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Tuberculosis, caused by Mycobacterium tuberculosis, engenders an onerous

burden on public hygiene. Congenital and adaptive immunity in the human

body act as robust defenses against the pathogens. However, in coevolution

with humans, this microbe has gained multiple lines of mechanisms to

circumvent the immune response to sustain its intracellular persistence and

long-term survival inside a host. Moreover, emerging evidence has revealed

that this stealthy bacterium can alter the expression of demic noncoding RNAs

(ncRNAs), leading to dysregulated biological processes subsequently, which

may be the rationale behind the pathogenesis of tuberculosis. Meanwhile, the

differential accumulation in clinical samples endows them with the capacity to

be indicators in the time of tuberculosis suffering. In this article, we reviewed

the nearest insights into the impact of ncRNAs during Mycobacterium

tuberculosis infection as realized via immune response modulation and their

potential as biomarkers for the diagnosis, drug resistance identification,

treatment evaluation, and adverse drug reaction prediction of tuberculosis,

aiming to inspire novel and precise therapy development to combat this

pathogen in the future.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(M. tuberculosis), poses a severe threat to public health, with

approximately 10 million new cases and 1.5 million deaths

reported in 2020 according to the World Health Organization

(WHO). Much effort has been devoted to preventing the spread

of the contagious disease. Nevertheless, the emergence of

coronavirus disease 2019 (COVID-19) reversed the death toll

of TB back to the level equivalent to that in 2017 (1). In addition,

the proportion of drug-resistant tuberculosis (DR-TB) has

steadily increased, resulting in an exacerbated challenge to TB

supervision (2). Thus, precise indicators for the diagnosis and

remedy direction of TB are urgently needed. The exploitation of

novel biomarkers and host-directed therapy (HDT) may provide

opportunities to surmount these conundrums.

M. tuberculosis, an intracellular pathogen, has evolved

ingenious strategies to evade host immune defenses, armed

with a tenacious power to proliferate in innate immune cells

(3). Macrophages constitute the predominant niche of resident

M. tuberculosis while functioning as the first line of self-defense,

inducing innate immune cell responses such as cytokine

secretion, autophagy, and apoptosis, and participating in

acquired immunological reactions to eradicate this cunning

microbial enemy (4).

Up to 90% of the human genome is transcribed into ribose

nucleic acids (RNAs). However, only 1.5%–2.0% of them possess

the ability to manufacture particular protein production (5).

Recently, accumulating evidence has led to a reevaluation of the

perception that the nonprotein-coding section of the genome is

merely spurious transcriptional noise. In fact, some sequences in

this proverbial “dark matter” can encode specific functional

noncoding RNAs (ncRNAs) that play pivotal roles in

biological regulation including immunology (6–9). Advances

in RNA sequencing have led to the discovery of a multitude of

ncRNAs including microRNAs (miRNAs), long noncoding

RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-

interacting RNAs (piRNAs) (10–12). Currently, the roles

played by ncRNAs in eukaryotic cellular process mediation,

ranging from gene regulation on a molecular scale to

macroscopic manipulation of disease-inducing mechanisms,

have been illuminated (13, 14). For instance, ncRNAs

significantly influence bacterial and viral infections (15, 16).

Specifically, in immunology, numerous studies have resolved the

mystique of ncRNAs, which are implicated in multifarious

events such as immune cell development and immune escape

(17, 18). Furthermore, the contribution of ncRNAs to the

underlying pathogenesis of M. tuberculosis in hosts has also

been enumerated (19). The significant discovery of the host-

pathogen interactions has ushered in an inspiring time for HDT

exploration (20). Moreover, previous effort has revealed the

feasibility of using these seemingly inconspicuous molecules as

biomarkers of TB (21, 22).
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In this review, we elaborated on the promising roles of

ncRNAs, focusing on miRNAs, lncRNAs, and circRNAs, in TB.

We described the regulatory impact of the three ncRNAs on

immune function in disparate parts. In each section, we offered a

brief introduction to the foundational structure and function of

the highlighted ncRNAs, followed by a concrete explanation of

their effects on M. tuberculosis infection. Then, we narrated their

potential as biomarkers for TB diagnosis, DR-TB identification,

and treatment monitoring. Finally, we summarized the included

studies with achievements and existing challenges for the purpose

of utilizing ncRNAs for TB management, including rapid

diagnosis and precise treatment. The major content of the study

is illustrated succinctly in Figure 1.
Immune regulation of miRNAs
in tuberculosis

A concise description of miRNAs

miRNAs, approximately 22 nucleotides in length, are

endogenous single-stranded small ncRNAs with highly conserved

structure, emerging as posttranscriptional epigenetic modulators after

binding to the 3′ untranslated regions (3′ UTRs) of targeting

messenger RNAs (mRNAs), resulting in mRNA decay or

destabilization (23–25). Numerous studies have authenticated the

polytropic roles of miRNAs inmultiple biological processes, from cell

differentiation to disease occurrence (26, 27). In addition, miRNAs

exert a crucial influence on immune response regulation (28, 29).

When certain morbific microorganisms stealthily enter the human

body, miRNAs will respond to modulate the immune response in

various ways (30). Focused onM. tuberculosis, previous studies have

revealed that this crafty pathogen can alter the expression of host

miRNAs, enabling this microorganism to evade immune clearance

and achieve long-term dormancy inside the body (31). In innate

immune reactions, macrophages serve as the first-line defense in the

face of the complex enemy microorganism invasion (32), and the

aftermath of the war between M. tuberculosis and macrophages

determines the infection outcome-latent or active TB.

Moreover, M. tuberculosis has developed various strategies to

subvert sthe host immune response, such as autophagy (33).

Hence, we enumerated the miRNA modulation caused by M.

tuberculosis and the subsequent influence of this regulatory effect

on antimicrobial immunity.
miRNA-regulated signaling pathways in
M. tuberculosis infection

Toll-like receptors (TLRs), a family of pattern recognition

receptors (PRRs) that reside on the plasma membrane of

macrophages and other tissues involved in immunity, sense
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pathogen-associated molecular patterns (PAMPs) such as

lipopolysaccharide (LPS) in Gram-negative bacteria and

single-stranded RNAs. Subsequently, adaptor proteins

including myeloid differentiation factor 88 (MyD88), Toll-

interleukin (IL)-1-resistance (TIR) domain-containing

adaptor-inducing interferon-b (TRIF), TRIF‐related adaptor

molecule (TRAM), and TIR‐containing adaptor protein

(TIRAP) (34–36), are engaged by TIRs, cytoplasmic domains

of TLRs, after which IL-1R-associated kinase (IRAK), tumor

necrosis factor (TNF) receptor-associated factor (TRAF), and

IkB kinase (IKK) complex are recruited by appropriate signals in

turn. The activation of IKK leads to the phosphorylation and

degradation of IkB in the canonical nuclear factor-kB (NF-kB)
pathway, releasing NF-kB, a two-subunit nuclear transcription

factor that dimerizes and is further activated through different

posttranscriptional modifications. NF-kB is then translocated

into the nucleus to regulate corresponding gene expression by

binding to specific DNA sequences, ultimately eliciting

inflammatory cytokine secretion to eradicate invading

pathogens (37–40). The role of miRNAs in modulating

signaling pathway cascades, including the TLR/NF-kB
pathway during M. tuberculosis infection, which results in the

suppression or enhancement of the immune response, has been

explored as follows (Figure 2; Table 1).

In Bacille Calmette–Guérin (BCG)-infected macrophages,

miR-203 inhibits NF-kB signaling pathway activation,

decreasing the expression of IL-6 and TNF-a by targeting

MyD88 (41). Similarly, miR-149 and miR-30a also target
Frontiers in Immunology 03
MyD88 and suppress the downstream secretion of cytokines

including TNF-a, IL-6, and IL-8, inhibiting pathogen clearance

(42, 43). miR-124 is highly expressed via MyD88 activation in

M. tuberculosis-infected alveolar macrophages (AMs), and in

response, this miRNA targets MyD88, TRAF6, and TLR6 to

alleviate inflammation triggered by the microorganism invasion

(44). Another study demonstrated that miR-146a suppresses the

inflammatory response by negatively modulating TRAF6 and

IRAK1 expression in NF-kB signaling pathway cascades,

repressing the generation of proinflammatory factors such as

inducible nitric oxide synthase (iNOS), nitric oxide (NO), IL-6,

TNF-a, and IL-1b to facilitate replication and survival of M.

tuberculosis in macrophages (45, 46). Targeting TIR domain-

containing adaptor molecule 1 (TICAM1), a TLR3 adaptor, the

engagement of miR-27a stifles TLR3-related innate immune

response to promote M. tuberculosis survival. Bone

morphogenesis protein (BMP), regulated by c-Abl, is the

primary molecule that induces miR-27a overexpression(47).

