4.symbols.gmt” was also downloaded

from the MSigDB and performed as the reference gene set.
Construction of a TRGs-based
prognostic model

Least Absolute Shrinkage and Selection Operator Regression

(LASSO) is a form of penalized regression that can be used to

screen variables from high-dimensional data to build a

prognostic model (20). In this study, we excluded patients

with incomplete survival information. Then we filtered the

significant Tyrosine metabolism-related genes from HCC

specimens and performed the optimum survival cutoff analysis

by using the “surv_cutpoint” function of the “survminer” R

package. Then, we used the LASSO method in a Cox regression

model to pick out the most useful prognostic genes by using the

R package “glmnet”. After that, a tyrosine metabolism-related

scoring system for HCC patients was established by the

combination of the expression of genes and the estimated Cox

regression coefficient: tyrosine metabolism-related risk score =∑

(coefficient of gene* expression of a gene)

According to the best cutoff risk score, HCC Patients were

divided into high-risk and low-risk groups and then subjected to

the Kaplan-Meier (KM) survival analysis.
Characterization of the immune
signature of HCC

We utilized the ESTIMATE algorithm to estimate the

abundance of the immune cell between high-risk and low-risk

groups using expression data from the TCGA database. In

addition, we determined the immune cell infiltration levels in

the HCC TME by using a single sample gene set enrichment

analysis (ssGSEA) algorithm (21). We also analyzed the

associations of PD-1 and PD-L1 expression between

two subtypes.
Drug sensitivity analysis

Broad Institute’s Cancer Cell Line Encyclopedia (CCLE)

project (22) (https://portals.broadinstitute.org/ccle/) contained

the RNA expression profiles of 1019 cancer cell lines, of which

included 16 different liver cancer cell lines. The drug sensitivity
frontiersin.org
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of cancer cell lines was retrieved from the Genomics of Drug

Sensitivity in Cancer (GDSC2, https://www.cancerrxgene.org/)

(23), which contained 809 cell lines and sensitivity data for 198

chemicals. Lower 50% inhibiting concentration (IC50) values

suggested enhanced susceptibility to compound responses.

Utilizing the “oncoPredict” R package, we calculated the

TCGA-LIHC cohort’s medication susceptibility.
RNA interference

The following small interfering RNAs were purchased from

Ruibo Biotechnology Co., Ltd. (Guangzhou, China): METTL6

(siG000131965A-1-5), GSTZ1(siB0006543A-1-5), ADH4

(siG000000127A-1-5), ADH1A (siG151029041002-1-5), and

LCMT1 (siG000051451A-1-5) . The manufacturer ’s

recommendations were followed for siRNA transfection when

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

Hep3B cells were seeded to be 70%–90% confluent at

transfection. Then, 5 µl of Lipofectamine 2000 reagent and 5

µl of siRNA (10 mM) were mixed in 250 µl of OptiMEM

medium. After 10 minutes of incubation at room temperature,

the mixture was put dropwise into a culture dish containing 1 ml

of the medium. After that, normal culture conditions (5% CO2,

37°C) were used to cultivate the transfected cells for 24 hours

and the cells were then digested and resuspended for

further experiments.
Colony formation and invasion analysis

The cells were treated with the siRNAs for 24 hours,

digested, and seeded onto six-well plates at a density of 1,000

cells per well for the colony formation experiment. After

fourteen days of incubation, the cells were fixed with 4%

paraformaldehyde and stained with 0.5% crystal violet.

Transwell plates with an 8-mm pore for polycarbonate

membrane were used to measure the ability of cells to invasion

(Corning, USA). Briefly, Matrigel-coated top chambers were

seeded with 5x105 cells that had been suspended without serum

(BD BioCoat, USA). The bottom chambers were placed with 600

µl of complete medium. The cells on the bottom side of the pore

membrane were fixed and stained with crystal violet after being

left alone for 24 hours.
Immunohistochemistry study

Tissue Microarray (TMA) contains 97 samples of liver cancer

tissues (n=77) and normal liver tissues (n=20) from Xiangya

Hospital. Briefly, the TMA slices were first deparaffinized,

followed by antigen retrieval in citrate buffer (pH 6.0) and

endogenous peroxidase activity inhibition in 0.3% H2O2. The
Frontiers in Immunology 04
relevant primary and secondary antibodies were continually

incubated with the slides until peroxidase and 3,3′-
diaminobenzidine tetrahydrochloride were used for

visualization. Two pathologists blindly measured the expression

of METTL6, GSTZ1, ADH4, ADH1A, and LCMT1 in the liver

cancer tissues from the tissue microarray using the previously

described histochemical score (H-score) (24, 25). The primary

antibodies were METTL6 (Proteintech, China, 16527-1-AP),

GSTZ1 (Proteintech, China, 14889-1-AP), ADH4 (Proteintech,

China, 16474-1-AP), ADH1A (Sigma-Aldrich, USA,

HPA047814), and LCMT1 (Novus Biologicals, USA, OTI2C9).

