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Vessel state and immune
infiltration of the angiogenesis
subgroup and construction
of a prediction model
in osteosarcoma

Jintao Wu1, Zhijian Jin1, Jianwei Lin2, Yucheng Fu1,
Jun Wang1 and Yuhui Shen1*

1Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
Angiogenesis has been recognized as a pivotal contributor to tumorigenesis

and progression. However, the role of angiogenesis-related genes (ARGs) in

vessel state, immune infiltration, and prognosis remains unknown in

osteosarcoma (OS). Bulk RNA sequencing data of osteosarcoma patients

were obtained from the Therapeutically Applicable Research to Generate

Effective Treatments (TARGET) database, and patients were divided into two

angiogenesis subgroups according to the expression of ARGs. We compared

their vessel state and used two independent algorithms to evaluate the tumor

microenvironment (TME) in the two subgroups. Furthermore, hub genes of

differentially expressed genes (DEGs) in the two subgroups were selected to

perform LASSO regression and multivariate Cox stepwise regression, and two

prognostic hub genes were found. An ARG_score based on prognostic hub

genes was calculated and proved to be reliable in the overall survival prediction

in OS patients. Furthermore, the ARG_score was significantly associated with

ARGs, immune infiltration, response to immunotherapy, and drug

sensitivity. To make our prediction model perform well, clinical features were

added and a highly accurate interactive nomogram was constructed.

Immunohistochemistry and qRT-PCR were utilized to verify the expression

of prognostic hub genes. GSE21257 from the Gene Expression Omnibus (GEO)

database was used as a validation dataset to verify its robustness. In conclusion,

our comprehensive analysis of angiogenesis subgroups in OS illustrated that

angiogenesis may lead to different vessel states and further affect immune

infiltration and prognosis of OS patients. Our findings may bring a novel

perspective for the immunotherapy strategies for OS patients.
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Introduction

Osteosarcoma (OS) is the most common primary malignant

bone tumor and mainly occurs in children and adolescents (1).

Over decades, the prognosis of OS patients had reached a

discouraging plateau due to its high heterogeneity (2).

Recently, immunotherapy has become a promising therapy

that has proved to be efficient in many tumors (3–5).

Immunotherapy strategies mainly include immune checkpoint

inhibitors (ICIs), chimeric antigen receptor (CAR) T cells, tumor

vaccines, and so on (6). ICIs, involving inhibitors of PD-1, PD-

L1, and CTLA-4, can reverse the state of immunosuppression

and mobilize the immune cells to attack the tumor instead of

targeting the tumor itself (7). Despite many advantages,

immunotherapy can only benefit a small group of patients (8,

9). More potential mechanisms which influence the effect of

immunotherapy need to be explored for the identification of

patients with immunosensitivity.

Angiogenesis, which refers to the process of sprouting, is

regulated by a large number of pro- and anti-angiogenic

molecules (10, 11). Following the formation of primary

vascular plexus, endothelial cells tend to be quiescent (12). As

the tumor invades peripheral tissues, it gradually develops heavy

vascularization, disordered vascular structure, and endothelial

anergy, which can result in less immune infiltration, drug

delivery, and aggravated hypoxia (13, 14). Persistent hypoxia

and an immunosuppressive state will deteriorate the tumor

microenvironment (TME), which promotes tumor metastasis

and drug resistance (15, 16). Therefore, angiogenesis is

considered a key physiopathological process of tumorigenesis.

Antiangiogenic treatment is used to inhibit angiogenesis so that

the proliferation of the tumor would be suppressed. In recent

years, angiogenesis inhibitors are widely used in the targeted

therapy of osteosarcoma patients. While they show good efficacy,

they cannot significantly improve the prognosis of patients and

even lead to drug resistance. It suggests that angiogenesis is

closely related to the occurrence and development of

osteosarcoma, but the understanding of its mechanism is still

insufficient. Recent evidence indicated that antiangiogenic

treatment can also block the transport of immune cells and

drugs, leading to a paradoxical increase in metastasis (17).

Tumor vessel normalization was deemed as a more reliable

treatment. Tumor vessel normalization can significantly

improve blood perfusion and reduce vascular permeability (18,

19). The increased density of functional vessels can prevent

heterogeneity in blood flow within the tumor region (20).

Additionally, the crosstalk between vessels and immune cells

was important for the effect of immunotherapy. It is well-known

that adhering to the vascular surface is the first step for immune

cells to attack tumor cells. Tumor-related endothelial cells

express low levels of cell adhesion molecules and lead to

endothelial anergy, preventing the trafficking of immune cells
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(21, 22). Moreover, functional vessels can increase the

infiltration of immune cells, contributing to a better outcome

in immunotherapy (23). On the other hand, the latest study

illustrated that immunotherapy may promote tumor vessel

normalization, and increased perfusion of tumor vessels was

expected to be a predictive biomarker of response to

immunotherapy (24, 25). All pieces of evidence indicated that

evaluation of the vessel state may help to estimate the immune

infiltration condition and further identify the potential patient

who is suitable for immunotherapy. Thus, we used “vessel state,”

defined by expressions of adhesion molecules and vessel

normalization-related genes, to evaluate the function of vessels

in tumors.

The TME is essential for tumorigenesis, invasion, and

immune infiltration, which makes it a prospective target to

predict patients’ prognosis and therapy efficacy (26, 27).

