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Adaptive immunity is a sophisticated form of immune response capable of

retaining the molecular memory of a very great diversity of target antigens

(epitopes) as non-self. It is capable of reactivating itself upon a second

encounter with an immunoglobulin or T-cell receptor antigen-binding site

with a known epitope that had previously primed the host immune system. It

has long been considered that adaptive immunity is a highly evolved form of

non-self recognition that appeared quite late in speciation and complemented

a more generalist response called innate immunity. Innate immunity offers a

relatively non-specific defense (although mediated by sensors that could

specifically recognize virus or bacteria compounds) and which does not

retain a memory of the danger. But this notion of recent acquisition of

adaptive immunity is challenged by the fact that another form of specific

recognition mechanisms already existed in prokaryotes that may be able to

specifically auto-protect against external danger. This recognition mechanism

can be considered a primitive form of specific (adaptive) non-self recognition. It

is based on the fact that many archaea and bacteria use a genome editing

system that confers the ability to appropriate viral DNA sequences allowing

prokaryotes to prevent host damage through a mechanism very similar to

adaptive immunity. This is indistinctly called, ‘endogenization of foreign DNA’ or

‘viral DNA predation’ or, more pictorially ‘DNA cannibalism’. For several years

evidence has been accumulating, highlighting the crucial role of

endogenization of foreign DNA in the fundamental processes related to

adaptive immunity and leading to a change in the dogma that adaptive

immunity appeared late in speciation.
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Introduction

Exocannibalism (from Greek exo-, ‘from outside’ and

cannibalism, ‘to eat humans’), is the consumption of flesh

outside one’s close social group. Why introduce the concept of

DNA ‘cannibalism’ to describe endogenization of foreign DNA?

Over the past centuries, archaeologists and anthropologists have

provided evidence of human cannibalism, a primitive behavior

consisting of eating one’s own kind. Although cannibalism may

have been practiced for different reasons, one of the best-known

forms of human cannibalism took place in the context of

warfare, either to fully eradicate enemies in a show of anger or

to acquire the powers of those who had been defeated (1).

Cannibalism is currently a major human taboo, but it is

surprisingly common in the animal kingdom and there is a lot

of good reasons to eat your own kind (2–4). In this paper the

reference to the concept of ‘cannibalism’ is only a metaphor,

voluntarily chosen to image a situation of ‘genetic eating of the

enemy in a context of warfare’. It illustrates one way among

others to evade dangers in the more global context of the

fundamental belief that the immune system is designed to

discriminate some self from some non-self, especially when the

non-self is a pathogenic agents. ‘Stricto sensu’ when one evokes a

phenomenon of capture by one species (e.g., humans) of DNA

sequences relating to a foreign species (e.g., virus), the word

‘cannibalism’ is not appropriate insofar as cannibalism refers to

events which occurs between individuals of the same species

(consumption of conspecifics as food). It is however worth

noting that once endogenized, certain DNA sequences can

make it possible to fight against enemies belonging to the

species from which they originate. By analogy with primitive

human cannibalism, it can be considered that a ‘form of

cannibalism’ existed as early as prokaryotes, which have

managed to appropriate the ‘strength of their aggressor’ and

‘fight’ against its related organisms through ‘cannibalism of

enemy DNA sequences’. Seen under this prism, it is

interesting to wonder about the role that DNA ‘cannibalism’

may have played in the conservation of specific defense

mechanisms during speciation of both prokaryotes and

eukaryotes, and on the mechanisms of DNA sequence

transfers (e.g., horizontal transfer, vertical transfer).

Obviously, this concept of DNA ‘cannibalism’ may be

surprising for immunologists who advocate: i) that the

immune system’s (IS) primary driving force is not to

discriminate between self and non-self (complicated structures

that often share features with self antigens) but that its function

mainly entails recognition of danger; ii) that IS maintains a state

of tolerance to pathogen load without compromising host

fi tness ; i i i ) that the pathologica l outcome of the

microorganism-host interaction is determined by the amount

of damage to the host with the possible contributions of both the
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microorganism and the host; and/or iv) that hereditary

information is embedded in diverse physical forms (DNA,

epigenetic methylation, RNA, proteins, symbionts)

representing a continuum of evolutionary qualities (5–7). The

outcome of microorganism-host interaction can be either

beneficial or detrimental to the microorganism, to the host, or

to both. Evolution of life can be guided by the microorganism-

host interactions and is contingent on changing hereditary

information relayed through time (inherited information).

Ancient microorganism-host interactions in which bacteria

were incorporated into a primordial host as organelles are

likely to have resulted in the evolution of eukaryotes (8).