The Human Protein Atlas (HPA) (https://www.proteinatlas.

org/) is a program that integrates diverse omics technologies to

map human proteins in tissues, cells, and organs (26, 27). From

the tissue atlas and pathology atlas in the HPA database, we

respectively got representative immunohistochemistry results

for the five target proteins in HCC tumors and normal tissues.
Statistical analysis

We performed a Chi-Square test for the analysis of

differences between the two groups. The prognostic

significance was evaluated by Kaplan-Meier curve analysis,

including overall survival (OS), disease-specific survival (DSS),

disease-free interval (DFI), progression-free interval (PFI), and

relapse-free survival (RFS) with a two-tailed log-rank test.

Multivariate Cox regression analysis was performed by using

the R package “survival” to evaluate the role of Tyrosine

metabolism-related score in the prognostic model of HCC. We

used Pearson’ s correlation analyses to measure the degree of

correlation between certain variables. All statistical analyses were

performed using R software (version 4.1.2) and p< 0.05 was

considered statistically significant.
Results

The genetic variation and expression
landscape of TRGs in HCC

In this study, we included a total of 42 TRGs. Of the 364

HCC patients, genetic mutations of TRGs were found in 18.68%

(68/364) of them (Figure 1A). Among these genes, TPO was the

gene with the highest mutation rate, followed by AOX1, and

MAOB. We also observed that missense mutation was the most

frequent variant type, and C > T and C > A ranked the top single

nucleotide variation (SNV) class. Then, we investigated the

somatic copy number variations (CNVs) of TRGs and

discovered universal copy number alterations across 42 TRGs.

Of them, DCT, AOX1, ALDH1A3, ALDH3B1, ALDH3B1 and

BUD23 showed widespread CNVs amplifications, while most of

the TRGs had CNVs depletion (Figure 1B). Figure 1C presented
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the location of CNV alterations of Tyrosine metabolism-related

genes on chromosomes. We further explored whether the

genetic alterations could affect the gene expression patterns. By

comparing the expression level between HCC tumors and

normal tissues, we found that the TRGs expression levels were

positively correlated with the CNV alterations. The TRGs with

CNVs gain, like BUD23 and ALDH3B1, were increased in HCC

patients, while the TRGs with CNVs loss were decreased in HCC

samples (Figure 1D). Whereas some TRGs showed opposite or

no difference in CNVs alterations and expression level,

indicating a complex process in the regulat ion of

gene expression.
Identification of tyrosine metabolism
subtypes in HCC

To further explore the profile and characteristics of 42

tyrosine metabolism-related genes in HCC, we applied a

consensus clustering algorithm to categorize the HCC patients

based on the expression of 42 TRGs. To obtain the optimal

clustering number (k value), we calculated the consistency

coefficient and found that k = 2 was a preferable selection for
Frontiers in Immunology 05
sorting the entire cohort into Clusters A (n = 169) and B (n =

202) (Figure 2A). The principal component analysis (PCA)

demonstrated that HCC patients were well distributed into

two clusters (Figure 2B). The Kaplan-Meier survival analysis

revealed that Cluster A had a superior OS (log-rank test,

p =0.004), DSS (log-rank test, p<0.001) and PFI (log-rank test,

p =0.03) among HCC patients, while the DFI between two

subtypes was not statistically significant (Figures 2C–F).

Next, we compared the two subgroups’ clinicopathological

features and tyrosine metabolism-related gene expression. Some

TRGs were highly expressed in Cluster A, such asMAOB,MAOA,

HPD, and AOX1, while some TRGs, including METTL6, BUD23,

METTL2B, and LCMT1 were overexpressed in cluster B

(Figure 3A). Moreover, we performed functional enrichment

analysis to investigate the biological behavior of TRGs. GSVA

enrichment analysis revealed that subtype A was significantly

enriched in various substances’ metabolism (Figure 3B). The

biological process (BP) indicated the enrichment function of the

RNAmetabolic process and ribonucleoprotein complex biogenesis.

The cellular component (CC) showed that the TRGswere primarily

correlated with nuclear speck, spindle and chromosomal region.

Formolecular function (MF), the transcription coregulator activity,

catalytic activity, and cadherin binding were mainly enriched for
A B

DC

FIGURE 1

Genetic variations and transcriptional expression of TRGs in HCC. (A) The distribution and mutation frequencies of 42 TRGs in the TCGA HCC
cohort. (B) Frequencies of CNV alterations of TRGs in HCC. The height of the column represents the alteration frequency. (C) Locations of CNV
alterations in TRGs on chromosomes. (D) Expression distributions of 44 TRGs between HCC tumor and normal tissues. *p < 0.05, **p < 0.01,
***p < 0.001. TRGs, tyrosine metabolism-related genes; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; CNV, copy
number variation.
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the TRGs (Figure 3C).Moreover, the pathway analysis implied that

these genes were frequently involved in the cancer-related

pathways , var ious v i rus infec t ions and substance

metabolism (Figure 3D).