Furthermore , a study discovered that miR-142-3p

downregulates IRAK1 and suppresses the action of

inflammatory mediators including TNF-a, IL-6, and NF-kB1
(a subunit of NF-kB) (48). The time- and concentrate-

dependent upregulation of miR-1178 and miR-708-5p

attenuates the accumulation of proinflammatory factors such

as IFN-g, TNF-a, IL-1b, and IL-6 by targeting TLR4 and

subsequently enhances microorganism vitality in M.

tuberculosis-infected macrophages (49, 50). Similarly,

overexpression of miR-337-3p is implicated in enhanced M.
A B

FIGURE 1

A brief summary of the roles of noncoding RNAs in tuberculosis. (A) Targets of noncoding RNAs (ncRNAs) in immune regulation in tuberculosis
(TB) and estimated proportion of studies directed to the three ncRNAs enumerated in this review. MicroRNAs (miRNAs) mostly target myeloid
differentiation factor 88 (MyD88), Toll-like receptor (TLR), tumor necrosis factor (TNF) receptor-associated factor (TRAF), and interleukin-1R-
associated kinase (IRAK) to regulate signaling pathways and target Unc-51-like autophagy-activating kinase 1 (ULK1), autophagy-related gene
(ATG), and beclin 1 to affect autophagy. Moreover, miRNAs target the Bcl-2 family and Forkhead box transcription factor class O (FOXO) to
modulate apoptosis during TB. Long noncoding RNAs (lncRNAs) regulate the immune response in the host by targeting enhancer of zeste
homolog (EZH) 2, suppressor of cytokine signaling (SOCS), signal transducer and activator of transcription (STAT), etc. Circular RNAs (circRNAs)
perform immunity functions by acting as miRNA sponges. (B) ncRNAs serve as biomarkers in TB. ncRNAs show the potential to be biomarkers of
different functions including diagnosis, active individual determination, adverse drug reaction (ADR) and response to antituberculosis therapy
(ATT) monitoring, and drug resistance prediction of TB. DR-TB, drug-resistant tuberculosis.
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tuberculosis pathogenicity and impaired vitamin D receptor

(VDR)-mediated antibacterial response by depressing the

TLR4 and the signal transducer and activator of transcription

3 (STAT3, a transcription activator that plays a key role in

multiple biological processes such as apoptosis and immune

regulation by modulating the expression of various genes)

signaling pathway (51, 64, 65). Meanwhile, another study

pointed out a marked increase in hsa-miR-337-3p and hsa-

miR-125b-5p in patients with TB is causative of impaired

STAT3 function, which results in the abrogation of IL-23-

mediated expansion of Vg2Vd2 T cells and weakens the ability

of these cells to produce anti-TB factors (52).

Overexpression of miR-125a and miR-140 inhibits NF-kB
signaling and secretion of proinflammatory cytokines such as

IFN-g and IL-1b during M. tuberculosis infection by targeting

TRAF6 directly, leading to immune response suppression and

increased microbe viability. In addition, the miR-125a level is

increased in a TLR4-dependent manner (53, 54). Moreover, miR-

27b is induced via TLR2/MyD88/NF-kB cascades in M.

tuberculosis-infected murine lungs and spleens, subsequently

targeting Bcl-2-associated athanogene 2 (Bag2) and elevating

p53-dependent apoptosis and reactive oxygen species (ROS)

secretion rates to eliminate intracellular pathogens while

forming a negative feed loop that prevents excessive

inflammation induced by NF-kB (55). A20, a feedback inhibitor

of the NF-kB signaling pathway, is upregulated via the early
Frontiers in Immunology 04
secreted antigenic target of 6 kDa (ESAT-6)-dependent

suppression of miR-let-7f, which leads to diminished NF-kB
signaling and cytokine production, resulting in pathogen

maintenance in the macrophages of M. tuberculosis-infected

mice (56). miR-223 is abundantly expressed in monocytes and

monocyte-derived macrophages (MDMs) from TB patients and

attenuates nuclear translocation and p65 (a subunit of NF-kB)
(66) phosphorylation, resulting in suppression of NF-kB
activation and inhibition of cytokine secretion, hindering M.

tuberculosis eradication (57). Moreover, miR-223 regulates the

engagement of myeloid cells by targeting chemokine (C-X-C

motif) ligand (CXCL) 2, chemokine (C-C motif) ligand (CCL)

3, and IL-6, and TB infection has been shown to be exacerbated in

miR-233−/− animals (58). p38 is promoted by M. tuberculosis

Rv2346c, a member of ESAT6, which induces the overexpression

of miR-155 and miR-99b, leading to the inhibition of both the

activation of NF-kB and secretion of cytokines including IL-6 and

TNF-a, ultimately enhancing bacillary persistence and restraining

the proliferation of BCG-infected macrophages (59). Targeting

Rho-associated coiled-coil-forming protein kinase 1 (ROCK1),

induction of miR-502-3p by M. tuberculosis decreases the

production of TNF-a, IL-6, and IL-1b via the inhibition of the

TLR4/NF-kB pathway, promoting pathogen survival (60).

In addition, the STAT pathway participates in inflammatory

mediator production in M. tuberculosis infection as well. The

expression of miR-196-5p is elevated in monocytes from smoking
FIGURE 2

MicroRNA-regulated signaling pathway during Mycobacterium tuberculosis infection. The Toll-like receptor (TLR)/nuclear factor-kB (NF-kB) pathway is
activated by the combination of TLRs and pathogen-associated molecular patterns (PAMPs) and impacts cytokine production. Abundant molecules such
as TAK1 and IkB kinase (IKK) participate in this process. IkBa is degraded after the release of NF-kB from IKK. Overexpressed or downregulated
microRNAs (miRNAs) target myeloid differentiation factor 88 (MyD88), Toll-interleukin (IL)-1-resistance (TIR) domain-containing adaptor inducing
interferon-b (TRIF), IL-1R-associated kinase (IRAK), tumor necrosis factor (TNF) receptor-associated factor (TRAF), NF-kB, suppressor of cytokine
signaling (SOCS), signal transducer and activator of transcription (STAT), and p53 to affect host immune cell response in tuberculosis. miR-27b is induced
by NF-kB and triggers p53-dependent apoptosis by targeting Bcl-2 associated athanogene 2 (Bag2). ↑, upregulated; ↓, downregulated; ⟶, stimulate;
⟞, inhibit.
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patients with TB. By repressing the suppressor of cytokine signaling

(SOCS) 3 and activating the STAT3 pathway, miR-196-5p inhibits

proinflammatory cytokine production and bacterial uptake (61).

However, miR-342-3p facilitates the production of cytokines and

chemokines such as TNF-a, IL-1, IL-6, and CXCL15 via SOCS6

suppression and subsequent STAT1 activation and switches the

death modality from necrosis to apoptosis in M. tuberculosis-

infected macrophages, enhancing the anti-TB immune response.

Moreover, mice with higher expression of miR-342-3p are more

resistant to M. tuberculosis (62).

The TLR/NF-kB signaling pathway is affected most

frequently by miRNAs during M. tuberculosis infection, which

results in inflammatory cytokine regulation, ultimately resulting

in the prevention or facilitation of microorganism eradication.

Nevertheless, studies related to the regulatory function of other

signaling pathways in bacterial infection have rarely been

performed, and more research is yet to be carried out.

Focusing on the likely fundamental mechanisms, scientists are

called to ceaselessly pursue more novel and precise miRNA-

based therapies for TB in clinical practice.
Frontiers in Immunology 05
miRNA-regulated cytokine production in
M. tuberculosis infection

Different from those focused on signaling pathways, several

studies have revealed a more direct modulatory impact of

miRNAs on the expression of inflammatory cytokines, as

presented in brief in Supplementary Table S1. For instance,

miR-29 is observed to inhibit interferon (IFN)-g production to

negatively control immune reactions, while in mice, competitive

sponging of miR-29 leads to a higher concentration of IFN-g and
renders the mice more resistant toM. tuberculosis infection (67).