Commensal bacteria maintaining symbiotic relationship with

the host provide essential functions to their host such as

nutrition, resistance to pathogen colonization and influence of

the immune system, thereby being indispensable for the host’s

survival (9, 10). There is also evidence obtained in recombinant-

activating gene (RAG) deficient mice suggesting that some

microbes may benefit from the specific immune responses that

they elicit (11). In the ‘damage-response framework’model (6), a

pathogen is defined as a microorganism that is capable of

causing damage to a host. Many microorganisms can be

considered dangerous, like viruses or bacteria secreting toxins,

yet other similar microorganisms are not, like nonlytic viruses or

bacteria secreting beneficial nutrient. If a virus infects a cell,

replicates without harming the host cell, and moves on, it would

not necessarily damage the host cell and there would be no need

to eliminate it and it might even carry genes useful to the host

cell (e.g. retroviruses jump in and out constantly, sometimes

leaving bits of themselves behind). Archea and bacteria are

constantly exposed to the invasion by elements such as phages

or plasmids (12). In response they have evolved an arsenal of

defense systems such as antiphage systems (frequently physically

clustered in genomic ‘defense islands’) or defense systems

specifically targeting foreign plasmids, that limit the intrusion

of foreign elements (13, 14). The existence of a potential ‘Pan

immune system’ where the effective arsenal of defense systems is

not encoded by the genome of a single microorganism but rather

by its pan-genome, has also been postulated (15). As far back in

speciation as in the archaea and bacteria, endogenization of

foreign DNA sequences was developed as a mechanism of

adaptive immunity allowing the prokaryote to recognize and

destroy a pathogenic agent (i.e., a bacteriophage) that would

have previously infected it, or one of its ancestors. These

mechanisms of DNA ‘cannibalism’ are probably much more

numerous and useful than what has previously been described.

In particular, it is currently well established that endogenous

retroviruses (ERVs) are most likely the proviral remnants of

ancestral virus infections. Amazingly, these ERVs form

multigene families representing about 8%-10% of the human

genome (16, 17). They have certainly contributed to the
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evolution of most organisms in their complex ecosystems, and

for some of them, to survive the pressure of pathogenic agents

and their genetic drift (18). This view agrees with the

endogenization-amplification theory, which postulates that on

various occasions exogenous retroviruses have endogenized in

animal genomes, with subsequent amplification (19). It has been

estimated that the largest human endogenous retrovirus (ERV)

family, HERV-K, consists of 1306 copies (20). Interestingly, Old

World monkeys possess a few copies of HERV-K, whereas New

World monkeys lack HERV-K, suggesting that HERV-K must

have entered the human lineage after the split with the New

World monkeys but before the split with the Old World

monkeys (21). Since humans possess many more copies than

Old World monkeys, this indicates that the HERV-K family

must have greatly expanded after the human lineage split from

Old World monkeys. Moreover, the study of the evolutionary

history of HERV-W in humans (213 copies in the human

genome), and ERV-W in primate lineages has revealed that

closely related species share the same ERV elements at

orthologous loci and that the number of shared elements

reflects the degree of relatedness between species (22).
CRISPR-Cas, the genome editing
system that confers adaptive
immunity to bacteria

On infection of bacteria, bacteriophages enter either a lytic

cycle resulting in lysis of bacterial cells and horizontal

transmission or a lysogenic cycle characterized by the

integration of the prophage into the host genome and vertical

transmission. Bacteria use the genome editing Clustered

Regularly Interspaced Short Palindromic Repeats CRISPR-Cas,

as an immune defense based on recognition of invading lytic

bacteriophages. The CRISPR-Cas systems described in archaea

and bacteria have been broadly divided into two classes: Class I

(divided into types I, III and IV) and Class 2 (divided into types

II, V and VI) (23–25). So, when attacked by a bacteriophage, the

target bacterium reacts by ‘viral predation/DNA cannibalism’ as

it captures small pieces of the viral DNA and inserts them into its

own DNA in a particular pattern leading to generating segments

known as CRISPR arrays. The CRISPR arrays allow the

‘educated’ bacterium to ‘retain the memory’ of the aggressor,

like a genetic ‘fingerprint’ of the invader. These systems are

usually composed of multiple CRISPR-associated genes (cas

genes) on the bacterial chromosome and CRISP array

consisting of unique DNA spacers. The CRISPR-Cas system

mediates its immune defense function through three distinct

phases: first, the adaptation phase during which Cas proteins

(e.g., Cas 1, Cas 2 sometimes associated with Cas 4) select and

process DNA fragments from the invader and insert them into

the CRISPR array of the host genome leading to the acquisition
Frontiers in Immunology
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of new spacers (it is the central element of the adaptive immune

response device); second the expression phase during which the

CRISPR locus is transcribed into a long pre-crRNA that is cut

into different crRNAs corresponding to different exogenous

fragments that combine with Cas proteins constituting a

surveillance unit inside the bacterium; third, the interference if

the bacterium subsequently encounters the same bacteriophage

(or its close relatives) again, the crRNAs-Cas complex will bind

to specific complementary regions of the exogenous virus DNA.