Furthermore, we explored the genetic alterations between

the two subtypes. In Cluster A, we found a relatively high

mutation frequency with 171 of 195 (87.69%) samples
Frontiers in Immunology 06
(Figure 3E). Among them, TP53 had the highest mutation

frequency (36%), followed by TTN (23%) and MUC16 (15%).

Compared to Cluster A, the Cluster B cohort demonstrated a

lower mutation frequency (134 of 161 samples, 83.23%).

Differentially, CTNNB1 (44%) was the most frequently

mu t a t e d g ene , f o l l ow ing TTN ( 2 4%) and TP53

(17%) (Figure 3F).
A B

D

E F

C

FIGURE 2

Characteristics of two TRGs subtypes divided by consistent clustering. (A) Consensus heatmap matrix and correlations areas of two clusters
(k = 2). (B) PCA analysis demonstrates a distinctive difference between the two clusters. Univariate analysis shows 44 TRGs related to the OS
(C), the DSS (D), the DFI (E), and the PFI (F). OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; DFI,
progression-free interval.
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Characterization of the TME in
different subtypes

To explore the role of TRGs in HCC TME, we evaluated the

associations between the two subtypes and 23 human immune

cell subsets using the ssGSEA method. We observed significant

variations in the infiltration of some immune cells between the

two subtypes (Figures 4A–B). The infiltration level of

eosinophils, gamma delta T cells, immature dendritic cells,

mast cells, and natural killer cells were remarkably elevated in

subtype A, while activated CD4 T cells, activated dendritic cells,

CD56dim natural killer cells, and type 2 T helper cells were

significantly overexpressed in subtype B. We further investigated

the profile of immune checkpoints between the two subgroups
Frontiers in Immunology 07
(Figure 4C). We discovered that most immune checkpoints were

differentially expressed between the two groups, including

CTLA4 , LAG3 , PDCD1 (PD-1), and CD274 (PD-L1),

suggesting a potential role of the tyrosine metabolism-related

subtypes in immunotherapy. Besides, by using the ESTIMATE R

package, we evaluated the TME score, which included stromal

score, ESTIMATE score, and immune score, between the two

subtypes. For the TME score, the stromal or immune scores

represented the content of stromal or immune cells in the TME,

and the ESTIMATE scores implied aggregation of immune or

stromal scores in the TME. We only found a higher immune

score in subtype A, while there was no statistical difference in

stromal score and ESTIMATE score between the two

subtypes (Figure 4D).
A B

D

E F

C

FIGURE 3

Clinicopathological features, enrichment analysis and mutation landscape of two TRGs clusters. (A) Differences in clinicopathologic
characteristics and expression levels of TRGs between the two subtypes. (B) GSVA of biological pathways between two subtypes, in which blue
inhibited and red represent activated pathways, respectively. (C) GO enrichment analysis shows the BP, CC, and MF of two TRGs subtypes.
(D) The bubble plot depicted the KEGG pathway enrichment analysis of the two clusters. (E) Mutation landscape of TRGs cluster (A–F) Mutation
landscape of TRGs cluster (B) GSVA, gene set variation analysis; GO, gene ontology; BP, biological process; CC, cellular component; MF,
molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; TRGs, tyrosine metabolism-related genes.
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Construction and validation of TRG
risk model

To establish a predictive prognostic model for HCC patients,

we explored the prognostic genes in the HCC TCGA training set.

By using the univariate Cox regression analysis, HCC patients

were classified into high- and low-risk groups based on the

optimal cutoff of each gene. We identified that nine TRGs were

associated with an inferior OS, and twelve genes were related to a

favorable OS in HCC patients (Supplementary Figure 1A).

Meanwhile, similar gene risk distribution was discovered in

the DSS, DFI and PFI (Supplementary Figure 1B–D). Then,

we performed LASSO and multivariate COX analysis on the

prognostic-related genes with 10-fold cross-validation to narrow

the gene scope (Figures 5A, B). Subsequently, we obtained a five-
Frontiers in Immunology 08
gene signature model with two high-risk genes (METTL6 and

LCMT1), and three low-risk genes (GSTZ1, ADH4, and

ADH1A). The risk score of each HCC patient was calculated

according to the following formula:

Risk score = (0.24* expression of METTL6) + (0.22*

expression of LCMT1) + (−0.16* expression of GSTZ1) +

(−0.23* expression of ADH4), + (−0.18* expression of ADH1A).