Meanwhile, another study pointed out that in patients with

active tuberculosis (ATB), upregulated miR-29 may attenuate

the response of CD4+ T cells to M. tuberculosis (68). However,

the relationship between the differential expression of miR-29a, a

member of the miR-29 family, and IFN-g has not yet constituted
a plausible line of inquiry (69). Likewise, M. tuberculosis

restrains the immune response by inducing miR-132 and miR-

26a, which target p300, a transcriptional coactivator of IFN-g
signaling, and lead to lower IFN-g expression and reduce
TABLE 1 MicroRNA-regulated signaling pathways in tuberculosis.

miRNAs Expression Targets Biological function Ref.

miR-203 ↑ MyD88 Suppresses NF-kB signaling and production of TNF-a and IL-6 (41)

miR-149 ↓ MyD88 Promotes the production of NF-kB1, TNF-a, and IL-6 (42)

miR-30a ↑ MyD88 Suppresses the production of TNF-a, IL-6, and IL-8 (43)

miR-124 ↑ MyD88, TLR6,
TRAF6

Suppresses the expression of p65 NF-kB, TNF-a, and IL-6 (44)

miR-146a ↑ IRAK1, TRAF6 Suppresses the production of iNOS, NO, TNF-a, IL-1b, and IL-6 (45,
46)

miR-27a ↑ TICAM1 Inhibits TLR3-related immune response (47)

miR-142-3p ↓ IRAK1 Promotes the production of NF-kB1, TNF-a, and IL-6 (48)

miR-1178 ↑ TLR4 Suppresses the production of IFN-g, IL-1b, IL-6, and TNF-a (49)

miR-708-5p ↑ TLR4 Suppresses the production of IFN-g, IL-1b, IL-6, and TNF-a (50)

miR-337-3p ↑ TLR4, STAT3 Depresses vitamin D receptor-mediated antituberculosis reaction and promotes bacterial
pathogenicity

(51)

hsa-miR-337-3p, hsa-miR-
125b-5p

↑ STAT3 Suppress the responsiveness of Vg2Vd2 T cells to IL-23-induced expansion (52)

miR-125a ↑ TRAF6 Suppresses the production of IFN-g, IL-1b, IL-6, and TNF-a (53)

miR-140 ↑ TRAF6 Suppresses the production of IFN-g, IL-1b, IL-6, and TNF-a (54)

miR-27b ↑ Bag2 Suppresses the production of NF-kB, IL-1b, IL-6, TNF-a, and iNOS, and promotes the
production of ROS and apoptosis

(55)

miR-let-7f ↓ A20 Suppresses the production of IL-1b, TNF-a, and NO (56)

miR-223 ↑ p65 Suppresses the production of IL-1b, IL-6, and TNF-a (57,
58)

miR-155, miR-99b ↑ p65 Suppress the production of IL-6 and TNF-a (59)

miR-502-3p ↑ ROCK1 Suppresses the production of IL-6, IL-1b, and TNF-a, (60)

miR-196b-5p ↑ SOCS3 Activates STAT3 pathway and suppresses the production of IL-6 and TNF-a (61)

miR-342-3p ↓ SOCS6 Suppresses the secretion of TNF-a, IL-1, IL-6, and CXCL15 (62)

miR-21-5p ↑ TLR4 Suppresses the production of IL-1b, IL-6, and TNF-a (63)
frontiers
miRNA, microRNA; Ref, reference; MyD88, myeloid differentiation factor 88; NF-kB, nuclear factor-kB; TNF-a, tumor necrosis factor-a; IL, interleukin; TLR, Toll-like receptor; TRAF,
TNF receptor-associated factor; IRAK, IL-1R-associated kinase; iNOS, inducible nitric oxide synthase; NO, nitric oxide; IFN-g, interferon-g; STAT, signal transducer and activator of
transcription; Bag2, Bcl-2 associated athanogene 2; ROS, reactive oxygen species; ROCK1, Rho-associated coiled-coil-forming protein kinase 1; SOCS, suppressor of cytokine signaling;
CXCL, chemokine (C–X–C motif) ligand. ↑, upregulated; ↓, downregulated.
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responsiveness of macrophages to this lymphokine, permitting

the pathogen persistence (70). miR-144* enables the reduction in

TNF-a and IFN-g secretion and T-cell proliferation, which

hinders the clearance of M. tuberculosis (71). Lower

production of TNF occurs along with overexpression of miR-

125b and downregulation of miR-155 in macrophages incubated

with M. tuberculosis lipomannan, promoting bacterial survival

inside the host (72). Another study revealed that ESAT-6-

induced miR-155 inhibits the expression of SH2-containing

inositol 5’-phosphatase (SHIP1) and BTB and CNC homology

1 (Bach1), a repressor of haem oxygenase-1 (HO-1), and reduces

IL-6 and cyclooxygenase-2 (Cox-2) production, finally

facilitating M. tuberculosis existence in macrophages (73).

Downregulating CCAAT/enhancer binding protein b (C/

EBPb), a positive transcriptional modulator of nitric oxide

synthase (NOS) 2, miR-155 further decreases the synthesis of

NO, thus preventing the microbe killing. When transfected with

anti-miR-155, IFN-g-activated macrophages exhibit a higher

level of NO and a reduced M. tuberculosis burden (74).

Follistatin-like protein 1 (FSTL1) gene expression is

triggered by TLR4 signaling and certain proinflammatory

cytokines. In return, FSTL1 activates macrophages to promote

proinflammatory cytokine and chemokine expression (75–78).

In the duration of M. tuberculosis infection, greatly enhanced

miR-32-5p targets FSTL1 and significantly attenuates the

secretion of certain cytokines such as IL-1b and IL-6, which

promotes inflammatory reactions, finally increasing the

intracellular survival rate of M. tuberculosis (79). Rab10, a

member of the Ras oncogene family, plays a vital role in

macrophage activation. Suppressed miR-378d, which is

associated with the activation of NF-kB signaling, increases the

production of cytokines, including IL-1b, IL-6, and TNF-a,
mediated via Rab10 in M. tuberculosis-infected macrophages

and facilitates the clearance of the microbe (80). In contrast,

activation of the NF-kB pathway after BCG infection induces the

upregulation of miR-21, which decreases the expression of IL-12

by targeting IL-12p35 and promotes dendritic cell (DC)

apoptosis by targeting Bcl2, impairing the anti-mycobacterial

reactions (81). Moreover, miR-206 decreases the expression of

tissue inhibitor of matrix metalloproteinase 3 (TIMP3) to elevate

inflammatory cytokine secretion in THP-1 macrophages

infected by M. tuberculosis, facilitating immune reactions

against the pathogen (82). EAST6-inhibited miR-222-3p

suppresses the production of proinflammatory cytokines such

as IL-6, IL-1b, and TNF-a by promoting the expression of

phosphatase and tensin (PTEN), which ultimately benefits

microbial replication (83). In addition, BCG/H37Rv-

downregulated miR-495 enables intracellular bacterial survival

as a result of a superoxide dismutase 2 (SOD2)-promoted

decrease in reactive oxygen species (ROS) (84).

Through various molecule targeting, miRNAs modulate the

secretion of cytokines and chemokines to regulate the anti-

mycobacterial response in a more straightforward manner,
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which gives us a hint to explore relevant therapeutic plans

based on these theories.
miRNA-regulated autophagy in
M. tuberculosis infection

Autophagy, an evolutionarily conserved catabolic pathway,

degrades macromolecules and specific organelles through the

fusion between autophagosomes and lysosomes following the

entrapment of superfluous intracellular substances (85). When

the bacteria invade, autophagy is mobilized to resist the

pathogenic infection, playing a critical role in the innate

immune response. Autophagy disruption can lead to multiple

diseases (86). Moreover, research has suggested that intracellular

M. tuberculosis elimination may be associated with autophagy

(87) and that miRNAs exert a crucial impact on this cellular

cargo obliteration tactic (88). Recently, mounting evidence has

discovered that the contagious agentM. tuberculosis can combat

host autophagy by interacting with autophagic components such

as beclin 1, autophagy-related genes (ATGs), and microtubule‐

associated protein 1 light chain 3 (LC3), which contribute

significantly to essential autophagic processes including

membrane nucleation and autophagosome formation and

subsequent fusion with lysosomes (89). The primary miRNAs

involved in the biological process and their expression and

impacts are displayed in Figure 3 and Table 2.

The targets of miR-17-5p in M. tuberculosis-infected

macrophages are verified to be Mcl-1 and STAT3 (a

transcriptional activator of Mcl-1). Forced expression of miR-

17-5p suppresses the interaction between Mcl-1 and beclin 1,

resulting in the promotion of autophagy and acceleration of

microbe killing. Furthermore, phosphorylation of protein kinase

C (PKC) d accelerates autophagy, and this effect is diminished by

miR-17-5p (90). In BCG-infected RAW264.7 cells, enhanced

expression of miR-17-5p prevents the maturation of

phagosomes through the downregulation of Unc-51-like

autophagy-activating kinase 1 (ULK1), an initiator of

autophagy, and autophagosome-related protein LC3I/II,

thereby increasing BCG propagation (91). Moreover, by

targeting ATG7 and ATG16L, upregulated miR-20a attenuates

autophagy and favors pathogen growth in BCG-infected

macrophages (92). On the contrary, in H37Ra-infected THP-1

macrophages, downregulation of miR-106a suppresses bacterial

proliferation as a result of promoted autophagy via increased

levels of ULK1, ATG7, and ATG16L, which are important

factors in autophagy (93). A study showed that overexpression

of miR-129-3p induced by BCG in RAW264.7 cells is capable of

attenuating M. tuberculosis killing via autophagy inhibition by

targeting Atg4b, an ATG that contributes to the autophagosome

formation step in which LC3I is converted into LC3II (94, 110).