Stromal and immune infiltration in the TME were considered

important elements for immunotherapy (28). Stromal cells,

including cancer-associated fibroblasts (CAFs), pericytes, and

mesenchymal stem cells, can prevent immune infiltration (29,

30). A high expression of checkpoint molecules and a large

amount of both immune cells and stromal cells were considered

immune resistance state, which may be appropriate for ICI

treatment in OS (31, 32). Evaluation of the TME can provide

evidence for immunotherapy in OS patients.

In our work, 93 OS patients were divided into two clusters

according to the expression of angiogenesis-related genes

(ARGs). We compared the vessel state and the TME in the

two subgroups and identified prognostic hub gens between

them. ARG_score showed a correlation with angiogenesis and

characterized the immune landscape of OS. Finally, we

constructed a risk score model and a prediction model of OS

which were proved to be reliable.
Materials and methods

Data collection

The bulk RNA-seq data (count data) of OS patients were

obtained from the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) database (https://ocg.

cancer.gov/programs/target/). Samples lacking clinical information

were excluded and 93 of 101 patients with matched clinical

information were finally enrolled in our study (Supplementary

Table 1). “DESeq2” R package was performed to normalize the

gene expression dataset and made variance stabilizing

transformation (VST) for downstream analysis (Supplementary

Table 2). GSE21257 (19 primary OS samples and 34 metastatic OS

samples) was downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and used as a

validation dataset. All of the sample information from the GEO
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database can be seen in Supplementary Table 3. ARGs were

obtained from HALLMATK_ANGIOGENESIS and a previous

study (33, 34) (Supplementary Table 4) (https://www.gsea-

msigdb.org/gsea/msigdb/).
Unsupervised clustering analysis of ARGs

After removing undetected genes (CCN2, IGF), 41 ARGs were

identified in the TARGET dataset. The “ConsensusClusterPlus” R

package was used to classify patients in the TARGET dataset with

an unsupervised clustering method. The optimal value of k was

selected according to the following criteria: a) a higher intragroup

correlation and a lower intergroup correlation; b) the cumulative

distribution function (CDF) curve increased smoothly, while the

Delta area increased gradually; and c) no subgroups have a small

sample size. Based on the criteria, k = 2 was chosen as the

appropriate number of clusters. The survival curve was

calculated by the “survival” R package. “pheatmap” R package

was used to visualize the expression of ARGs in the two

angiogenesis subgroups.
Vessel state and TME analysis of
angiogenesis subgroups

To evaluate the vessel state of the two subgroups, the

expressions of adhesion molecules and vessel normalization-

related genes were compared. To explore the TME between the

angiogenesis subgroups, two independent algorithms were

performed to estimate two main components in the TME: a)

64 kinds of tumor-related cells were calculated by xCell, which

used an enrichment score to represent cell fraction (35). We

extracted the enrichment score of 23 stromal cells and compared

their scores between the two subgroups. “xCell” R package was

used to complete the analysis. b) Immune cell fraction and

immune process were analyzed by single-sample gene set

enrichment analysis (ssGSEA), which evaluates 29 immune

cells and immune processes using a gene signature-based

method (36, 37). The “GSVA” and “GSEABase” R packages

were applied.
Identification of differentially expressed
genes in the angiogenesis subgroups and
function enrichment analysis

“DESeq2” R package was performed to identify differentially

expressed genes (DEGs) between the two angiogenesis

subgroups. |Fold change (FC)| >2 and adjusted p-value<0.05

were used as the filter criteria. All DEGs were divided into the
Frontiers in Immunology 03
upregulated and downregulated groups based on their FC for

further analysis. Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) were performed by the

“clusterProfiler” R package using a q value<0.05 as statistically

significant enrichment. GSEA 4.2.3 was used for gene set

enrichment analysis. Hallmark gene sets were obtained from

the MSigDB. A p-value<0.05 and |normalized enrichment score

(NES) | >1.5 were considered as significant differences between

the two subgroups.
Protein–protein interaction and hub
gene analysis

To construct the protein–protein interaction (PPI) networks

of the upregulated and downregulated groups, the online Search

Tool for the Retrieval of Interacting Genes (STRING) database

was used, and the minimum required interaction score was 0.4.

Molecular Complex Detection (MCODE) of Cytoscape 3.9.1 was

applied to identify the hub genes in the PPI networks of

upregulated and downregulated groups. Parameters were set as

follows: degree cutoff was 2 and node score cutoff was 2.
Construction and validation of the risk
score model based on the ARG_score

To identify the prognostic significance of DEGs, hub genes

in the upregulated and downregulated groups were analyzed by

the univariate Cox regression. Genes with a p-value<0.05 have

been selected. To avoid overfitting, the least absolute shrinkage

and selection operator (LASSO) regression was used with the

“glmnet” R package. The remaining genes were then analyzed by

the multivariate Cox stepwise regression using the AIC method.