The HCC patients were categorized into high-risk and low-risk

groups based on the best cutoff of the risk score. The Kaplan-Meier

analysis revealed that the patients in high-risk group had an

unfavorable OS (log-rank test, p<.001; Figure 5C), DSS (log-rank

test, p<.001; Figure 5E), DFI (log-rank test, p = .002; Figure 5G), and

PFI (log-rank test, p<.001; Figure 5I). We further performed the

time-dependent receiver operating characteristic (ROC) curve with

the area under the curve (AUC). The AUC values of 1-, 3-, and 5-
A B

DC

FIGURE 4

Correlations of tumor immune cell microenvironments and two HCC subtypes. (A) Heatmap of the tumor-infiltrating cells and clinical features
in two HCC subtypes. (B) Expression abundance of 23 infiltrating immune cell types in the two HCC subtypes. (C) Immune checkpoints
heatmap between the two subtypes, the red mark representing the checkpoints that are differentially expressed, with p < 0.05. (D) Correlations
between the TME score and the two HCC subtypes. HCC, hepatocellular carcinoma; TME, tumor microenvironment. *p < 0.05, ***p < 0.001,
ns, no significant difference.
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FIGURE 5

Construction of tyrosine metabolism-related genes prognostic model in the training set. (A) Ten-time cross-validation for tuning parameter
selection by LASSO regression. (B) The screening of coefficients under LASSO analysis. A vertical line is drawn at the value chosen by 10‐fold
cross‐validation of overall survival. Kaplan-Meier curves for survival outcomes of the two risk subtypes according to the OS (C), DSS (E), DFI
(G), and PFI (I) (log-rank tests, p< 0.01). ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival rates according to the
risk score based on the OS (D), DSS (F), DFI (H), and PFI (J). LASSO, least absolute shrinkage and selection operator; OS, overall survival; DSS,
disease-specific survival; DFI, disease-free interval; PFI, progression-free interval; ROC, receiver operating characteristic.
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year survival rates of OS-related prognostic subgroups were 0.719,

0.727, and 0.722, respectively (Figure 5D). We also analyzed the

AUC values of 1-, 3-, 5-year survival rates of DSS (0.783, 0.622, and

0.644, respectively; Figure 5F), DFI (0.613, 0.611, and 0.588,

respectively; Figure 5H), and PFI (0.619, 0.600, and 0.605,

respectively; Figure 5J).

Next, to validate the prognostic performance of the TRGs

model, we calculated the efficiency in the validation set

(GSE14520). Similarly, we gained the parallel results in the

validation sets, indicating the prognostic model of TRGs had

an excellent predictive prognostic accuracy for HCC patients

(Figures 6A–D). To further explore the predictive role of

tyrosine metabolism-related signature, we performed

univariate and multivariate Cox proportional hazards

regression analysis in the HCC TCGA and GSE14520 datasets.

The results showcased that the tyrosine metabolism-related

signature was an independent risk factor for OS and RFS in

patients with HCC (Figures 7A–H).

In addition, we further compared our signature with two

other metabolism-related prognostic models (28, 29). In Wu

et al.’s study (28), they established a six metabolism-related

mRNAs prognostic model for HCC patients. The ROC curve of

AUC values of 1-, 3-, and 5-year survival rates of OS-related
Frontiers in Immunology 10
prognostic subgroups were 0.583, 0.595, and 0.582, respectively

(Supplementary Figure 2A), and the AUC values of 1-, 3-, 5-year

survival rates of RFS were 0.599, 0.568, and 0.528, respectively

(Supplementary Figure 2B). For Dai et al.’s study (29), we also

analyzed its predictive ability in HCC. The ROC curve of AUC

values of 1-, 3-, and 5-year survival rates of OS-related

prognostic subgroups were 0.603, 0.617, and 0.631,

respectively (Supplementary Figure 2C), and the AUC values

of 1-, 3-, 5-year survival rates of RFS were 0.616, 0.623, and

0.601, respectively (Supplementary Figure 2D). Taken together,

our TRGs signature presented a better performance in predicting

the prognosis of HCC patients.
Evaluation of TME and immune
checkpoints in TRG risk models

We then performed the GSVA enrichment analysis between

the two groups and found distinct functional enrichment in the

two subtypes. The high-risk group was enriched in pathways of

nucleotide excision repair, cell cycle, mismatch repair, and

spliceosome, while the low-risk group was positively correlated

with drug metabolism cytochrome p450 and complement and
A B

DC

FIGURE 6

Validation of prognostic model based on TRGs. Kaplan-Meier survival curves of high- and low-risk groups in validation dataset GSE14520
(A), OS. (C), RFS (log-rank tests, p<.001). The receiver operating characteristic curve for predicting 1-year, 3-year, and 5-year OS (B) and RFS
(D) of HCC patients in GSE14520. TRGs, tyrosine metabolism-related genes; HCC, hepatocellular carcinoma; RFS, relapse-free survival.
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coagulation cascades (Figure 8A). To further explore the

relationship between the tyrosine metabolism-related risk

model and the TME signature, we investigated the correlation

of risk subtypes and immune infiltration cells of HCC by the

ESTIMATE algorithm (Figures 8B–C). The infiltration level of

activated CD8 T cells, CD56bright natural killer cells,

eosinophils, natural killer cells, and type 1 T helper cells were

obviously elevated in the low-risk group. Besides, we calculated

the TME score of high and low-risk groups and revealed that the

stromal score and ESTIMATE score were upgraded in the low-

risk subtype (Figure 8D). We then investigated the profile of
Frontiers in Immunology 11
immune checkpoints between the two subtypes, and we revealed

that amounts of immune checkpoints were distinctively

expressed between the two groups, such as CD276, CD80,

CD86, and HAVCR2 (Figure 8E).
Analysis and validation of the five TRGs
for the prognostic signature