Furthermore, upregulation of miR-142-3p significantly abates

H37Ra-induced autophagy by negatively controlling the
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FIGURE 3

MicroRNA-regulated autophagy during Mycobacterium tuberculosis infection. Once autophagy is induced by Mycobacterium tuberculosis,
several processes such as membrane nucleation to form the phagophore, elongation to realize autophagosome maturation, and the fusion
between autophagosomes and lysosomes take place in turn. MicroRNAs (miRNAs) are differentially expressed and target crucial components in
autophagy such as autophagy-related genes (ATGs), UV radiation resistance-associated gene (UVRAG), beclin 1, and microtubule‐associated
protein 1 light chain 3 (LC3). CACNA2D3, calcium voltage-gated channel auxiliary subunit alpha2delta3; AMPK, adenosine 5’ monophosphate-
activated protein kinase; TWEAK, tumor necrosis factor-like weak inducer of apoptosis; ULK1, Unc-51 like autophagy activating kinase 1; VPS,
vacuolar protein sorting; STAT, signal transducer and activator of transcription; KLF, Krüpple-like factor. ↑, upregulated; ↓, downregulated; ⟶,
stimulate; ⟞, inhibit.
TABLE 2 MicroRNA-regulated autophagy in tuberculosis.

miRNAs Expression Targets Biological function Ref.

miR-17-5p ↓ Mcl-1, STAT3 Inhibits autophagosome formation (90)

↑ ULK1, LC3I/II Inhibits autophagosome maturation (91)

miR-20a ↑ ATG7, ATG16L Decreases the expression of LC3 II and inhibits autophagy (92)

miR-106a ↓ ULK1, ATG7, ATG16L1 Enhances autophagy activation (93)

miR-129-3p ↑ Atg4b Inhibits converting LC3I into LC3II (94)

miR-142-3p ↑ ATG4c, ATG16L1 Inhibits phagosome maturation (95)

miR-33 ↑ ATG5, ATG12, LAMP1, LC3B, FOXO3, TFEB, AMPK Inhibits autophagy (96)

miR-155 ↑ ATG3 Inhibits autophagosome formation and autolysosome fusion (97)

↑ Rheb Enhances phagosome maturation (98)

miR-155, miR-31 ↑ Ppp2r5a Inhibit autophagy induced by IFN-g (99)

miR-30A ↑ Beclin 1 Inhibits autophagy (100)

miR-125a-3p ↑ UVRAG Inhibits autophagosome maturation (101)

miR-144* ↑ DRAM2 Inhibits autophagosome formation (102)

miR-432-5p ↑ VPS33A Inhibits autolysosome fusion (103)

miR-542-3p ↑ VPS11 Inhibits autophagosome formation and its interplay with lysosome (104)

miR-27a ↑ CACNA2D3 Inhibits autophagosome formation (105)

miR-889 ↑ TWEAK Inhibits autophagosome maturation (106)

miR-25 ↑ NPC1 Impairs the function of lysosomes (107)

miR-23a-5p ↑ TLR2 Inhibits autophagy induction (108)

miR-26a ↓ KLF4, C/EBPb Inhibits autophagy and promotes M2 polarization of macrophages (109)
Frontiers in Immu
nology
 07
 frontiersi
miRNA, microRNA; Ref, reference; STAT, signal transducer and activator of transcription; ULK-1, Unc-51-like autophagy-activating kinase 1; LC, microtubule‐associated protein 1 light
chain; ATG, autophagy-related gene; LAMP, lysosome-associated membrane protein; FOXO, Forkhead box transcription factor class O; TFEB, transcription factor EB; AMPK, adenosine 5′
monophosphate-activated protein kinase; Rheb, Ras homolog enriched in the brain; UVRAG, UV radiation resistance-associated gene; DRAM2, DNA damage regulated autophagy
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expression of ATG16L and ATG4c, leading to the promotion of

intracellular survival of the pathogen (95). M. tuberculosis

replication is supported by overexpression of miR-33 and its

passenger strand miR-33*, which target critical effectors that

participate in autophagy such as ATG5, ATG12, LC3B, and

lysosome-associated membrane protein 1 (LAMP1). Moreover,

transcriptional regulators, including Forkhead box transcription

factor class O (FOXO3) (111) and transcription factor EB

(TFEB) (112), which promote the expression of genes

implicated in autophagy biogenesis, are simultaneously

repressed, resulting in impaired lipid catabolism (96).

Targeting ATG3, an E2-ubiquitin-like-conjugating enzyme

participating in LC3-lipidation and autophagosome formation,

virulent M. tuberculosis-induced miR-155 contributes to

autophagy subversion to maintain bacterial survival (97).

Meanwhile, miR-155 and miR-31 limit IFN-g-induced
autophagy by posttranscriptionally downregulating Ppp2r5a

(99). In contrast, combined with the 3′ UTR of Ras homolog

enriched in the brain (Rheb), overexpression of miR-155

accelerates the maturation of phagosomes and enhances

autophagy in macrophages to eliminate intracellular M.

tuberculosis (98).

Inversely correlated with beclin 1, miR-30A is overexpressed in

THP-1 cells and AMs from bronchoalveolar lavage, inhibiting

autophagy and thus permitting the immune escape of M.

tuberculosis, but is expressed at a lower level after anti-TB

treatment, indicating that miR-30A is a potential target and

biomarker for treatment (100). UV radiation resistance-associated

gene (UVRAG) can induce autophagosome formation in

conjunction with beclin 1 (113). A profound increase in miR-

125a-3p in M. tuberculosis-infected macrophages decreases the

UVRAG protein level, inhibiting autophagosome maturation and

prolonging intracellular pathogen survival (101). Interacting with

UVRAG and LAMP1, DNA damage-regulated autophagy

modulator 2 (DRAM2), an initiator of autophagy, is

downregulated by miR-144* overexpression in human monocytes

and macrophages after M. tuberculosis invasion, blocking

autophagosome formation and inhibiting subsequent

antimicrobial responses (102, 114). In addition, taking vacuolar

protein sorting 33A (VPS33A) as the target, upregulated miR-432-

5p suppresses the fusion between autophagosomes and lysosomes,

playing a potentially critical role in the occurrence of ATB (103).

Similarly, in the duration of phagolysosome biogenesis, miR-30a-3p

and miR-30a-5p levels are elevated by recombinant ESAT-6 inc-

treated differentiated THP-1 cells, impeding IL-18-mediated fusion

between phagosomes and lysosomes and augmenting the survival of

internalized M. tuberculosis (115). Furthermore, the promotion of

miR-542-3p attenuates autophagy during M. tuberculosis infection

by downregulating VPS11, resulting in the pathogen persistence in

macrophages, whereas upregulation of VPS11 can counteract this

effect (104).

Abundant expression of miR-27a in peripheral blood

mononuclear cells (PBMCs) from ATB patients and primary
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peritoneal macrophages from H37Rv-infected mice is observed to

promote M. tuberculosis intracellular residence. The rationale

behind this effect is explained by the targeting of calcium voltage-

gated channel auxiliary subunit alpha2delta3 (CACNA2D3), a

transporter of Ca2+ located in the endoplasmic reticulum (ER), by

miR-27a, which inhibits autophagy initiation (105). In addition,

TNF-like weak inducer of apoptosis (TWEAK) is a target of miR-

889, and an increased miR-889 level in latent tuberculosis infection

(LTBI) individuals is related to autophagy suppression and M.

tuberculosis maintenance in granulomas (106). Moreover, a team

discovered that miR-25 is upregulated in M. tuberculosis- or BCG-

infected macrophages, resulting in autophagy impairment and

prolonged pathogen survival by blunting the function of the

NPC1 protein, a cholesterol transporter located on the lysosomal

membrane and involved in autophagolysosome formation (107).

Furthermore, upregulation of miR-23a-5p in RAW264.7 cells and

bone marrow-derived macrophages (BMDMs) prevents the

induction of autophagy by targeting TLR2, thus conferring

persistent M. tuberculosis existence in macrophages (108).

As previously stated, weakened autophagy resulting from

M. tuberculosis infection is a considerable obstacle to clearing the

microorganisms via the acid hydrolases deposited in the

lysosomes, and may enable long-term bacterial survival inside

the body, placing a heavy burden on the host immune system.