The formula of ARG_score was as follows:

ARG_ score =o(i) Coef f icient gene(i) ∗ Expression gene(i)

Coefficient means the b value of multivariate Cox stepwise

regression, Expression means the normalized gene expression

(log-transformed), and gene(i) means prognostic hub genes in

the risk score model. Patients were divided into high- and low-

risk scores based on the median of their ARG_score. The

Kaplan–Meier (K-M) survival analysis and time-dependent

receiver operating characteristic (ROC) curve were conducted

by the “survival” and “timeROC” R packages to evaluate the

prognostic significance and discrimination of the risk score

model built by prognostic hub genes. 3D principal component

analysis (PCA) was calculated by the “plotly” R package.

GSE21257 was used as a validation dataset to verify the

reliability of the risk score model.
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Angiogenesis and immune analysis of the
ARG_score

To explore the relationship between ARGs and ARG_score,

correlation analysis was performed between the expression of

ARGs and ARG_score in TARGET and GSE21257. The

interactions of ARGs and prognostic hub genes were

visualized by the “GENEMANIA” plugin of Cytoscape. To

analyze the relationship between immune cells and

ARG_score, correlation analysis was applied. Furthermore, the

“estimate” R package was utilized to calculate the stromal score

and immune score in the low- and high-risk groups, which were

classified by ARG_score. Finally, the expression of checkpoint

molecules was also compared in the low- and high-risk groups.
Prediction of response to
immunotherapy and drug sensitivity

To evaluate whether ARG_score can predict the response to

immunotherapy, two independent approaches were used: a)

tumor inflammation signature (TIS), which was applied to

predict the response to anti-PD-1 therapy (38), and b)

Immune Cell Abundance Identifier (ImmuCellAI), another

tool to predict the response to immune checkpoint blockade

therapy (39).A higher TIS score and ImmuCellAI score

represented better immunotherapy response. To evaluate the

differences in therapeutic efficacy in targeted treatment between

the low- and high-risk groups, the “oncoPredict” R package was

applied. Drug sensitivity information was obtained from the

Genomics of Drug Sensitivity in Cancer (GDSC) database

(https://www.cancerrxgene.org/), which has characterized

1,000 human cancer cell lines and screened them with

hundreds of compounds.
Establishment and validation of the
predictive nomogram

To construct a more efficient prediction model, clinical

features (age, gender, condition of metastasis) and ARG_score

of the TARGET dataset were analyzed by univariate Cox

regression and multivariate Cox regression. Independent

prognostic indicators were identified with p-value<0.05 in both

univariate and multivariate Cox regressions. An interactive

nomogram was performed by the “regplot” R package to

predict the 1-, 3-, and 5-year overall survival. A calibration

curve was drawn to test the accuracy of prediction of the 1-, 3-,

and 5-year overall survival. K-M survival analysis and time-

dependent ROC curve were also performed to evaluate the

significance and discrimination of the 1-, 3-, and 5-year

overall survival. GSE21257 containing clinical features was
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used as a validation dataset to verify the reliability of the

prediction model.
Specimens and immunohistochemistry

This study was approved by the Ruijin Hospital Ethics

Committee, Shanghai Jiao Tong University School of Medicine

(IRB protocol number: KY2020-395). Informed consent was

obtained from each patient when they were hospitalized.

Tissue microarray (TMA) constructed by 110 osteosarcoma

tissues (96 primary osteosarcoma patients and 14 recurrent

osteosarcoma patients) was used as the experimental group,

and 6 normal bone tissues were used as the control group. TMA

is an effective high-throughput technique platform for the study

of tumor molecular pathology. All the tumor samples were

histologically confirmed as osteosarcoma and reviewed

independently by two pathologists at Ruijin Hospital. The

information of all patients is shown in Supplementary Table 5.

The process of constructing the TMA was similar to that of a

previous report (40). In brief, a hole was generated in an empty

paraffin block which was prepared at first. Then, a cylindrical

tissue sample was removed from the paraffin block which has

been confirmed as osteosarcoma. Finally, the cylindrical tissue

sample was placed in the premade hole in the empty

paraffin block.

Immunohistochemical staining of GALNT14 and VCAM1

was performed as follows: specimens were fixed with 10%

formalin and embedded in paraffin. Then, the paraffin-

embedded tissues were cut into slices of 4 mm thickness. After

heat-induced antigen retrieval, anti-GALNT14 (Proteintech,

Wuhan, Chian, 16939-1-AP, 1:200) and anti-VCAM1 (Abcam,

MA, USA, ab134047,1:250) were used to incubate sections at 4°C

overnight. Slices were covered with horseradish peroxidase-

coupled goat anti-rabbit secondary antibody (CST, 7074, MA,

USA, 1:200) at room temperature for 1 h and stained

with diaminobenzidine.

By multiplying the intensity of staining (0, no staining; 1,

yellow; 2, pale brown; 3, dark brown) with a positive cell rate (0,

<5%; 1, 5%–25%; 2, 26%–50%; 3, 51%–75%; 4, 76%–100%), we

obtained the IHC score to represent the expression of GALNT14

and VCAM1.
Quantitative real-time PCR

To verify the expression of prognostic hub genes, the total

RNAs of three human osteosarcoma cell lines (MING/HOS,

143B, Well5) and one human osteoblast cell line (hFOB 1.19)

were isolated by RNAsimple Total RNA Kit (TIANGEN, China).