The bacterium then uses an activate nuclease (e.g. class 1, Cas 3,

Cas 9, Cas10) to cut the DNA apart, which disables the virus

(26). It is likely the most ancestral form of acquired immunity

found in most archaea (about 90%) and in many bacteria (about

40%) (27). However, it was also reported that only 0.83% of

Staphylococcus aureus strains from different geographical

regions have type IIA CRISPR-Cas, suggesting that this

specific system may result from spontaneous horizontal gene

transfer event (28). It has been proposed that the ‘ancestral

CRISPR-Cas system’ appeared in thermophilic archaea, then

spread to other lineages of archaea and bacteria through

horizontal transfers (29). This system then evolved, both at the

level of acquisition of immunity and of the genes coding for the

proteins in this defense system, explaining why bacteriophage

infection is a major driving force for the maintenance of

CRISPR-Cas immune system and why there is a strong

selective benefits of phage-encoded anti-CRISPR (Acr) genes

for both the phage and the host under context where lysogeny is

suppressed. It has been suggested that maladaptive type I

CRISPR-Cas immune systems (cannot eliminate the invading

bacteriophages due to imperfect matching of spacers to the

integrated prophage) occur frequently in nature (30). The Cas

proteins constituting the molecular machinery of adaptive

immunity have nuclease, helicase, and polymerase-like

activities. The diversification of the CRISPR-Cas systems is

likely to be partly driven by their competitive coevolution with

virus (e.g., phage)-encoded Acr proteins that interact with

different CRISPR-Cas components, preventing Cas proteins

from binding or cleaving phage DNA (24, 26).

The same mechanism was also reported by one of us (DR) in

giant viruses, capable of integrating a sequence from a Zamilon

virophage in an operon that was named ‘Mimivirus virophage

resistance element’ (MIMIVIRE). Indeed, MIMIVIRE confers

lineage A strains of Mimivirus resistance to Zamilon infectivity

(31). One of us described this as the ‘Eat me cake’ theory, or

‘genetic cannibalism of the enemy’ theory (32). However, the fact

that MIMIVIRE represents an adaptive immune system in giant

viruses, remains a subject of debate mainly because the

corresponding Zamilon sequence appears devoid of distinct

flanking sequences that may serve as protospacer adjacent

motifs (33). Anyway, cannibalization of ‘enemy DNA sequences’

likely plays a major role in the protection of populations,

including humans, against foreign pathogenic agents.
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From speciation to very elaborate
adaptive immunity in humans

Through the work of immunologists, it was established that

vertebrates, including humans, are remarkably equipped to respond

to attacks by invading pathogens, including bacteria, viruses, fungi,

and parasites. Defense mechanisms more or less specific for these

pathogens have been classified into two main categories of immune

responses: the ‘nonspecific’ innate immunity that takes minutes to

hours to operate and does not retain a memory of previous

responses, and the adaptive immunity that takes days to weeks

before being able to operate and engages the pathogen with

specificity and immune memory (Table 1). There are four main

components of innate immunity, which consist of the activation of

pre-existent mechanisms: 1) physical or anatomical barriers (e.g.,

skin, mucosa, tight junctions) and chemical barriers (e.g., mucus,

lysozyme, defensin, reactive oxygen species); 2) phagocytosis (i.e.,

monocytes, macrophages, neutrophils); 3) blood proteins (e.g.

activation of complement, lectins, fibrinogen), and 4)

inflammation mediators (i.e., macrophages, mast cells, natural

killer cells) and inflammation molecules (e.g., production of

interleukins, cytokines and interferon). Activation of the innate

immune system is initiated by soluble pattern recognition receptors

(PRRs) that can be expressed on innate immune cells, bound to the

extracellular matrix, or circulate in the blood as soluble molecules

(34). By contrast, specific adaptive immunity depends upon the

somatic diversification of antigen-receptor genes to generate vast

repertoires of B- and T-cell receptors (35–38). Elegant studies from

evolutionary immunologists have revealed that innate immunity

can be found within the phylum of multicellular organisms

(metazoans) that emerged as long as 600 million years ago

followed by a remarkable diversification of metazoan species

(including the vertebrate lineage) while adaptive immunity is only
Frontiers in Immunology 04
evidenced with the gnathostomes (vertebrates with jaws) and

evolved to work in concert with the innate immune system (39–42).