Thus, the abovementioned studies on miRNAs may suggest

promising therapeutic targets to counter autophagy subversion

and opportunities to eliminate the pathogens.
miRNA-regulated apoptosis in
M. tuberculosis infection

Apoptosis, a programmed cell demise mechanism that is

triggered by an internal or external cellular stimulus, follows two

patterns, intrinsic and extrinsic apoptosis, with both culminating in

the activation of cysteine-aspartic proteases (caspases), enabling cell

structure degradation and death. Cytochrome c (Cyt c), released

into the cytosol from mitochondria through mitochondrial outer

membrane permeability (MOMP), induces downstream caspase 9

to activate caspases 3 and 7, precursors in cell death via the intrinsic

apoptosis pathway and the extrinsic pathway is initiated by the

binding of Fas and FasL (116), which activates caspase 8. Bcl-2

family proteins have been identified as key modulators of Cyt c

release into the cytoplasm during apoptosis and comprise anti-

apoptotic (Bcl-2, Mcl-1, Bcl-XL, Bcl-W, etc.) and proapoptotic

(Bim, Bid, Bax, Bak, PUMA, etc.) members (117, 118). Once the

war between the host andM. tuberculosis begins, macrophages play

a dual role by not only killing the pathogen via apoptosis but also by

providing a natural niche for the invading microbe (119, 120).

Moreover, the cunning bacteria can induce abnormal expression of

host miRNAs to modulate Bcl-2 family activity, thereby either

enhancing or inhibiting apoptosis (121) (Figure 4; Supplementary

Table S2).
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The expression of Jun N-terminal kinase 2 (JNK2), an

upstream signaling gene that induces Bim expression, is

observed to concomitantly increase with the downregulation of

miR-20a-5p in M. tuberculosis-infected macrophages, resulting

in the promotion of apoptosis and a higher rate of bacteria

clearance (122). An increase in miR-21-5p, which targets Bcl-2

and TLR4, accelerates the apoptosis of macrophages and

suppresses the secretion of inflammatory cytokines including

IL-1b, IL-6, and TNF-a, which subsequently enhances M.

tuberculosis survival (63). Overexpression of miR-125b-5p is

associated with DRAM2 downregulation in H37Rv-infected

macrophages, and an increase in apoptosis and a reduction in

inflammation can protect macrophages when miR-125b-5p is

forced into silencing, resulting in accelerated M. tuberculosis

killing and suggesting a novel molecular therapeutic strategy for

TB (123). Sp100, a nuclear body protein, suppresses miR-125a to

increase the positive regulator of apoptosis, the Bcl2 modifying

factor (Bmf), which promotes the elimination of the pathogen

(124). Furthermore, when Mycobacterium bovis BCG attacks,

upregulation of miR-155 targets protein kinase inhibitor-a
(PKI-a) and activates the protein kinase A (PKA) signaling

pathway to enhance proapoptotic genes, positively mediating

macrophage apoptosis (125). ESAT6 can also induce

overexpression of miR-155 in a TLR2-dependent manner,

which inhibits SOCS1 expression while increasing caspase 3

activity and promoting macrophage apoptosis (126). Both of the
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aforementioned studies have verified apoptosis promotion and

M. tuberculosis clearance facilitation induced by miR-155.

However, miR-155 may act as a double-edged sword in the

immune modulation, as monocyte apoptosis is inhibited by

miR-155 via the suppressed expression of FOXO3, one of the

transcription factors that induce apoptosis, leading to the

subsistence of M. tuberculosis in PBMCs from ATB patients

(127, 128).

In addition, elevated hsa-let-7b-5p and miR-223 inhibit

apoptosis and enable enhanced M. tuberculosis survival in

macrophages by downregulating Fas and FOXO3, respectively

(129, 130). Similarly, in ATB patients, miR-582-5p is found to be

upregulated and to suppress monocyte apoptosis by inhibiting

FOXO1, attenuating bacteria elimination (131). miR-20b-5p

carried in exosomes derived from M. tuberculosis-infected

macrophages presents at a low level, inhibiting apoptosis by

upregulating Mcl-1 and leading to acceleration ofM. tuberculosis

proliferation (132). The ligand of numb-protein X 1 (LNX1), an

E3 ubiquitin ligase of NIMA-related expressed kinase 6 (NEK6),

is directly targeted by miR-325-5p, which inhibits macrophage

apoptosis through the activation of STAT3, a signaling pathway

triggered by the accumulation of NEK6, ultimately leading to

immune escape of M. tuberculosis (121). miR-143 and miR-365,

highly overexpressed during M. tuberculosis infection, inhibit

apoptosis by differentially downregulating c-Maf, Bach-1, and

Engulfment and cell motility protein 1 (Elmo-1) in macrophages
FIGURE 4

A schematic showing apoptosis and relevant microRNAs during Mycobacterium tuberculosis infection. Extrinsic apoptosis is activated by the
combination of Fas and FasL, with the engagement of Fas-associated protein with DD (FADD) and the subsequent activation of caspase 8. In
intrinsic apoptosis, cytochrome c (Cyt c) is released into the cytosol from mitochondria through mitochondrial outer membrane permeability
(MOMP), which process is regulated by the Bcl-2 family. Altered microRNAs (miRNAs) target the Bcl-2 family or other molecules such as ligand
of numb-protein X1 (LNX1), Forkhead box transcription factor class O (FOXO), DNA damage regulated autophagy modulator 2 (DRAM2),
suppressor of cytokine signaling (SOCS), c-Maf, BTB and CNC homology 1 (Bach-1), and Engulfment and cell motility protein 1 (Elmo-1).
↑, upregulated; ↓, downregulated; ⟶, stimulate; ⟞, inhibit.
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alternatively activated by IL-4/13. And the knockdown of these

two miRNAs eases the M. tuberculosis burden and decreases

chemokine CCL5 and IL-6 production (133). Moreover, ectopic

overexpression of miR-579 in M. tuberculosis-infected

macrophages intensifies cell apoptosis by negatively

modulating phosphoinositide-dependent protein kinase 1

(PDK1) and sirtuin 1 (SIRT1), and this effect can be reversed

by the accumulation of cPWWP2A, an endogenous sponge of

miR-579 (134).

In addition to apoptosis and autophagy, necrosis, a

biological process in the context of microbial invasion that is

mediated by molecules such as cyclophilin-D (CypD) and p53,

contributes to M. tuberculosis-mediated cytotoxicity in

macrophages (119, 135). Virulent M. tuberculosis strains not

only evade apoptosis but also induce necrotic cell death (136).

However, miR-1281 can prevent trauma to macrophages from

undergoing bacteria-induced necrosis and apoptosis by

downregulating CypD expression (137).

Moreover, macrophages are capable of acquiring one of

two phenotypes, the M1 and M2 phenotypes. When

macrophages are polarized to the M1 type, they produce NO

and inflammatory cytokines like TNF-a and IL-6, which

promote an antibacterial response, whereas alternative

activation triggers M2 polarization, which facilitates the

production of anti-inflammatory cytokines such as IL-10 and

arginase (138). As a member of the Krüpple-like factor (KLF)

family, KLF4 activates M2 polarization and inhibits M1

polarization (139). C/EBPb also plays a pivotal role in

driving M2 polarizat ion (140). Nucleotide-binding

oligomerization domain-like receptor pyrin domain-

containing protein 3 (NLPR3), a pivotal modulator in the

inflammatory process, triggers the innate immune response

with activation of caspase 1 and secretion of IL-1b and IL-18

(141). In a TB mouse model, miR-20b, which directly binds to

NLRP3, is suppressed. After a miR-20b mimic is injected into

TB mice, macrophages polarize into the M2 type, alleviating

inflammation via the suppression of the NLRP3/caspase 1/IL-

1b pathway, which may reflect a novel molecule-based

therapeutic strategy (142). miR-26a, which has been observed

to be downregulated during M. tuberculosis infection, elicits

the upregulation of KLF4 and C/EBPb, leading to microbe

survival by inducing M2 polarization and repressing

M. tuberculosis trafficking to lysosomes (109).

Taken together, the abovementioned studies showed thatM.

tuberculosis-induced alteration in the expression of host

miRNAs facilitates the virulence of the bacteria and hinders

their elimination. These effects are realized through diverse

molecular mechanisms including regulation of signaling

pathways, cytokine production, autophagy, and apoptosis.