cDNA was obtained with HyperScript III 1st Strand cDNA

Synthesis Kit (NovaBio, China) after removing gDNA. Finally,

quantitative real-time PCR (qRT-PCR) was performed by
frontiersin.org

https://www.cancerrxgene.org/
https://doi.org/10.3389/fimmu.2022.992266
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.992266
LightCycler480 II, and GAPDH was used as an internal control

gene. Validation of each gene was performed three times as

biological replications. The primer sequences of the prognostic

hub genes are listed below:
Fron
GALNT14: CAGGACCATCCGCAGTGTATTA (sense

primer)

GALNT14: ACCAGACCTTGCCGTTCATTAT (antisense

primer)

MUC1: TATCTCATTGCCTTGGCTGTCT (sense primer)

MUC1: TGCTGGGTTTGTGTAAGAGAGG (antisense

primer)

GADPH: GGAAGCTTGTCATCAATGGAAATC (sense

primer)

GADPH: TGATGACCCTTTTGGCTCCC (antisense

primer)
Statistical analysis and visualization

R software (version 4.1.2) and Perl (version 5.16.2) were

conducted to process, analyze, and visualize data. The hazard

ratio (HR) was calculated by univariate and multivariate Cox

regressions. Student’s t-test was used for the comparison of

variables that obey normal distribution, while the Wilcoxon

rank-sum test was used for non-normally distributed variables.

The Shapiro–Wilk test was applied for the normality test. A two-

sided p-value<0.05 was deemed as statistically significant.

“ggpubr” and “ggplot2” R packages were appl ied

for visualization.
Results

Identification of the angiogenesis
subgroups in OS

The analysis process of our study is shown in Supplementary

Figure 1. To illustrate the effect of ARGs in OS, patients in

TARGET were selected to perform consensus clustering.

According to the consensus matrix heatmaps, CDF curve, and

Delta area curve, we divided patients into two angiogenesis

subgroups (Figure 1A, Supplementary Figures 2A–I). There

were 34 patients in cluster 1 and 59 patients in cluster 2. K-M

survival curve indicated that cluster 2 had a better overall

survival (log-rank p-value = 0.022, Figure 1B) and event-free

survival (log-rank p-value = 0.017, Supplementary Figure 3A)

than cluster 1. The PPI network presented the interactions of

ARGs, indicating the potential co-expression between ARGs

(Supplementary Figure 3B). The heatmap showed the gene

expression of ARGs between the two angiogenesis subgroups
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with their matched clinicopathological characteristics

(Figure 1C). To investigate the specific ARGs differentially

expressed in the two subgroups, a boxplot was performed and

we found that 6 ARGs (SPP1, LPL, JAG2, ANGPT1, ANGPT2,

and APOH) were upregulated in cluster 1 while 13 ARGs

(COL3A1, LUM, APP, POSTN, VCAN, JAG1, TNFRSF21,

CCND2, HGF, SLCO2A1, PTGS2, VTN, and CXCL6) were

upregulated in cluster 2 (Supplementary Figure 3C). It seemed

that different ARGs played different roles in prognosis.
Vessel state analysis of the angiogenesis
subgroups

We compared four major adhesion molecules between the

angiogenesis subgroups, and VCAM1 and E-selectin were

significantly highly expressed in cluster 2. The median

expression of ICAM1 and P-selectin in cluster 1 was also lower

than that in cluster 2 (Figure 2A). Vessel normalization-related

genes were also associated with vessel state. ANG2/TIE2,

VEGFA/PDGFB, and BMP9/ALK1 signaling were important

in angiogenesis and vessel normalization (41, 42), and the

downregulation of ANG2 and VEGFA and the upregulation of

others contributed to vascular normalization (43, 44). We

assessed the expression of ANG2, TIE2, VEGFA, PDGFB, and

ALK1 in the two subgroups (BMP9 failed to be detected in the

gene expression matrix). It revealed that TIE2 and ALK1 were

remarkably higher in cluster 2, while ANG2was obviously higher

in cluster 1. The median expression of PDGFB was also higher in

cluster 2, and the opposite result can be seen in VEGFA

(Figure 2B). The results above indicated that cluster 2 may

have a better vessel state, which may result in a better immune

infiltration and prognosis.
TME analysis of the angiogenesis
subgroups

Due to the differences of vessel state in the two subgroups,

we speculated that there were also differences in the TME

between the two subgroups. The amounts of chondrocytes,

fibroblasts, HSCs, and myocytes were significantly different in

the two subgroups according to the results of xCell (Figure 2C,

Supplementary Table 6). However, there was no statistical

difference between the abundance of these stromal cells and

overall survival according to the result of univariate Cox

regression (p-value > 0.05, Supplementary Table 7).