We further analyzed the expression levels of five prognostic

TRGs in HCC patients. HCC is a complex disease driven by
A B

D

E F

G H

C

FIGURE 7

Independent prognosis analyses of TRGs risk model in TCGA and GES14520 HCC cohorts. (A, B), Univariate and Multivariate Cox regression of
risk score based on OS in TCGA HCC cohort. (C, D), Univariate and Multivariate Cox regression of risk score based on DSS in TCGA HCC
cohort. (E, F), Univariate and Multivariate Cox regression of risk score based on OS in GSE14520 HCC cohort. (G, H), Univariate and Multivariate
Cox regression of risk score based on RFS in GSE14520 HCC cohort. TRGs, tyrosine metabolism-related genes; HCC, hepatocellular carcinoma;
TCGA, The Cancer Genome Atlas; OS, overall survival; DSS, disease-specific survival; RFS, relapse-free survival.
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various extrinsic and intrinsic factors; we further investigated the

TRGs risk model with other clinical signatures, such as tumor

grade, stage, AFP level, cirrhosis and HBV status, and were

summarized in Tables 1, 2. We explored that the expression of
Frontiers in Immunology 12
METTL6, GSTZ1, ADH4, and ADH1A were related to the grade

classification (Figures 9A–E), andMETTL6, ADH4, and ADH1A

were also associated with the T stage of tumors (Figures 9F–J).

We also found that the TRGs-related signature was associated
A

B

D

E

C

FIGURE 8

Correlations of tumor immune cell microenvironments and two TRGs prognostic subtypes. (A) GSVA of biological pathways between two
risk groups, in which red represent activated and blue inhibited pathways, respectively. (B) Heatmap of the clinicopathologic characteristics
and tumor-infiltrating cells in the two risk groups. (C) Expression abundance of 23 infiltrating immune cell types in the two risk subtypes.
(D) Correlations between the TME score and the two risk subtypes. (E) Expression of immune checkpoints between the two risk subtypes.
*p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant difference. TRGs, tyrosine metabolism-related genes; GSVA, gene set variation analysis;
TME, tumor microenvironment.
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with tumor size, HBV status, AFP level, ALT level, and tumor

grade. Furthermore, we further compared our prognostic

signature with multi-platform studies from the TCGA. We

discovered that the high-risk group was associated with the

subclass of MS1 in Shimada’s classification (30), G1/2 and G3 in

Boyault’s subtype (31), and Proliferation in Chiang’s

classification (32) (Supplementary Table 2). All the subclasses

have been documented as the “proliferative” and “aggressive”

phenotypes and characterized by inferior patient prognosis,

which was in line with our study.
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Next, we then assessed the correlations between the TME

scores and the five TRGs, and it is found that METTL6 and

LCMT1 were negatively correlated with the TME scores

(Figure 9K). We further investigated the relationship between

the five TRGs and immune infiltrating cells. We observed that

the METTL6 and LCMT1 were negatively related to most

immune cells, whereas GSTZ1, ADH4, and ADH1A were

positively correlated with various immune cells, except for

activated CD4 T cell and CD56dim natural killer cell

(Figure 9L). Besides, we also explored the correlations of five

TRGs and immune checkpoints. It is obvious that METTL6 and

LCMT1 were positively associated with a large number of

immune checkpoints, while the GSTZ1, ADH4, and ADH1A

were negatively related to a great proportion of immune

checkpoints, except for IDO2 and CD160 (Figure 9M). In

addition, we also investigated the correlations of five TRGs

with the sensitivity of common chemotherapeutic drugs and

targeted therapeutic drugs of HCC (Figure 9N). We discovered

that, unlike METTL6, ADH1A was positively related to the
TABLE 1 Clinicopathologic characteristics of TCGA HCC patients
according to the Tyrosine -related signature.

Variables Risk P value

High risk Low risk

Gender 0.007

Female 56 60

Male 81 163

Age at diagnosis (years) 0.893

≤ 50 29 45

> 50 108 178

T stage 0.001

T1 49 128

T2 42 48

T3 40 40

T4 6 7

N stage 0.036

N0 99 150

N1 3 0

NX 35 73

M stage 0.158

M0 103 158

M1 3 1

MX 31 64

Grade 0.035

I 16 38

II 66 109

III 46 73

IV 9 3

HBV history 0.007

No 56 59

Yes 13 16

Unknown 68 148

HCV history 0.165

No 101 146

Yes 18 49

Unknown 18 28

Cirrhosis 0.629

No 119 186

Yes 16 31
TABLE 2 Clinicopathologic characteristics of GSE14520 HCC
patients according to the Tyrosine -related signature.