The mobile elements of
the genomes at the origin
of adaptive immunity

It has been proposed that the genes encoding the Cas1 and

Cas9 proteins which are experts in cutting and integrating DNA

fragments, originate from genes carried by transposons (43, 44).

Comparative genomic analysis of Cas1 homologs that are not

associated with CRISPR-Cas loci led to the discovery of a novel

family of self-synthesizing transposons, the Casposons (e.g.,

Casposon-encoded Cas 1 or casposase) (24). It is striking to

note that Variable/Diversity/Joining (V(D)J) recombination,

which makes it possible to create a great diversity of

immunoglobul ins (>1014 di fferent paratopes from

immunoglobulins also known as antibodies generated by B-

cells) and T-cell receptors (T-cell receptors recognize peptide

fragments presented by the major histocompatibility complex

class I or class II molecules) in gnathostomes, is based on Rag

(recombination activating gene) 1 and Rag2 proteins of the

recombinase complex that found their origin in genes carried by

a transposon.

Transposable elements (TEs) are major components of all

vertebrate genomes that cause genomic instability (45).

Transposons are mobile DNA segments (or MGE, for mobile

genetic elements) that move from one location to another within

the host genome. The retrotransposons also called Class I RNA

transposons transpose via reverse transcription of an RNA

intermediate copied back to the DNA form, while Class II

DNA transposons move within the host genome via an

‘excision-insertion’ mechanism (46, 47).
TABLE 1 Examples of the outcomes of host defense against microorganisms.

Defense system Host benefit Retains the 'memory' of invader

In bacteria

-Innate immunity

Phage infection sensor (e.g., CapRelSJ46) Yes No

-Adaptive defense

CRISPR-Cas adaptive immunity Yes Yes

In humans

-Innate immunity

Defensin Yes No

Interferon Yes No

-Adaptive defense

B-cell response Yes (most frequently) Yes

Horizontal transfer of transposon Yes (most frequently) Yes (most frequently)

Endogenization and provirus 'cannibalism' Yes (most frequently) Yes (most frequently)
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Although it was proposed that RAG1 could derive from a

herpes virus recombinase or a retroviral nuclease (48, 49), it is

more generally accepted that RAG1 derives from a Transib

superfamily transposon present in an ancestor of jawed

vertebrates that lived about 500 million years ago (50, 51). The

ancestral RAG transposon consisting of recombination signal

sequences flanking RAG1-like and RAG2-like genes was

probably inserted into an exon of a jawed vertebrate ancestor

Ig/TCR-like gene. Structural analysis has identified two jawed-

vertebrate-specific adaptations that allowed the domestication of

ancestral RAG transposase into a RAG recombinase (52).

Retention of the RAG1 and RAG2 genes in gnathostomes and

duplications of the V, D, and J segments likely built the ancestral

recombinatorial immune system of vertebrates. Expression of

the recipient gene occurred when the inserted transposon was

excised by the Rag proteins and the two exon ends rejoined by

double-strand DNA break repair factors. A second transposon

insertion into the same exon could have again split this gene into

V and D fragments to yield the tripartite V(D)J structure

characteristic of the Ig/TCR variable-region genes. In this case

it cannot be referred to as DNA ‘cannibalism’ but more simply

the domestication of a transposon, except to put forward the

unlikely hypothesis that it could be the fingerprint of an

ancestral CRISP-Cas cannibalism of RAG to defend a

vertebrate against a transposon (53).
RAG genes and the repertoire
of paratopes

In humans, the receptors for non-self epitopes (e.g.

immunoglobulin paratopes) are composed of the so-called

constant regions and the so-called variable regions that

consists of V, D, and J segments. The variable regions are at

the origin of the diversity of the paratopes. The V(D)J

recombination can be divided into three steps. It is initiated by

the Rag1 and Rag2 complex which introduces a double-strand

DNA break (dsDNAb) at the border between V and D segments

or D and J segments and their respective recombination signal

sequences (RSS) that flank each gene segment and that are

composed of conserved heptamer and nonamer sequences

separated by a poorly conserved spacer sequence of either 12

or 23 bp, creating hairpin-sealed coding ends and blunt signal

ends. This DNA lesion is repaired using the non-homologous

end-joining (NHEJ) pathway DNA repair machinery. SNM1C/

Artemis, which is recruited and phosphorylated by the Ku/

DNA-PK complex, opens the DNA hairpins through its

endonuclease activity (required for cleavage of hairpin

intermediates). The XRCC4/Cernunnos/DNA-LigaseIV

complex finally seals coding and signal joins (54–56). This

highlight the crucial role of the transfer of the RAG

transposons for the generation of the pathway leading to the
Frontiers in Immunology 05
paratopes repertoire in humans. Domestication of a transposon

to give rise to the Rag1-Rag2 recombinase and V(D)J

recombination, was a pivotal event in the evolution of adaptive

immune system of jawed vertebretes (52). It was recently

hypothesized that an ancestral form of the current RAG

recombinase function may have been domesticated for the

purpose to protect the host against transposons that could

jeopardize the integrity of the genome (53).
Adaptive immunity in multicellular
organisms before gnathostomes
with jaws: that’s the question