For immune cells and immune processes, ssGSEA was used

to calculate their enrichment scores. It showed that five immune

cells (B cells, CD8+ T cells, neutrophils, Th2 cells, and Tregs) and

seven immune functions (APC co-inhibition, CCR, checkpoint,

parainflammation, T-cell co-inhibition, T-cell co-stimulation,

and type II IFN response) were highly enriched in cluster 2
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(Figures 2D, E, Supplementary Table 8). To identify factors

related to prognosis, univariate Cox regression was applied and

CD8+ T cells, T-cell co-inhibition, checkpoint, APC co-

inhibition, and Th2 cells were considered to be significantly

associated (p-value< 0.05, Supplementary Table 7). Then, we

divided each factor into a high score and a low score according to

the median of enrichment scores. The K-M survival curve

illustrated that only CD8+ T cells and T-cell co-inhibition

were statistically related to overall survival (Supplementary

Figures 3D, E). CD8+ T cells had been reported to induce

immunosensitivity and T-cell co-inhibition meant the
Frontiers in Immunology 06
sensitivity of ICI. These results suggested that the better

survival of cluster 2 may benefit from the higher infiltration

levels of immune cells.
Identification of DEGs, function
enrichment analysis, and hub gene
discovery

To further explore the difference between cluster 1 and

cluster 2, 4,376 DEGs between the two subgroups were found
B

C

A

FIGURE 1

Consensus clustering by angiogenesis-related genes (ARGs) and their expression in the two angiogenesis subgroups. (A) The consensus matrix
heatmap showed that k = 2 can divide samples into two subgroups well. (B) Kaplan–Meier plots comparing the overall survival between the two
subgroups (log-rank p-value = 0.022). (C) A heatmap about the expression of ARGs and clinical features in the two subgroups. Green means
low expression and red means high expression.
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(Supplementary Table 9). DEGs upregulated and downregulated

in cluster 2 were 960 and 3,416, respectively. GO analysis

indicated that DEGs highly expressed in cluster 2 were mainly

enriched in immune-related processes (complement activation,

phagocytosis and recognition, humoral immune response, and

so on) (Figure 3A, Supplementary Table 10). Furthermore, the

results of the KEGG analysis illustrated that more immune and
Frontiers in Immunology 07
cell adhesion-related signaling pathways were enriched in cluster

2 (such as cytokine receptor interaction, cell adhesion molecules,

focal adhesion, and so on), suggesting that cluster 2 represented

prominent immunocompetence (Figure 3B, Supplementary

Table 11). Moreover, the GSEA results showed that 12

biological processes were significantly upregulated in cluster 2,

including interferon-gamma response, KRAS signaling-up,
B

C

D E

A

FIGURE 2

Vessel state and TME in the two subgroups. (A) Expression of adhesion molecules. (B) Expression of vessel normalization-related genes.
(C) Enrichment scores of stromal cells calculated by xCell. (D, E) Enrichment scores of 29 immune cells and immune processes calculated
by ssGSEA analysis. (*p< 0.05, **p< 0.01, ***p< 0.001).
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xenobiotic metabolism, and so on (Supplementary Figures 4A–

L, Supplementary Table 12).

In order to discover the hub genes, MCODE was applied.

Twenty-four and 16 hub genes were found in upregulated and

downregulated DEGs, respectively (Figures 3C, D). These 40 hub

genes would be studied next.
Construction and validation of the
angiogenesis-related risk score model

After selecting the hub genes from DEGs, we investigated

whether these genes were associated with survival. Univariate

Cox regression was performed and eight hub genes remained
Frontiers in Immunology 08
with a p-value<0.05 (Supplementary Table 13). To avoid

overfitting, LASSO regression was used and five genes were

independent of each other (Figures 4A, B). Finally, we applied

multivariate Cox stepwise regression, leaving two genes

(GALNT14 and MUC1) to construct the risk score model

(Supplementary Table 13). ARG_score was calculated as

follows: (0.2624 * expression of GALNT14) + (0.2547 *

expression of MUC1). Patients were distinguished as low and

high risk based on the median ARG_score. It revealed that the

low-risk group had a significantly longer overall survival

(Figure 4C, log-rank p-value = 4.605e−4). The time-dependent

ROC curves showed that the area under the curve (AUC) values

of the 1-, 3-, and 5-year overall survival were 0.683, 0.699, and

0.685, respectively (Figure 4D).
B

C D

A

FIGURE 3

Enrichment analysis and hub genes of DEGs in the two subgroups. (A) GO enrichment analysis of upregulated genes in cluster 2, cutoff: q
value<0.05. (B) KEGG pathway analysis of upregulated genes in cluster 2, cutoff: q value<0.05. (C, D) Hub genes in upregulated and
downregulated genes analyzed by MCODE.
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GALNT14 and MUC1 had been reported as oncogenes in

tumors, and both were overexpressed in the high-risk group

(Figure 4E). PCA analysis was performed and patients can be

divided into two groups according to the risk score model

(Supplementary Figure 5A). Ranking patients by ARG_score

from smallest to largest, the one who had a higher score tended

to have a shorter survival time (Figures 4F, G). External validation

demonstrated that the risk score model can also classify patients of

GSE21257 into low and high risk, and significantly worse overall

survival was also observed in the high-risk group (Supplementary

Figure 5B, log-rank p-value = 8.253e−3). The AUC values of 1-, 3-,

and 5-year overall survival were even better in GSE21257 (0.781,

0.749, and 0.817, respectively, Supplementary Figure 5C).
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The same results of the relationship between ARGs and overall

survival can also be seen in GSE21257 (Supplementary

Figures 5D, F). These results indicated that ARG_score can well

predict the prognosis of OS patients, and a lower ARG_score was

also observed in cluster 2 which had a better overall survival

(Supplementary Figure 6A).
Association of ARG_score with
angiogenesis and immune infiltration