Variables Risk P value

High risk Low risk

Gender 0.848

Female 17 14

Male 109 102

Age at diagnosis (years) 0.021

≤ 50 72 55

> 50 55 63

ALT 0.695

>50U/L 54 46

≤50U/L 72 70

AFP <0.001

>300ng/ml 77 33

≤300ng/ml 47 81

Tumor Size 0.001

>5cm 59 29

≤5cm 67 86

Multinodular 0.001

No 88 102

Yes 38 14

T stage <0.001

T1 34 62

T2 42 36

T3 39 12

Cirrhosis 0.959

No 10 9

Yes 116 107
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response of Fluorouracil, and LCMT1 was negatively correlated

to the therapeutic effect of Lenvatinib, indicating that these

prognostic-related TRGs may also influence the therapeutic

efficacy of HCC.

To further validate our exploration, we first performed clone

formation, transwell invasion, and IHC analysis to validate our

results. We silenced the expression of five TRGs through siRNA

to further verify the biological functions of METTL6, GSTZ1,

ADH4, ADH1A, and LCMT1. The results of colony formation

indicated that depletion of METTL6, and LCMT1 inhibited the

colony formation ability of Hep3B cells, while GSTZ1 and ADH4
Frontiers in Immunology 14
accelerated the colony formation ability of the Hep3B cells,

which was in line with their role in the prognostic model.

However, there was no statistical significance upon ADH1A

depletion and it need further exploration. Consistently, the

silence of METTL6 and LCMT1 decreased cancer cell

migration, and depletion of GSTZ1 and ADH4 increased the

cancer cell migration ability (Figure 10A). In addition, we

performed the IHC analysis of the five TRGs in the Xiangya

HCC cohort, which included 77 HCC tumor tissues and 20

normal liver tissues. The IHC analysis revealed that METTL6

and LCMT1 were highly expressed in liver tumor tissues, while
A B D E

F G IH J

K L

M N

C

FIGURE 9

Analysis of five TRGs for the prognostic signature, and their correlations of tumor immune infiltrating cells and therapeutic drugs. The boxplot
showing the relationship of METTL6 (A), GSTZ1 (B), ADH4 (C), ADH1A (D), and LCMT1 (E) expression and grade stratification. The boxplot
depicting the correlation of METTL6 (F), GSTZ1 (G), ADH4 (H), ADH1A (I), and LCMT1 (J) expression and T stage. (K) The correlation of five TRGs
and TME score. (L) The relationship between five TRGs and 23 activated immune cells. (M) The correlation of five TRGs and immune
checkpoints. (N) The relationship between five TRGs and common therapeutic drugs for HCC. *p<0.05, **p< 0.01, ***p < 0.001. TRGs, tyrosine
metabolism-related genes; TME, tumor microenvironment.
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we did not observe significant differences in the GSTZ1, ADH1A

and ADH4 expression between HCC tumors and normal tissues

(Figure 10B). The survival analysis indicated that the

overexpression of METTL6 was associated with an inferior

prognosis, while the high expression of GSTZ1 and ADH4 had
Frontiers in Immunology 15
a favorable prognosis, which was consistent with their

prognostic role in mRNA level (Figure 10C).

In addition, we then explored the expression of five TRGs in

HCC cell lines by using the Cancer Cell Line Encyclopedia

(CCLE) database, which contained 25 different HCC cell lines.
A

B

C

FIGURE 10

Validation of the Five prognostic TRGs by functional analysis. (A) Clone formation and invasion analysis of Hep3B cells depleted with the five
TRGs. (B) IHC analysis of the five TRGs in the Xiangya HCC cohort (n = 97), including normal liver tissue (n = 20) and HCC tumor tissues
(n = 77). (C) Kaplan-Meier curve analysis of the five TRGs in HCC patients. Patients were divided into high- and low-expression groups based
on the median expression of each gene. TRGs, tyrosine metabolism-related genes; HCC, hepatocellular carcinoma; IHC,
immunohistochemistry. ***p < 0.001.
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The expression of five TRGs in diverse HCC cell lines were

summarized in Supplementary Table 3 and Supplementary

Figure 3. We discovered that SNU-423, SNU-182, SNU-761,

and Huh-1, JHH5, SNU-878 cell lines represented the high-risk

and low-risk subtypes, respectively. We further evaluated the

responsiveness of these cell lines to the common HCC

chemotherapeutic and targeted drugs through the Genomics of

Drug Sensitivity in Cancer (GDSC) platform, which included 16

different cell lines (Supplementary Table 4). We only detected

the responsiveness of SNU-423 and Huh-1 cell lines in the

GDSC database. The results demonstrated that the SNU-423 was

more sensitive to the 5-Fluorouracil, Oxaliplatin, and Irinotecan

(Supplementary Figures 4A-C), indicating a higher degree of

malignancy of the tumor and was consistent with the model

classification of high-risk. Meanwhile, we also found that Huh-1

was more sensitive to Sorafenib compared with SNU-423

(Supplementary Figure 4D), which provided new perspectives

for individualized therapy.

Moreover, we further analyzed the protein expression of the

five TRGs using the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) cohort. We only detected four of the

five TRGs in the proteomics data. We observed that ADH4,

GSTZ1, and ADH1A were downregulated in HCC tumor tissues,

while the LCMT1 was overexpressed in HCC tumor tissues

compared with the normal tissues (Supplementary Figure 5),

which were consistent with the mRNA expression level of HCC.