Therefore, pathogenesis of TB is likely based on various

miRNAs, which may open up new exploratory avenues for

developing innovative immunological therapies to eradicate

this fierce bacterial foe.
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The role of lncRNAs in immune
regulation in tuberculosis
Constituting a class of transcripts longer than 200

nucleotides, lncRNAs, the structures of which do not

demonstrate high interspecies conservation but follow a tissue-

specific expression pattern, directly modulate cellular processes

but not by encoding proteins (10, 143, 144). In the human

transcriptome, lncRNAs can be divided into several categories,

such as intragenic and intergenic lncRNAs (145). It has been

proven that lncRNAs play crucial regulatory roles in diverse

biological processes, including cancer metastasis, through

multiple mechanisms. For instance, certain lncRNA can

sponge a miRNA by competing for binding sites in the

miRNA, resulting in corresponding miRNA availability

alterations and reducing its regulatory effect on specific

mRNAs. Other mechanisms of lncRNA function in gene

regulation, including modulating chromatin interactions and

affecting gene expression via regulatory complex recruitment,

have also been proposed (146–148). In terms of immunology,

emerging evidence has confirmed the character of lncRNAs in

modulating the mammalian immune response in host–pathogen

interactions (149). For M. tuberculosis infection, we concluded

relevant lncRNAs which are implicated in innate immune

regulation and elaborated their potential roles in the

pathogenetic process herein (Table 3).

Induced by theM. tuberculosis H37Ra strain in macrophages,

long intergenic noncoding RNA (lincRNA)-Cox2 is revealed to

regulate inflammatory reactions in a broad-acting manner, with

the promotion of TNF-a, IFN-g, IL-6, Cox2, and iNOS

production (150). Meanwhile, the knockdown of lincRNA-Cox2

inhibits the inflammatory response, promotes the apoptotic rate of

H37Ra-infected macrophages, and facilitates pathogen

proliferation via the suppression of the NF-kB and STAT3

signaling pathways (151). lncRNA PCED1B-AS1, which is

downregulated in CD14+ monocytes from ATB patients,

attenuates apoptosis and enhances autophagy by acting as an

endogenous sponge of miR-155, leading to impeded M.

tuberculosis elimination. FOXO3 and Rheb, genes targeted by

miR-155, can reverse the impact of PCED1B-AS1 (152). miR-29a

harbors a binding site for certain lncRNAs and has been verified to

repress the secretion of CXCL10, negatively affecting T-cell

recruitment after M. tuberculosis infection (163). Compared

with the levels in healthy control (HC) groups, lnc-

AC145676.2.1-6 and lnc-TGS1-1 are significantly decreased in

TB patients, suppressing immune function via the elevation of

miR-29a and miR-143, respectively, the functions of which have

been enumerated above. Furthermore, the downregulation of lnc-

TGS-1 is related to thrombocytopenia during TB treatment (153).

Downregulation of lincRNA-erythroid prosurvival

(lincRNA-EPS) enhances autophagy by promoting LC3 and

suppresses apoptosis, facilitating the eradication of the
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pathogen in BCG-infected RAW264.7 macrophages via the

activation of JNK/mitogen-activated protein kinase (MAPK)

signaling, which plays a key role in controlling the balance

between apoptosis and autophagy (154). The expression of

lncRNA HOX transcript antisense RNA (HOTAIR) has been

found to be completely opposite in different M. tuberculosis

strain-infected macrophages; it is upregulated in H37Ra-resided

cells and suppressed in H37Rv-infected cells. Downregulation of

lncRNA HOTAIR facilitates intracellular M. tuberculosis

persistence due to the increased transcription of dual

specificity MAP kinase phosphatase 4 (DUSP4) and special

AT-rich sequence binding protein 1 (SATB1) by targeting

enhancer of zeste homolog (EZH) 2 (155). Likewise, taking

EZH2 as the target, lncRNA-CD244, which is induced by the

T-cell inhibitory molecule CD244, suppresses the production of

IFN-g and TNF-a in M. tuberculosis-infected CD8+ T cells and

attenuates the protective immunity of T cells to combat the

invasion of the microorganisms (156).

The differential expression of 844 lncRNAs in B cells

between individuals with or without TB was reported by Fu

and his colleagues. Among these deregulated lncRNAs, lncRNA

XLOC_012582 is highly expressed in B cells from TB patients,

along with SOCS3 promotion, an inhibitor of cytokine secretion.

However, the relationship between the altered expression of

XLOC_012582 and SOCS3 and the particular impact of this

change on M. tuberculosis infection remains to be further

explored (157). Meanwhile, the team revealed the upregulation

of lncRNA XLOC_014219 and a decrease in heme oxygenase 1

(HMOX1) in CD8+ T cells from ATB individuals. Nevertheless,

whether this phenomenon is involved in the dysfunction of

CD8+ T cells has not been clarified (158). LINC00870, which is

significantly induced byM. tuberculosis in PBMCs, mediates the
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immune response against the bacteria by suppressing the ability

of Th1 cells to produce cytokines such as IL-2 and IFN-g and

promoting the expression of cytokines generated by Th2 cells

including IL-4 and IL-10. These impacts may be attributable to

the activation of the Janus kinase (JAK)/STAT signaling pathway

via the acceleration of the expression of p-STAT5 and p-JAK2

mediated by LINC00870 (159). Another study illuminated that

the expression level of lncRNA MIAT is heightened, which

accelerates autophagy and apoptosis in BCG-infected THP-1

macrophages by binding to miR-665 to enhance ULK1

activation, ultimately inhibiting intracellular pathogen

maintenance (160).

Inhibited by the M. tuberculosis Rv1579c via the activation

of the JAK2-STAT5a pathway, lnc-EST12 decreases the

production of IL-1b, IL-6, and CCL5/8. Moreover, it

suppresses the NLRP3 and gasdermin D (GSDMD)

pyroptosis-IL-1b pathway by binding too far upstream

element-binding protein (FUBP) 3 to suppress innate

immunity toward M. tuberculosis (161). Negative pressure

therapy, promoting wound healing via vacuum dressings, has

been utilized as a TB treatment and has shown promising effects.

Upregulation of lncRNA XIST and downregulation of miR-

125b-5p during the infection can be reversed by this treatment

strategy. Through modulation of the lncRNA XIST/miR-125b-

5p/A20/NF-kB axis, which ultimately increases the activity of

NF-kB p65, this regimen facilitates the polarization of

macrophages to the M1 phenotype, enhancing the

inflammatory response to reduce M. tuberculosis survival (162).

As discussed above, lncRNAs regulate the innate immune

response toM. tuberculosis in various ways, including serving as

sponges of miRNAs and regulating signaling pathways, which

implies that we should undertake related research for the
TABLE 3 Long noncoding RNAs-mediated immune regulation in tuberculosis.

lncRNA Expression Targets Biological function Ref.

lincRNA-Cox2 ↑ NF-kB, STAT3 Increases the production of TNF-a, IFN-g, IL-6, Cox2, and iNOS, and inhibits apoptosis (150, 151)

lncRNA PCED1B-AS1 ↓ miR-155 Inhibits apoptosis and enhances autophagy (152)

lnc-AC145676.2.1-6 ↓ miR-29a Inhibits CXCL10 secretion (153)

lnc-TGS1-1 ↓ miR-143 Inhibits apoptosis (153)

lincRNA-EPS ↓ JNK/MAPK pathway Inhibits apoptosis and enhances autophagy (154)

lncRNA HOTAIR ↓ EZH2 Promotes transcription of DUSP4 and SATB1, and benefits M. tuberculosis survival (155)

lncRNA-CD244 ↑ EZH2 Inhibits the production of TNF-a, IFN-g (156)

lncRNA XLOC_012582 ↑ SOCS3 Inhibits cytokine production (157)

lncRNA XLOC_014219 ↑ HMOX1 Affects the function of CD8+ T cells (158)

LINC00870 ↑ p-STAT5 and p-JAK2 Activates JAK/STAT signaling pathway and regulates cytokine production (159)

lncRNA MIAT ↑ miR-665 Facilitates M. tuberculosis elimination (160)

lnc-EST12 ↓ FUBP3 Promotes NLRP3 inflammasome and GSDMD pyroptosis-IL-1b immune pathway (161)

lncRNA XIST ↓ miR-125b-5p Drives macrophages to M1 polarization (162)
front
lncRNA, long noncoding RNA; Ref, reference; NF-kB, nuclear factor-kB; STAT, signal transducer and activator of transcription; TNF-a, tumor necrosis factor-a; IFN-g, interferon-g; IL,
interleukin; Cox, cyclooxygenase; iNOS, inducible nitric oxide synthase; JNK/MAPK, Jun N-terminal kinase/mitogen-activated protein kinase; EZH2, enhancer of zeste homolog 2; DUSP4,
dual specificity MAP kinase phosphatase 4; SATB1, special AT-rich sequence binding protein 1; M. tuberculosis, Mycobacterium tuberculosis; SOCS, suppressor of cytokine signaling;
HMOX1, heme oxygenase 1; JAK, Janus kinase; FUBP3, far upstream element-binding protein; NLRP3, nucleotide-binding oligomerization domain-like receptor pyrin domain-containing
protein 3; GSDMD, gasdermin D. ↑, upregulated; ↓, downregulated.
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exploration of novel therapies. However, existing studies are not

sufficiently systematic for organized analysis, and certain results

remain unverified. Therefore, more investigations are yet to

be done.
The role of circRNAs in immune
regulation in tuberculosis

Due to the noncanonical splicing process, back-splicing, the

structure of circRNAs is thoroughly distinct from that of other

RNA molecules. They are covalently closed, without typical

components such as 5′ capping and 3′ polyadenylation (164).