To investigate the relationship between ARG_score and

angiogenesis, PPI analysis was applied and showed the
B C

D E

F G

A

FIGURE 4

Construction of the risk score model. (A) LASSO regression was used to screen the prognostic genes. (B) Cross-validation indicated that five
genes can be used in multivariate Cox regression. (C) K-M plots comparing overall survival between the low- and high-risk groups in the
Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset (log-rank p-value = 4.605e−4). (D) Time-dependent
ROC curves to predict the discrimination of the 1-, 3-, and 5-year survival according to the risk score model in the TARGET dataset. (E) A
heatmap of two prognostic hub genes of the TARGET dataset in the two subgroups. Red means high expression and green means low
expression. (F, G) Ranked dot and scatter plots of the TARGET dataset showing the ARG_score distribution and patient survival status.
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interactions between prognostic hub genes and ARGs

(Supplementary Figure 6B). We also found that both

ARG_scores in TARGET and GSE21257 were significantly

correlated with most of the ARGs which were differentially

expressed in the two angiogenesis subgroups (Supplementary

Figure 6C). We then evaluated the association of ARG_score

and immune infiltration. Correlation analysis illustrated that a

lower ARG_score was related to a higher fraction of immune

cells except for iDCs (Figures 5A–H). A higher immune score

and stromal score suggested that the low-risk group may
Frontiers in Immunology 10
represent an immune-resistant state (Figures 5I, J). A higher

estimate score in the low-risk group was also closely associated

with a lower purity of tumor cells (Figure 5K). A previous study

considered that OS patients who had an immune “hot”

signature tended to have an adaptive immune resistance state

(45). We further compared the expression of checkpoint

molecules in the low- and high-risk groups, and most of

them were significantly overexpressed in the low-risk group,

suggesting that a lower ARG_score may potentially benefit

from ICI (Figure 5L).
B C D

E F G H

I J K

L

A

FIGURE 5

Correlation between ARG_score and immune infiltration. (A–H) Correlation analysis between ARG_score and immune cell/checkpoint. (I–K)
Stromal score, immune score, and estimate score of the low- and high-risk groups. (L) Expression levels of checkpoint molecules in the low-
and high-risk groups. (*p< 0.05, **p< 0.01, ***p< 0.001).
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The value of ARG_score in the prediction
of response to immunotherapy and drug
sensitivity

To further explore the prediction ability of ARG_score for

clinical response to immunotherapy, we compared the TIS score

between the low- and high-risk groups. It showed a higher TIS

score in the low-risk group, indicating that ICI may be effective

in patients with a lower ARG_score (Figure 6A, Supplementary

Table 14). Moreover, the low-risk group had a higher proportion

of patients with a high ImmuCellAI score, which represented a

better immunotherapy response (Figure 6B, Supplementary

Table 15). Recent studies prompted that immunotherapy

combined with targeted therapy may achieve better efficacy.

We assessed some targeted drugs that may potentially benefit OS

patients, including the angiogenesis inhibitors (sorafenib and

pazopanib), PARP inhibitor (olaparib), HER2 inhibitor

(lapatinib), CDK4/6 inhibitor (palbociclib), Bcl-2 inhibitor

(sabutoclax), and mTOR inhibitor (AZD5153). It indicated
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that the low-risk group was more sensitive to pazopanib and

Palbociclib, while the high-risk group was more appropriate to

be treated with sorafenib, olaparib, lapatinib, sabutoclax, and

AZD5153 (Figures 6C–I, Supplementary Table 16). These results

showed that ARG_score was also related to drug sensitivity.
Development and validation of the
prediction model in OS

Clinical features always affect the prognosis of patients. To

make our prediction model more effective, ARG_score and

clinical information (age, gender, and condition) of the

TARGET dataset were used to build an interactive nomogram,

which predicted the 1-, 3-, and 5-year overall survival

(Figure 7A). In accordance with the prediction model, patients

can be divided into low- and high-risk groups, too. The low-risk

group still represented a good outcome (Figure 7B, log-rank p-

value = 5e−4). In order to access the accuracy and discrimination
B C

D E F

G H I

A

FIGURE 6

Immunotherapy response prediction and drug sensitivity. (A) ITS score of the low- and high-risk groups. (B) Proportion of high and low
ImmuCellAI score in the low- and high-risk groups. (C–I) IC50 of sorafenib, pazopanib, olaparib, lapatinib, palbociclib, sabutoclax, and AZD5153
in the low- and high-risk groups. (*p< 0.05, **p< 0.01).
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of the prediction model, calibration curves and time-dependent

ROC curves were performed. The AUC values of the 1-, 3-, and

5-year overall survival were 0.868, 0.771, and 0.788, respectively

(Figures 7C, D). In the validation dataset, the K-M curve showed

a more significant benefit in overall survival in the low-risk

group (Figure 7E, log-rank p-value = 2.146e−6). The calibration

curves and ROC curves demonstrated the reliability of the
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prediction model (the AUC values of the 1-, 3-, and 5-year

overall survival were 0.832, 0.875, and 0.945, respectively;