Besides, we confirmed the protein expression of the five genes in

human tissue samples. As illustrated in Supplementary Figure 6,

ADH4, GSTZ1, and ADH1A were downregulated in HCC

tumor tissues compared with the normal tissues, which were

consistent with their role in HCC. However, we did not observe

significant differences in the METTL6 and LCMT1 expression

between HCC tumors and normal tissues, which needs

further exploration.
Discussion

Tyrosine metabolism plays a vital role in substance

catabolism, the disturbance of which has been recognized as the

hallmark of disease development and tumorigenesis (33, 34).

Recent studies suggested that tyrosine metabolism may have a

potential relationship with the tumor microenvironment and

immunogenicity of tumors (17, 35). However, the overall effect

and the relationship between tyrosine metabolism gene signatures

and tumor immune infiltration mediated by multiple TRGs in

HCC have not been reported. In the meantime, it is crucial to

investigate the TRGs molecular features for a better

comprehension of the biological relationship between clinical

outcomes and tumor immune environment.

In the present study, we revealed a landscape of tyrosine

metabolism-related genes and TME signatures in HCC. The

results of the present study demonstrated genetic and
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transcriptional variations in RRGs in HCC. We revealed two

distinct molecular subtypes based on the expression of 42

tyrosine metabolism-related genes. Compared to patients in

Cluster B, patients in Cluster A had a superior survival time. The

GSVA enrichment analysis revealed that Cluster A was

significantly enriched in various substances’ metabolism, such as

tyrosine metabolism, fatty acid metabolism, and histidine

metabolism, etc., and it can be considered highly metabolic. The

pathways enriched in Cluster A indicated that they played essential

roles in the development of HCC and there was crosstalk among

the tyrosine metabolism and other signaling pathways. We also

found features of the TME between the two clusters, which were

characterized by some activation pathways’’ activation, such as

cancer-related pathways, various virus infections and substance

metabolism. Besides, we established an effective prognostic TRGs

risk model that included five TRGs (METTL6, LCMT1, GSTZ1,

ADH4, and ADH1A) and validated its predictive ability. The

patients from the two subtypes had remarkably diverse survival

outcomes. The multivariate Cox regression model proved that

TRGs signature was an independent risk factor adjusting for

clinical characteristics such as tumor size, nodule number,

cirrhosis status, and alpha-fetoprotein (AFP) level. In addition,

we explored the relationship between the TRGs risk model and

TME, and revealed the strong association of METTL6, LCMT1,

GSTZ1, ADH4, and ADH1A with the tumor immune infiltration

and immune checkpoints. Unlike the previous work for

individually analyzing the expression pattern and prognostic

value of five particular genes involved in tyrosine catabolism in

HCC (36), the current study demonstrated a comprehensive

analysis of TRGs and the immune microenvironment. To the

best of our knowledge, this is the first study which presents an

unbiased tyrosine metabolism-related risk model in HCC. The

TRGs prognostic model can be applied to categorize the prognosis

of HCC patients, which will help to better understand the

molecular mechanism of HCC and provide new insights for

targeted and immune therapy.

Recently, there are an increasing number of studies working

on the prognostic model of HCC based on ferroptosis

phenotypes (37), cuproptosis-related genes (38), m5C

regulatory genes (39), hypoxia-related angiogenic genes (40),

et al. They all showed meaningful clinical implications to some

extent. As we know the liver is the primary organ that

participates in tyrosine catabolism. It has been reported that

the disturbance of tyrosine metabolism could cause a variety of

diseases, and patients suffering from hereditary tyrosinemia are

more likely to develop HCC (12). In HCC patients, the serum

tyrosine is frequently upregulated, indicating an imbalance

tyrosine metabolic process in HCC (13). Therefore, tyrosine

catabolism signaling cascades play an irreplaceable role in the

development and progression of HCC. By comparing our

signature with two other metabolism-related prognostic

models (28, 29), our TRGs signature presented a better

performance in predicting the prognosis of HCC patients.
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With greater numbers of tumor-infiltrating lymphocytes,

tumor neoantigens, and checkpoints after standard therapy, the

overall prognosis for HCC remains poor. Patients with HCC still

exhibit heterogeneity in their outcomes despite recent advances in

immunotherapy, suggesting the critical role of TME in the

development and progression of HCC. Major biological

components of TME include immune cells such as lymphocytes,

granulocytes, and macrophages. These cells participate in various

immunological reactions and activities, such as the inflammatory

response orchestrated by tumors to aid in survival (41). TIICs,

lymphocytes, fibroblasts, extracellular matrix (ECM), blood

vessels, and inflammatory cells generated from bone marrow

consist of the TME that surrounds tumor cells (42). Evidence

has also demonstrated the critical influences of TME on tumor

initiation, growth, and therapeutic resistance (43). In this study,

we found that two TRGs subtypes differed considerably in the

TME features as well as the relative abundance of 23 TIICs, which

implies a vital role of TRGs in the development of HCC. In TRGs

low-risk group, with a favorable prognosis, demonstrated an

elevated infiltration level of activated CD8 T cells, CD56bright

natural killer cells, eosinophils, natural killer cells, and type 1 T

helper cells, implying that they play a beneficial role in HCC

development. Besides, we discovered the diverse expression of

immune checkpoints between the two TRGs subgroups, which

helped to improve the efficacy of immunotherapy in the era of

individualized therapy.