All extant jawed vertebrates can rearrange antibody and T-

cell receptor gene segments. The common ‘use it or lose it’

theory (57) assumes that the size of genomes is not infinitely

expandable, and species have to make choices. Accordingly,

during evolution a ‘useful mechanism’ is generally preserved

but can be eliminated from a species if it becomes useless or can

be replaced by a more efficient mechanism. So, should we truly

consider, as is currently the case, that there was no adaptive

immunity in multicellular organisms before gnathostomes? that

is all the more surprising since we now know that the first forms

of adaptive immunity could be found in unicellular organisms

that were present on our planet a billion years ago. Would this

adaptive immunity of the first unicellar organisms have lost its

usefulness with the establishment of a more effective innate

immunity in metazoans or was unfavorable to the survival of

multicellular organisms? Vertebrates have always been colonized

by bacteria and other microorganisms (microbiota) that perform

essential functions for the survival of their host (58). Under these

conditions, horizontal transfer of DNA sequences is possible.

Because CRISPR comes from bacteria that live on or infect

humans, an important fraction of the human population has

built up immunity to the Cas9 from bacteria over time (59). Yet

for multicellular organisms, cells taken individually are

sometimes the target of aggression, such as a viral attack that

could lead to an integration of the genome of infectious agents

into the host genome. That can be fatal to the host but

sometimes gives the host a better adaptive value. Viruses can

be exquisite vectors for shuttling foreign DNA into eukaryotic

cells and favoring DNA endogenization. This is also true for

vertebrates without jaws. Moreover, it has been reported that in

the chicken, immunoglobulin light chain (IgL) diversity is

generated by recombination between a single functional

variable (VL) and joining (JL) gene segments and subsequent

somatic diversification of the rearranged VL region (60, 61). The

IgL loci of different birds (such as the quail, duck, pigeon, or

turkey) consist of a family of VL elements but undergo a single

major rearrangement event similar to that observed in chickens.

In contrast, several rearrangements have been observed in the
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Muscovy duck locus the genome of which contains 2 functional

VL segments (VL1 and VL5) and 3 VL pseudogenes critical for

antibody diversity suggesting that combinatorial IgL diversity

has evolved independently in some avian species (62).

Interestingly, the RAG1 and RAG2 genes have been found in

the chicken but only RAG-2 mRNA expression occurs in B-cells

undergoing antibody diversification by gene conversion (63).

The study of Carcharhinus sharks genome also found the RAG-1

gene in this species with similarities to integration host factor

genes of the bacterial site-specific recombination system (64).

Thus, the evolution of the ancestral adaptive immune system

may have been initiated by a transfer of microbial site-

specific recombinases.

Considering these arguments, it is worth noting that the

sequence encoding proteins SpRag1L and SpRag2L closely

related to RAG1/RAG2 has been identified in an invertebrate,

the purple sea urchin (an echinoderm) (65). This could represent

one of the missing links, considering that major DNA elements

required to achieve adaptive immunity preexisted in speciation

before gnathostomes. Other echinoderms also appear to carry

adjacent RAG1 and RAG2-like genes pair in their genome (51).

There is also an adaptive immunity system in agnathans but

it is not achieved using RAG system. Indeed, Cyclostomes,

which contain two phyla (hagfishes and lamprey) have their

own adaptive immune system based on variable lymphocyte

receptors (VLRs) the genes of which diversify somatically

through gene conversion (66).
Horizontal transfer of transposon

Several families of repeat ‘active’ mobile genetic elements

and ‘fossil’ of previously mobile genetic elements can be found

within vertebrate genomes, having been part of our molecular

evolution (67–69). In humans they are composed of the long

terminal repeat (LTRs) retroelements including the human

endogenous retroviruses (HERV) and the retrotransposons,

the non-LTR retroelements including the non-autonomous

short interspersed elements (SINEs such as Alu and MIR

lacking reverse transcriptase) and the long interspersed

elements (LINEs such as LINE1), and the DNA transposons. If

we can now explain how the system was built that makes it

possible to generate adaptive immunity in humans, we do not yet

have all the elements necessary to determine when and how the

transfer of this genetic information could have occurred. At least

seven major classes of DNA transposons are found in the human

genome, with some reflecting ancient eukaryotic elements such

as the ‘mariner’ sequence (70). Horizontal transmission of a

transposon from fish to human has been reported for a member

of the Tc1/mariner superfamily of transposons (71). Hundreds

of cases of horizontal transfer into new genomic background

have been described in multicellular eukaryotes, suggesting that

this process has been a major force propelling eukaryotic
Frontiers in Immunology 06
genome evolution (72). It has been suggested that prokaryotic