Figures 7F, G). Additionally, ARG_score and condition were

identified as independent factors in the prediction model, which

had a p-value<0.05 in both univariate and multivariate Cox

regression analyses (Supplementary Figures 6D, E,

Supplementary Table 13).
B C D

E F G

A

FIGURE 7

Construction and validation of the prediction model. (A) An interactive nomogram built by ARG_score and clinical features. (B) K-M plots
comparing the overall survival between the low- and high-risk groups in the TARGET dataset (log-rank p-value = 5e−4). (C) Calibration curves
to analyze the accuracy of the 1-, 3-, and 5-year survival according to the prediction model of the TARGET dataset. (D) Time-dependent ROC
curves to predict the discrimination of the 1-, 3-, and 5-year survival according to the prediction model of the TARGET dataset. (E–G) K-M
plots, calibration curves, and time-dependent ROC curves in GSE21257, which served as a validation dataset. The symbol *** represents that
ARG_score and condition were identified as independent factors in the prediction model, which had a p value < 0.001.
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Immunohistochemistry and qRT-PCR

To verify the relationship between vessel state and prognosis,

immunohistochemical staining was performed (Figure 8A). The

expression of VCAM1, a classical adhesion molecule, was used

to evaluate the vessel state of the osteosarcoma tissue. Results

showed that the expression of VCAM1 in primary osteosarcoma

patients was significantly higher than that in recurrent
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osteosarcoma patients (Figure 8B), which suggested that a

better vessel state may be related to a better outcome.

In addition, we accessed the expression of prognostic hub

genes. It was observed that GALNT14 was significantly highly

expressed in osteosarcoma (Figures 8C–E). qRT-PCR showed

that the expression of GALNT14 in osteosarcoma cell lines was

also higher than that in the osteoblast cell line, while the opposite

result can be seen in MUC1 (Figures 8F, G).
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FIGURE 8

Immunohistochemistry and qRT-PCR. (A) Immunohistochemistry of VCAM1 in osteosarcoma tissue. (B) IHC score of VCAM1 between the
primary osteosarcoma group and the recurrent osteosarcoma group. (C) Immunohistochemistry of GALNT14 in normal bone tissue. (D)
Immunohistochemistry of GALNT14 in osteosarcoma tissue. (E) IHC score of GALNT14 between normal bone tissue and osteosarcoma tissue.
(F, G) qRT-PCR results of GALNT14 and MUC1 in osteoblast cell line and three osteosarcoma cell lines. (*p< 0.05, **p< 0.01, ***p< 0.001).
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Discussion

Recently, many studies have paid attention to the process

of angiogenesis in tumors. However, most of them emphasized

on antiangiogenic therapy and tumor vessel normalization.

The roles of vessel state and immune infiltration affected by

angiogenesis have not been fully explored, especially in OS. It

was shown in the present study that 41 angiogenesis-related

genes can well divide patients into two angiogenesis

subgroups. Longer overall survival, better vessel state, and

more immune infiltration were observed in cluster 2. DEGs of

these two subgroups were identified and ARG_score was

calculated by two prognostic hub genes. The accuracy and

discrimination of the risk score model indicated that

ARG_score performed a robust and effective prediction

ability. The correlation of ARG_score and ARGs, immune

infiltration, ICI, and drug sensitivity suggested that

ARG_score can also estimate the angiogenesis and

immunotherapy efficacy in OS patients. The prediction

model constructed by ARG_score and clinical features made

overall survival prediction more reliable. The results above

may assist in a better understanding of the relationship

between angiogenesis and immunotherapy in OS.

The select ion of patients who may respond to

immunotherapy has always been a crucial problem in tumor

therapy. Tumor mutation burden, microsatellite instability, and

expression levels of checkpoint molecules were considered as the

signatures to evaluate immunotherapy efficacy (46, 47).

Nevertheless, the mutation pattern of OS was remarkably

different from other solid tumors. Numerous studies revealed

that a high level of structural variants including somatic

structural variations, copy number variations, and

chromothripsis showed the genomic complexity of OS (48,

49). Only a minority of OS patients benefited from

immunotherapy, suggesting that more mechanisms need to be

explored for efficacy prediction. We defined vessel state as the

vascular structure and endothelial cell function, which have been

reported as an important factor of immune infiltration (50, 51).

ICAM1, VCAM1, E-selectin, and P-selectin were known as

adhesion molecules and mainly expressed on endothelial cells.

Downregulation of these genes enabled tumor cells to escape

from immune surveillance (52). In our study, a higher

expression of adhesion molecules was associated with better

prognosis and immune infiltration, which was consistent with

previous reports. Vessel normalization can change the abnormal

structure of a vessel into a more “mature” phenotype (23).

Overexpression of ANG2 and VEGFR promoted the

immaturity of the vessel and suppressed the expression of

TIE2 and PDGFB which contributed to a mature phenotype

(53, 54). Notably, ANG2 and VEGFA were angiogenesis-related

genes in our study, suggesting that angiogenesis was associated

with vessel state. With a higher expression of adhesion molecules
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and normalization-related genes, cluster 2 represented a better

vessel state. Combined with its good prognosis and immune

infiltration, we speculated that vessel state may be a

complementary part of immunotherapy efficacy prediction and

more experiments should be conducted.

It was generally suggested that patients with more T-cell

infiltration would respond better to immunotherapy (55).

Patients in cluster 2 had better immune infiltration, especially

CD8+ T cells. CD8+ T cells were proved to be associated with

longer overall survival time in our study and clearly defined as an

immunotherapy effectiveness signature (56). Nevertheless, the

density of Tregs and Th2 cells, which were considered a poor

prognosis in some studies, was also higher in cluster 2 (57, 58).