Among the five hallmark genes in the TRGs prognostic model,

METTL6 and LCMT1 served as high-risk genes in the HCC cohort.

METTL6 is a transfer RNA methyltransferase, whose function and

mechanism in cancer development are poorly understood. Michael

et al. (44) found thatMETTL6 was increased in highly proliferative

luminal breast cancer, and Ignatova et al. (45) discovered that

METTL6 was a crucial regulator of HCC cell proliferation and that

its absence reduced the pluripotency of murine stem cells. Our

results were consistent with the previous study suggesting its

indispensable role in tumor progression. LCMT1 is a

methyltransferase that catalyzes the methylation of protein

phosphatase 2A(PP2A) (46). It has been reported that LCMT1

was related to oxidative stress (47) and was overexpressed in

neuroblastoma cells (48), while it has not been reported in HCC

yet. Our study provides a new idea for the molecular function of

HCC and can be further investigated. Besides, we also identified

three favorable genes (GSTZ1, ADH4, and ADH1A) in the TRGs

prognostic model. GSTZ1 belongs to the Glutathione S-transferase

(GST) superfamily and GSTZ1 has been reported to be

downregulated in HCC and performed as a tumor suppressor in

the HCC progression (49, 50), which is in line with our findings.

ADH4 and ADH1A both belong to the alcohol dehydrogenase

(ADH) superfamily and have revealed improved prognostic value

in several cancer types, including non-small cell lung cancer,

gastric cancer, and liver cancer (51–54). Our results were in

accordance with previous studies, indicating its prognosis

predictive role in HCC patients. In addition, we also revealed
Frontiers in Immunology 17
that ADH1A was positively related to the response of fluorouracil,

and LCMT1 was negatively correlated to the therapeutic effect of

Lenvatinib, implying that these prognostic-related TRGs may also

influence the therapeutic efficacy of HCC.

In the present study, we characterized the tyrosine

metabolism-related genes signature in HCC and established a

TRGs prognostic model based on five hallmark genes, showing a

strong capacity in HCC prognosis predict ion and

immunogenicity evaluation. However, there are still some

limitations in our study. Firstly, all the samples used in our

investigation were collected retrospectively and analyses were

performed on data from public databases. Hence, the inherent

case selection bias may affect the results, and a more convincing

prospective study is required to confirm our findings. Secondly,

because of the finite sample size, large-scale cohort studies are

essential for evaluating the value of this model. Thirdly, to

improve the knowledge of tyrosine metabolism in the future, it

is also vital to validate the molecular understanding based on in

vivo and in vitro functional experiments. Finally, some crucial

clinical information, including surgery, targeted therapy and

chemoradiotherapy, was not available for analysis in the

majority of datasets, which would have impacted on

the prognosis of immune response and the tyrosine

metabolism state.
Conclusion

In summary, our integrative analysis demonstrated the

possible molecular signature of TRGs in HCC and established

a novel five-gene prognostic prediction model. The five hallmark

genes (METTL6, LCMT1, GSTZ1, ADH4, and ADH1A) are

prospective targets for determining the therapeutic efficacy of

immunotherapy and targeted therapy, and accurately predict the

survival of HCC patients. These findings highlight the significant

clinical implications of TRGs and provide new perspectives for

guiding individualized strategies for HCC patients.
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Glossary

AFP alpha-fetoprotein
Frontiers in Immunol
ADH alcohol dehydrogenase
AUC area under the curve
BP biological process
CC cellular component
CNVs copy number variations
CDF cumulative distribution function
DSS disease-specific survival
DFI disease-free interval
ECM extracellular matrix
FPKM fragments per kilobase million
GEO Gene Expression Omnibus
GO gene ontology
GSEA Gene Set Enrichment Analysis
GSVA gene set variation analysis
GST Glutathione S-transferase
HCC hepatocellular carcinoma
HPA Human Protein Atlas
IC50 50% inhibiting concentration
ogy 20
KEGG Kyoto Encyclopedia of Genes and Genomes
KM Kaplan-Meier
LASSO Least Absolute Shrinkage and Selection
Operator Regression
MF molecular function
OS overall survival
PKU phenylketonuria
PFI progression-free interval
PCA principal component analysis
PP2A protein phosphatase 2A
ROC receiver operating characteristic curve
RFS relapse-free survival
ROC receiver operating characteristic
ssGSEA single sample gene set
enrichment analysis
SNV single nucleotide variation
TCGA The Cancer Genome Atlas
TRGs tyrosine metabolism-related genes
TME tumor microenvironment
TIICs tumor-infiltrating immune cells
WHO World Health Organization.
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