Viroids were the first circRNAs to be discovered (165). With

considerable progress in high-throughput RNA sequencing

technology and bioinformatics, thousands of circRNAs have

been identified in eukaryotes (166), demonstrating a tissue-

and cell-specific expression pattern (167, 168). Acting as

miRNA sponges, the more binding sites circRNAs contain, the

more competitive rivalry there will be (169, 170). Furthermore,

circRNAs can enhance the function of certain proteins by

interacting with RNA-binding proteins (RBPs) (171) and serve

as scaffolds in various processes involving enzymes and their

substrates (172). Continuous evidence has confirmed that

circRNAs exert a nonnegligible influence on numerous cellular

processes, from cell cycle control to cancer development

(173, 174).

With respect to infection, previous studies have found that

circRNAs perform flexible roles when viruses invade (175).

Several studies on TB have been carried out and have revealed

the impact of circRNAs on the modulation of the host immune

response (Supplementary Table S3). For example, circAGFG1,

which is upregulated in TB patients, promotes autophagy and

inhibits apoptosis by targeting miR-1257 in macrophages, which

subsequently increases the Notch 2 level (176). Another study

found that circTRAPPC6B is downregulated during M.

tuberculosis infection. Furthermore, forced expression of this

circRNA antagonizes the capacity of miR-874-3p to inhibit

autophagy by targeting ATG16L, thereby increasing autophagy

sequestration and restricting intracellular pathogen growth

(177). Moreover, circRNA-0003528 enhances M. tuberculosis-

related macrophage polarization, which is mediated by the

promotion of CTLA4 via the inhibition of miR-224-5p, miR-

324-5p, and miR-488-5p (178). Deng et al. discovered that

circ_0001490 suppresses M. tuberculosis survival and promotes

the viability of host macrophages by sponging miR-579-3p to

increase the expression of FSTL1 (179). Similarly,

hsa_circ_0045474 is downregulated and plays a positive role in

autophagy induction by promoting the expression of miR-582-

5p and suppressing the expression of the downstream target

TNKS2 in M. tuberculosis-infected macrophages, facilitating the

bacterial clearance in the end (180).
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As demonstrated, the rarity and unconfirmed results of

relevant studies lead to a vague understanding of circRNAs’

function in TB. Because circRNAs present peculiar structures, a

cyclic construction formed through covalent bonds, they are

highly stable and resistant to degradation mediated by

exonucleases (164). Therefore, circRNAs may be ideal

biomarkers for TB detection and prognosis prediction due to

their aberrant expression (181), and this possibility is discussed,

along with other potential ncRNA biomarkers, in the

following section.
Noncoding RNAs as biomarkers
in tuberculosis

On account of the huge burden of the disease, accurate

diagnosis of TB is important but remains a formidable

challenge. Conventional methods based on sputum microscopy

or culture are time- consuming and resource-limited. Moreover,

there is a grim fact that the incidence of DR-TB continues to

increase, leading to lower treatment effectiveness (2). In addition,

adverse drug reactions (ADRs) to anti-TB chemotherapy

complicate disease management (182, 183). Thus, novel, precise,

and efficient indicators for diagnosis, drug resistance prediction,

and treatment monitoring of TB are urgently required. Based on

differentially expressed ncRNAs, related studies have identified

numerous biomarkers with various functions as follows.
Diagnostic biomarkers of pulmonary
tuberculosis

As mentioned above, miR-432-5p, upregulated during M.

tuberculosis infection, inhibits the fusion between autophagosomes

and lysosomesby targetingVPS33A. In themeantime, theexpression

of miR-17-5p and miR-20b-5p is significantly elevated in the serum

of TB patients. Therefore, one group developed a diagnostic model

for TB via the combination of the three miRNAs, achieving an area

under the curve (AUC) of 0.908 (103). As previously mentioned,

miR-889 inhibits autophagy by targeting TWEAKand can serve as a

biomarker for LBTI and a potential therapeutic target due to its high

expression in patients, which is decreased after prophylactic therapy

(106). Another study noticed that miR-29a and miR-99b are

upregulated while miR-21, miR-146a, and miR-652 are decreased

in theplasmaofTBpatients.Therefore, the teamconstructedamodel

based on these five miRNAs to determineM. tuberculosis infection,

showing an AUC of 0.976 (184). After obtaining this result, they

utilized a combination of proteins and miRNAs to further improve

the model (185). Another group combined miR-142-3p with

electronic health record (EHR) data to detect TB, and the AUC

reached 0.94 (186). Compared with LTBI patients, hsa-miR-1246,

hsa-miR-2110, hsa-miR-370-3p, hsa-miR-193b-5p, and hsa-miR-
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28-3p are specifically expressed in TB cohorts (187). In addition,

miR-185-5p is more highly expressed in plasma exosomes obtained

from TB patients than in HCs, demonstrating a diagnostic potential

with an AUC of 0.75 (21).

Regarding lncRNAs, considerable effort has also been

directed to explore their capacity for TB detection. Consisting

of four lncRNAs including NR_038221, NR_003142,

ENST00000570366, and ENST00000422183, the AUC of a

diagnostic model was reported to be 0.845 (188). Hu and his

team identified that ENST00000497872, n333737, and n335265

are differentially expressed in clinically diagnosed TB patients

and established a nomogram to predict the infection by taking

advantage of the data on these three lncRNAs and six clinical

covariates such as age and hemoglobin, with an AUC equal to

0.89 (189). Similarly, lncRNAs TCONS_00001838 and n406498

are significantly differentially expressed in TB patients.

Combining the two lncRNA loci with eight EHR indicators

through logistic regression, the model achieved a decent

predictive value of TB with an AUC of 0.86 (190). Another

study discovered that lncRNA CCAT1 is upregulated in TB

patients, concomitant with high mortality rates, and is negatively

correlated with IL-10 (191). Furthermore, the level of

LINC00870 is higher in the plasma and sputum obtained from

TB and LTBI patients and decreases after 3 months of anti-TB

therapy (ATT), showing the potential of being a biomarker for

the diagnosis and treatment evaluation of TB (159).

In terms of circRNAs, the significant dysregulation of

hsa_circ_0043497 and hsa_circ_0001204 in PBMCs from TB
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patients indicated their diagnostic capacity, as their AUCs

achieved at 0.860 and 0.848, respectively (192). Another group

val idated the overexpress ion of c i rcRNA_051239 ,

circRNA_029965, and circRNA_404022 in the serum, and

constructed a panel of the three circRNAs for use in TB

diagnosis, reaching an AUC of 0.992 (193). Moreover,

hsa_circRNA_001937 is significantly increased in PBMCs from

TB patients compared to patients with lung cancer, pneumonia,

or chronic obstructive pulmonary disease, demonstrating the

potential of this circRNA to be a diagnostic biomarker with an

AUC of 0.873, and it is deemed a candidate molecule for

measuring TB severity (194).

As mentioned above, utilizing a combination of various

ncRNAs, several diagnostic models have shown favorable

performance, inspiring us to develop creative approaches

based on these molecules to detect TB. Rather than waiting for

the test results of pathogens, physicians can rapidly determine

M. tuberculosis infection through fast evaluation of blood or

other conveniently obtained clinical samples (Table 4).
Biomarkers for early detection of active
tuberculosis

A study discovered that 24 miRNAs are upregulated and 6

miRNAs are downregulated in ATB patients, among which the

significantly overexpressed hsa-miR-196b and hsa-miR-376c

demonstrate the greatest potential to be ATB indicators (195).
TABLE 4 Noncoding RNAs as biomarkers for tuberculosis diagnosis.

ncRNAs Study sample Expression Performance Ref.