In fact, many types of immune cells were discovered to have

different roles in different tumors. Decreased Treg cells

correlated to shorter overall survival in breast cancer and

hepatocellular carcinoma, while it correlated to longer overall

survival in colorectal cancer (59–61). Different outcomes related

to Th2 cells were also observed in pancreatic cancer and

Hodgkin lymphoma (62, 63). It may reveal that the function

of immune cells was associated with their interaction with

different kinds of tumors. Notably, larger amounts of stromal

cells and a higher expression of checkpoints were detected in

cluster 2, which meant that cluster 2 may be an adaptive

immune-resistant subgroup and was appropriate for ICI

treatment (64). Higher enrichment of B cells was also observed

in cluster 2. More and more studies regarded that B cells played

an important role in the immune response. Immunoglobulin

subclass switch events were observed in numerous cancers (65).

Intratumoral tertiary lymphoid structures and cytokine release

were related to better prognosis and positive response on

immunotherapy (66, 67). Importantly, the latest research

illustrated that B cells were the strongest prognostic factor in

sarcoma, which emphasized the significance of B cells in

sarcoma therapy (68).

To further explore the contribution of angiogenesis

subgroups to the prognosis of OS patients, we identified two

prognosis-associated hub genes, GALNT14 and MUC1. N-

acetyl-galactosaminyltransferases (GALNT14) is a member of

the polypeptide N-acetylgalactosaminyltransferase (GALNT)

family, which can catalyze mucin-type O-glycosylation of

proteins (69) . It was reported that GALNT14 was

overexpressed in more than 30% of samples from various

human malignant tumors (70). As a carcinoma driver gene,

GALNT14 was proved to participate in the tumorigenesis and

progression in ovarian cancer, hepatocellular carcinoma, lung

cancers, and so on (71–73). Mucin-1 (MUC1), a kind of O-

glycosylated transmembrane glycoprotein, was the potential

biomarker in breast cancer, lung adenocarcinoma, and

colorectal adenocarcinoma (74, 75). In other studies, a high

expression of MUC1 in prostate cancer and multiple myeloma

may lead to a malignant phenotype (76, 77). Transcriptome
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analysis showed that a high expression of GALNT14 and MUC1

in osteosarcoma was associated with poor prognosis. However,

the results of qRT-PCR showed that the expression of MUC1 in

osteosarcoma cell lines was lower than that in osteoblastic cell

lines, which may be related to hypermethylation or co-

expression inhibition of other genes. More evidence is

required. We used these two hub genes to calculate the

ARG_score, which showed its correlation with angiogenesis

and immune infiltration in our study. Notably, the expressions

of VCAN, LPL, TNFRSF21, and JAG2 were significantly different

in the two subgroups and correlated with ARG_score in both

TARGET and GSE21257, and they may serve as the core genes

of vessel state. Moreover, a lower ARG_score was associated with

a larger immune cell abundance and a higher immune score. The

results of immunotherapy prediction were in accord with

ARG_score. To some extent, ARG_score can reflect the

immunocompetence of OS patients. A higher expression of

checkpoint molecules and a better ImmuCellAI score were

observed in the lower ARG_score, which meant that low-risk

patients may respond to ICI therapy. ICIs have proved their

efficacy and safety, ARG_score can help classify patients into

low- and high-risk groups, and patients with low ARG_score

may be appropriate for ICI treatment and have better overall

survival. Furthermore, a lower ARG_score was associated with a

higher TIS score, which served as a potential predictive

biomarker for PD-1 inhibitor combination therapy.

Combination therapy can often improve efficacy, and drug

sensitivity analysis found that sorafenib, olaparib, lapatinib,

sabutoclax, and AZD5153 were more suitable for patients with

a lower ARG_score. This may help in clinical decision-making

concerning immunotherapy combined with targeted therapy.

We concluded that ARG_score can identify OS patients who

benefited from immunotherapy and predict their prognosis, and

these results were derived from their differential expression in

ARGs. As far as we know, our work is the first to elucidate the

relationship among angiogenesis, vessel state, immune

infiltration, and prognosis in OS, which may contribute to

making immunotherapy decisions in OS patients.

Although our findings seem encouraging, there were some

limitations in our research. Firstly, we discovered the different

vessel states, immune infiltration, and prognoses in the two

angiogenesis subgroups, but we did not prove the causality

among them. Based on a previous study, we propose to use

vessel state as a novel predictive factor of immunotherapy in OS,

and more explorations are needed. Moreover, the spatial

distribution of cells in the TME was important for the

estimation of immunotherapy efficiency (78). Immune cells

infiltrating between tumor cells are more likely to exert an

antitumor effect than infiltrating between stromal cells. The

specific mechanism by which the prognosis-associated hub

genes influence the immune effect has also not been explored.

This will be the direction of our research in the future.
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Conclusion

Briefly, our integrated analysis of angiogenesis subgroups

revealed the relationship between angiogenesis, vessel state, and

immune infiltration, and we proposed to identify the patients with

better vessel states for immunotherapy. We also constructed a

prediction model with prognostic-related hub genes, and it

performed well in overall survival prediction. These findings

emphasized the importance of angiogenesis and would provide

a new perspective for immunotherapy of OS patients.
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