transposable elements may be delivered to eukaryotic hosts, such

as the IS5-like insertion sequence transferred into a bdelloid

rotifer (73), or theMerlin superfamily related to bacterial IS1016

insertion sequences transferred to diverse animal genomes as

well as humans (74). This could explain the patchy distribution

of some eukaryotic DNA transposons that are phylogenetically

related to bacterial insertion sequences. Yet the precise

mechanisms by which the transposable element can be

transferred from a prokaryote to humans remains largely

unknown. It can include potential infectious vectors as

suggested by the discovery of a Bov-B-derived short

interspersed element (a non-LTR retrotransposon) from Echis

ocellatus reptiles integrated into the genome of the taterapox

virus (TATV), and orthopoxvirus that replicates in a West

African rodent (75). LTR retrotransposons can make their

own virus-like particles, and sometimes they encode envelope-

like proteins (76), that may confer infectious properties

facilitating transfer. A recent study has demonstrated the

impressive extent of horizontal gene transfer (HGT) between

201 eukaryotic and 108,842 viral taxa with the identification of

1,333 candidates for virus-to-eukaryote transfers, 4,807

candidates for eukaryote-to-virus transfers, and 600 transfers

with unknown directionality, altogether affecting 2,841 distinct

protein families (77). Thus, the involvement of microorganisms

and viruses to explain the ‘cannibalism’ of small DNA sequences

is easy to imagine.

As mentioned above, genes closely related to RAG1 and

RAG2 found in echinoderm (51, 65) could correspond to a

primitive Rag1/2 but their relationship to transposons is

uncertain since this gene pair apparently lacks the terminal

invert repeat (TIR) and target site duplication (TSD) signatures

of transposons. One of us (PP) reported evidence suggesting that

the RAG transposon was active through the deuterostomes

evolution and is still active in several lineages (78). (Figure 1)

This could represent one of the missing links considering that

major DNA elements required to achieve adaptive immunity

preexisted in speciation before gnathostomes. More recently,

RAG-like (RAG-L) transposons were found in protostomes

including oysters and mussels, suggesting their ancient bilaterian

origin (79) The genetic mechanism of domestication of RAG is

shown in Figure 2.
Endogenization and/or provirus
DNA ‘cannibalism’

Another form of DNA ‘cannibalism’ is the endogenization of

retroviruses. Although infection of humans by retroviruses such

has the human T lymphotropic virus (HTLV) or human

immunodeficiency virus (HIV) generally has a deleterious

effect on the host as a consequence of provirus integration and
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provirus gene expression, the discovery that some retroviral

genes integrated into the DNA of germ-line cells (followed by

their vertical transmission from mother to child) can ensure
Frontiers in Immunology 07
essential biological functions has changed our view about the

integration of exogenous viruses and their relationship to

adaptive immunity. A common and elegant example of this

mechanism can be illustrated by the synthesis of syncytin, an

endogenized retroviral envelope protein involved in human

placental morphogenesis (80, 81). The comparison of the

sequences of syncytin genes in different mammals (primates,

ruminants, rodents, etc.) has shown that they come from

different retroviral integrations in the genome of the ancestors

of each lineage at different times of radiation (diversification) of

mammals. The oldest syncytin gene known to date is the

syncytin-Car1 gene, found in all carnivore species studied. Its

presence would date from at least 80 million years ago (Myr) The

integration of the human syncytin 1 gene, conserved in

hominoids, would date from 30 Myr while the syncytin 2

gene, present in all primates except prosimians, would be

older (45 Myr) The murine syncytin A and B genes would

have been integrated more than 25 Myr ago. Thus, retroviral

infections have made it possible, on multiple occasions during

evolution, to confer a selective advantage on infected individuals

of different species, by promoting cell fusion and the formation

of a syncytium at the feto-maternal interface and hence embryo

development (82, 83).