miR-423-5p, miR-17-5p, miR-20b-5p Serum ↑ AUC 0.908 (103)

miR-889 Plasma ↑ NA (106)

miR-29a, miR-99b Plasma ↑ AUC 0.976 (184)

miR-21, miR-146a, miR-652 Plasma ↓ AUC 0.976 (184)

miR-142-3p Serum ↓ AUC 0.94 (186)

hsa-miR-1246, hsa-miR-2110, hsa-miR-370-3p, hsa-miR-28-3p, hsa-miR-193b-5p Exosome ↑ NA (187)

miR-185-5p Exosome ↑ AUC 0.75 (21)

lncRNAs NR_038221, NR_003142, ENST00000570366 Plasma ↑ AUC 0.845 (188)

lncRNA ENST00000422183 Plasma ↓ AUC 0.845 (188)

lncRNAs ENST00000497872, n333737 PBMCs ↓ AUC 0.89 (189)

lncRNA n335265 PBMCs ↑ AUC 0.89 (189)

lncRNA TCONS_00001838 PBMCs ↑ AUC 0.86 (190)

lncRNA n406498 PBMCs ↓ AUC 0.86 (190)

lncRNA CCAT1 Plasma ↑ NA (191)

LINC00870 Sputum and plasma ↑ NA (159)

hsa_circ_0043497 PBMCs ↑ AUC 0.860 (192)

hsa_circ_0001204 PBMCs ↓ AUC 0.848 (192)

circRNA_051239, circRNA_029965, circRNA_404022 Serum ↑ AUC 0.992 (193)

hsa_circRNA_001937 PBMCs ↑ AUC 0.873 (194)
frontiersi
ncRNA, noncoding RNA; Ref, reference; AUC, area under the curve; NA, not available; PBMCs, peripheral blood mononuclear cells. ↑, upregulated; ↓, downregulated.
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Presenting a higher fold change in ATB patients than in HCs,

miR-155* and miR-155 can also serve as diagnostic biomarkers

for ATB, with respective AUC of 0.7945 and 0.8972 (196).

Moreover, a nested case-control study revealed that, combined

with body mass index (BMI) and TB history, downregulated

hsa-miR-16-5p and hsa-miR-451a can contribute to the

prediction of developing ATB from LBTI, with AUCs of 0.84

and 0.85, respectively (197). Shown to be increased in the serum

of ATB patients, miR-96, miR-425, and miR-484 are also

diagnostic candidates, showing moderate performance with

AUC values ranging from 0.62 to 0.72 (198).

Notably, after synthesizing analysis of the NONCODE database

and GEO dataset, Fang and his colleagues discovered the ability of

four lncRNAs, NONHSAT101518.2, NONHSAT067134.2,

NONHSAT148822.1, and NONHSAT078957.2, to discriminate

ATB patients from HCs via plasma samples, with AUCs ranging

from 0.7080 to 0.9502 (199).

In addition, overexpressed circRNA_103017, circRNA_059914,

and circRNA_101128 are confirmed to be increased by M.

tuberculosis, while circRNA_062400 is downregulated in PBMCs

from ATB individuals. Among these circRNAs, circRNA_103017

shows the maximum potential as an indicator for ATB diagnosis,

with an AUC of 0.870 (200). Furthermore, the upregulation of

hsa_circ_002883 in PBMCs endows it with the power to be a

candidate biomarker for ATB determination, showing significant

discrimination efficiency with an AUC of 0.773 (201). In contrast,

hsa_circRNA_103571 expression is obviously decreased in plasma

from ATB patients, with a diagnostic ability for identifying ATB

(AUC 0.838) (202). Moreover, the lower expression of

hsa_circ_0005836 in PBMCs from the ATB cohort is verified,

indicating that it may serve as a novel biomarker for M.

tuberculosis infection (22) (Supplementary Table S4).

To control the spread of TB, proactively recognizing and

ameliorating active individuals is of imperative priority.

Although the abovementioned studies demonstrate decent

performance, the clinical practicality of using these molecules

for diagnosis remains to be verified in realistic medical settings.

After being strictly tested, these methods may be novel

diagnostic decision-making tools, providing opportunities to

carry out proper treatment against ATB as early as possible.
Biomarkers for prediction of tuberculosis
drug resistance

Considering the roles of ncRNAs in identifying TB drug

resistance, a few studies have also been carried out to analyze

their potential in this daunting task. For example, in DR-TB

patients, miR-197-3p and miR-223-3p are downregulated, while

miR-let-7e-5p is increased, and a multivariate analysis based on

these three miRNAs was performed to distinguish resistant

individuals from HCs. Finally, the diagnostic model achieved an
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AUC of 0.96 for DR-TB recognition. A favorable outcome

showing an AUC of 0.95 was observed for multidrug-resistant

tuberculosis (MDR-TB) subgroup identification (203). Moreover,

the expression of miR-378 in the serum is associated with adverse

therapeutic consequences since it presented a higher level in

MDR-TB than in single-drug-resistant tuberculosis (SDR-TB).

With an AUC of 0.767, this miRNA can also distinguish the ATB

population from the LBTI patients (204). Furthermore, lncRNA

n335659 shows a statistically significant downward trend in the

MDR-TB group compared with the HC cohort; hence, it may act

as a latent biomarker for TB drug resistance prediction as well

(205) (Supplementary Table S5).

Nonetheless, predicting drug resistance in TB through

differentially expressed ncRNAs is still a challenging task, as

there are not abundant or sufficiently comprehensive studies that

have been validated in actual clinical environments. Therefore,

we need to continue to explore the hidden potential of ncRNAs

in DR-TB recognition to realize early diagnosis of drug

resistance and carry out effective treatment.
Biomarkers for treatment evaluation of
tuberculosis

During anti-TB treatment, drug-induced liver injury (DILI) is

the most common severe adverse drug response, with an

approximate incidence of 2%–28% (206). miR-122 and miR-192

are significantly decreased in the serum of TB patients with DILI

and could be used to predict this serious complication in TB (207).

Likewise, another study revealed the value of upregulated circMARS

in identifying TB patients suffering from anti-TB drug-induced liver

injury (ADLI), with an AUC of 0.80 (208). Moreover, the lower

expression of lnc-TGS1-1 is capable of indicating the development

of thrombocytopenia after treatment (153).

Used for treatment response monitoring, the expression of

hsa-miR-346 is significantly increased in the supernatant of

macrophages and serum during M. tuberculosis infection but

declines after two months of ATT (209). Moreover, the

upregulation of miR-29a and miR-99b in patients with TB is

attenuated, reaching levels equal to those in HCs after the

completion of treatment (184). Similarly, LINC00870 is

overexpressed in both sputum and plasma samples from TB or

LBTI patients, but its expression is reduced after three months of

ATT (159). In addition, the expression of lncRNA CCAT1 also

decreases during ATT, and a higher level of CCAT1 is correlated

with high mortality (191), as briefly described in Supplementary

Table S5.

The treatment monitoring capacity of ncRNAs in response

evaluation and side effect prediction of anti-TB chemotherapy

has provided researchers with a promising prospect to precisely

assess the curative effect in patients with TB and to adjust

therapy regimens on an individual basis.
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Conclusion remarks

In summary, we concluded the latest released original

studies investigating the promising roles of ncRNAs in M.

tuberculosis infection, elucidating their functions, which vary

in pathogenesis and as biomarkers. The research referenced may

shed light on the principles behind novel TB therapeutic

schemes based on those seemingly negligible but indeed

crucial elements. Moreover, owing to the differential

expression of ncRNAs in the clinical samples of patients with

different statuses, a new chapter is added to the diagnosis, drug

resistance prediction, and treatment monitoring of TB, with the

further purpose of making appropriate clinical decisions.

Despite the attainment obtained in the field of ncRNAs in TB,

pitfalls remain in the path of integrating these critical molecules into

a realistic clinical scenario. First, since previous studies have linked

various ncRNAs to the pathogenesis of TB, which may be

instructive for HDT development, novel remedies for TB based

on these ncRNAs are promising to explore, but relevant

investigations are lacking, making their use in treatment infeasible

in practice. Second, a single ncRNA can interfere with the

expression of diverse genes, but the complete targets of ncRNAs

have not been explored thoroughly yet (210). Thus, it is rational that

one ncRNA may lead to paradoxical effects in M. tuberculosis

infection, making determining a therapeutic strategy complicated

and confusing. Third, although the parameters of the diagnostic

models based on ncRNAs seem to be promising with decent AUCs,

rigorous and prospective trials of these ncRNAs tested in substantial

samples are required to verify their true potential as biomarkers in

TB. Another considerable issue is that a large proportion of the

studies to date have focused on miRNAs, with research

advancements made with lncRNAs, circRNAs, and other ncRNAs

being relatively rare. Prominent advances in RNA sequencing have

opened the gate to an extensive domain from which to determine

their function, and related work in the future is warranted.

In conclusion, the research field of ncRNAs in M.

tuberculosis infection has met a certain degree of success in

pathogenesis and biomarker exploration and holds broad

promise. However, several challenges still need to be addressed

before these molecules can be seamlessly integrated into clinical

practice to enrich personalized and creative diagnostic strategies

(211, 212), and further direct treatment decision-making in TB,

especially for the management of drug-resistant patients.
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