Since retroviral DNA ‘cannibalism’ has been demonstrated, it

can be questioned whether retroviruses that have recently

emerged and spread in human populations could be
A B

FIGURE 2

RAG domestication and establishment of the ancestral immunoglobulin cluster. The following evolutionary scenario is assumed: there are
several copies of the RAG transposon in the genome. Some of these copies are mutated. In (A), a copy of the RAG transposon is inserted into a
chromosome that will later become chromosome 11 in humans where the RAG recombinase is located. This copy of the transposon will be
mutated at the level of its TIRs, which will prevent it from jumping elsewhere in the genome. Another mutation within the transposon sequence
will cause it to lose its ability to integrate. Thus, the RAG transposon will be domesticated into a recombinase. In (B), a mutated copy of the RAG
transposon will insert itself into an ancestral immunoglobulin. This copy is so mutated that the transposon sequence is eliminated by genetic
drift, leaving only the TIRs in the ancestral immunoglobulin gene. After cis-duplication, the IG cluster is established. Thus, in jawed vertebrates,
domesticated RAG will act in trans by recognizing TIRs that have become RSSs allowing it to rearrange the V,D and J gene segments.
FIGURE 1

RAG through the eukaryote living world. The distribution of RAG
across bilateral metazoans shows that RAG is originally a
transposon that was domesticated in jawed vertebrates or
gnatosthomes (gnatosthomata).
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endogenized to provide adaptative immunity to the host against

the exogenous retrovirus. Despite the fact that that the HTLV-2

genome has not been found integrated into the germinal cells, the

low pathogenic HTLV-2 has been considered to be a good

candidate for viral endogenization (84, 85). The question has

been addressed regarding the endogenization of HIV (86) and this

attractive hypothesis requires further clinicial attention and

biological investigation. It was also found that human testicular

germ cells can support HIV entry and integration, which could be

endogenized in the future (87). Evidence has been reported in

animals indicating that this process is currently ongoing with the

KoRV retrovirus causing lymphoid neoplasia and

immunosuppressive (AIDS-like) disease in koalas (88–90).

Following the endogenization process of KoRV-B, the

‘cannibalized KoRV-B DNA’ dam transmission of KoRV-B was

demonstrated by the observation that the progeny of koalas are no

longer susceptible to the virus (91, 92). Similar observations have

been reported for murine leukemia virus (MLV) and mouse

mammary tumor virus (MMTV) endogenous in mice (93).

Endogenization of MMTV-like elements has been reported in

genomes of American pikas (94) or endogenous jaagsiekte sheep

retrovirus (enJSRV) in ovine and caprine genomes (95).
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DNA ‘cannibalism’ of provirus

Defective viral genome (DVG) that produce defective

interfering particles containing a fraction of the viral genome

are only able to replicate in the presence of a helper virus

and can interfere with the replication of homologous

infectious viruses containing their full-length genome (96–

100). It is thought that DVG may function in the

establishment of virus persistence (101, 102). This defective

provirus can also be considered as a process related to DNA

‘cannibalism’, conferring either innate immunity (i.e., through

induction of interferon), specific adaptive immunity to the host

cell against the homologous infectious virus (or the host species

when present in the germinal cells), or both (Figure 3). This

‘DNA cannibalism’ could be regarded as a provirus DNA

‘cannibalism’ since in this case it is an infectious virus from

which part of the proviral genome has been deleted that is

endogenized. Regarding the human retrovirus, HTLV-1

is known to generate numerous defective viruses, and

within such defective viruses a majority had only one Long

terminal repeat (LTR), and the 5’LTR was preferentially deleted

in about 40-50% of lymphoma-type adult T leukaemia/
FIGURE 3

The earliest form of adaptive immunity. This schematic representation illustrates the fact that cells containing transposons carrying a DNA
sequence from virus A or an integrated defective A provirus can be protected against an exogenous A virus while remaining susceptible to
infection by an exogenous B virus. Due to this selectivity, this form of ‘DNA cannibalism’ can be considered to represent a particular form of
adaptive immunity. At the same time, the sensing molecules can recognize the exogenous B virus and initiate an innate immune response (e.g.,
interferon production).
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lymphoma (103). As reported by one of us (CD), the HTLV-1

HBZ protein, encoded by an anti-sense mRNA, was found

expressed in ATL cells carrying defective provirus and is

associated with progression to lymphoma (104). Regarding

HIV, defective proviruses are produced in large quantities

during natural infection. It was found that defective particles

do not interfere with virus production from proviral DNA but

rather inhibit re-infection, thereby limiting the spread of

infection and progression of the disease by reducing the yield

of infectious virus (105). Moreover, HIV-1 infectivity and core

assembly were reported to be altered due to the interference of

HIV-1 Gag formation by HERV-K Gag particles (106)

Consequently, post-suicide provirus DNA cannibalism and

HERV interference could contribute to generating specific

adaptive immunity against infectious viruses.
DNA ‘cannibalism’ of viral sequences
from non-retroviral origin

So far, we have discussed mechanisms involving exogenous

retroviruses that have been endogenized or are in the process of

endogenizing. But what about viruses that do not belong to the

retrovirus family? The main example is the human herpesvirus 6

(HHV-6). HHV-6 infects most people during childhood and can

reactivate later in life to cause disease. Both HHV-6A and HHV-

6B are, in rare cases, found integrated in leukocyte chromosomes

of immunocompetent individuals (107). Sequences homologous

to HHV-6 have been found integrated within the genome of

about 1% of humans, but it is not clear how this could have

occurred. The subtelomeric integration of an ancient HHV6A

variant on chromosome 22q (chr22q) in East Asians affects

PIWI-interacting RNAs (piRNAs) known to block germline

integration of transposons (108).

Adeno-associated virus (AAV), a nonautonomous parvovirus,

can establish latency through site-specific genome integration into

human chromosome 19 at the AAVS1/Mbs85 locus involving the

AAV2 Rep68 protein (109, 110). Interesting observations have

been reported regarding parvoviruses that suggest these viruses

have frequently invaded the germ lines of diverse animal species,

including mammals, fish, birds and arthropods (111). The

identification of orthologous endogenous parvovirus sequences

in the genomes of humans and other mammals suggests that

parvoviruses have coexisted with mammals for at least 98 Myr.

Furthermore, the expression of some of the endogenized

parvoviral genes in eukaryotic organisms suggests that these

viral genes might have a beneficial function in the host. This

indicates that the process of cannibalism is not restricted

to retroviruses.
Frontiers in Immunology 09
Discussion

Thus, two apparently very different adaptive immune systems,

the ‘old’ CRISPR-Cas system of archaea and the ‘recent’ V(D)J

segments rearrangement leading to immunoglobulin and T-cell

receptors would have been produced from DNA sequences

encoded by transposons (112). However, the precise

mechanisms by which transposable elements can be transferred

to humans remain largely unknown. It may include potential

infectious vectors or be based on the ability of LTR

retrotransposons to make their own virus-like particles, which

may confer infectious properties facilitating transfer. Thus, the

involvement of microorganisms and viruses to explain DNA

‘cannibalism’ of small sequences from exogenous infectious

pathogens is currently easier to imagine. The very high

percentage of endogenous retroviruses in the human genome

suggests that these sequences are likely molecular witnesses of

ancestral infections and there is no obvious reason why this

process might not reproduce itself in the future with emerging

retroviruses or even other human pathogens.

Adaptive immunity has been well characterized in vertebrates

with jaws during the past decade. With recent advances in

immunology, next generation peptidomics, and genomics it is

becoming evident that the T cell receptor (TCR) repertoires of an

individual is shaped both by self and non-self antigens

(immunopeptides). The impact of the variability in the self-

immunopeptidome on thymic selection could explain

differences in the TCR repertoire of different individuals, despite

an identical HLA type (113, 114). The immunopeptidome

includes highly variable sequences such as transposable

elements, LINE-1, and endogenous retroviruses (115). The

difference in the TCR repertoire driven by the self-

immunopeptidome could be important in the initiation of

autoimme diseases, cancers and the immune response to

pathogens (116, 117). A primitive form of adaptive immunity

we called ‘DNA cannibalism’ established in prokaryotes to combat

bacteriophages, has also been widely documented. However, there

was an apparent gap in between the identification of adaptive

immunity in prokaryotes and vertebrates with jaws. Further

investigation of these mechanisms in different species

progressively allows filling in the gap and arriving at the

conclusion that there has been no gap during speciation

regarding adaptive immunity. The investigation of the RAG1/

RAG2 in humans leads to the discovery of equivalent systems in

birds, sharks, and echinoderms and highlights a process of

domestication of a transposons during speciation.

There is also evidence that independent events of DNA

‘cannibalism’ in different species may have been functionally

convergent in the history of endogenization. If one assumes that

adaptive immunity is a general mark of living organisms, it
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remains to be seen how and when the gene responsible for this

function were transferred to the human genome. Arguably the

best model for this is the RAG system that has been present in

different species during speciation and originate from

transposons although it presents homology to microbial

integrase. The provirus DNA ‘cannibalism’ found in human

appear quite similar to the specific adaptive immunity conferred

by ‘DNA cannibalism’ of bacteriophages, as it allows human cells

to fight infectious viruses that are homologous to endogenized

defective proviruses. However, we know almost nothing about

the fact that this process is random or governed by genetics laws.

Until now it has been thought that adaptive immunity

should be regarded as a very sophisticated process of recent

acquisition complementing innate immunity. In the light of

recent data, it has become clear that this is not the case, and that

processes leading to various forms of adaptive immunity have

existed for a very long time and represent an effective tool both

in the specific fight against pathogens and as an active

component in the evolution of species.

Author’s note
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