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FOXP3+ regulatory T (Treg) cells play critical roles in establishing the

immunosuppressive tumour microenvironment, which is achieved and

dynamically maintained with the contribution of various stromal and immune

cell subsets. However, the dynamics of non-lymphoid FOXP3+ Treg cells and the

mutual regulation of Treg cells and other cell types in solid tumour

microenvironment remains largely unclear. In this review, we summarize the

latest findings on the dynamic connections and reciprocal regulations of non-

lymphoid Treg cell subsets in accordancewith well-established and new emerging

hallmarks of cancer, especially on the immune escape of tumour cells in solid

tumours. Our comprehension of the interplay between FOXP3+ Treg cells and key

hallmarks of cancer may provide new insights into the development of next-

generation engineered T cell-based immune treatments for solid tumours.

KEYWORDS

regulatory T Cells, FOXP3+, tumour microenvironment, immune escape, immune
metabolism
Introduction

Tumour is a leading cause of death and a significant barrier to the increasing life

expectancy worldwide (1, 2). It remains largely an incurable disease, urging us to explore

the mystery of the tumour tissue microenvironment. Although the comprehensive

mechanisms for tumour progression are still unclear, we have known for more than one

decade that the insufficient anti-tumour immunity is caused by regulatory T (Treg) cell-
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mediated immunosuppression (3). Hanahan and Weinberg have

previously published landmark reviews on The Hallmarks of

Cancer to gather and categorize the knowledge of cancer into

several hallmarks, leading to a systematic understanding of cancer

occurrence and development as well as guiding the research

direction in past decades (4, 5). In 2022, Hanahan has added

four proposed emerging hallmarks and enabling characteristics,

“unlocking phenotypic plasticity,” “nonmutational epigenetic

reprogramming,” “polymorphic microbiomes,” and “senescent

cells” in addition to the ten well-established ones, including

“sustaining proliferative signaling,” “deregulating cellular

metabolism,” “resisting cell death,” “genome instability and

mutations,” “inducing or accessing vasculature,” “activating

invasion and metastasis,” “tumour-promoting inflammation,”

“enabling replicative immortality,” “avoiding immune

destruction” and “evading growth suppressors” (6). In this

review, we are going to discuss the potential connection

between non-lymphoid FOXP3+ regulatory T cell dynamics and

the new emerging and well-established hallmarks of cancer,

especially on the immune escape of solid tumours.

Treg cells, also known as suppressor T cells, are a

subpopulation of T cells that modulate the immune system (7).

The lineage determining transcription factor, FOXP3 forms a

large molecular complex with multiple transcription factors and

enzymatic subunits to dynamically regulate the development and

function of regulatory T cells (8–14). FOXP3+ Treg cells play

essential roles in maintaining immune homeostasis in healthy

people (15). However, tumour-infiltrating Treg cells have strong

immunosuppressive function, which may promote the immune

escape of cancer cells and the occurrence and development of

tumours (16, 17). Meanwhile, the tumour-derived factors may

also mutually modulate the induction, migration, and

immunosuppressive function of FOXP3+ Treg cells (17).
Mechanisms of FOXP3+ Treg
cell-mediated immune homeostasis
and anti-tumour immunity in solid
tumour microenvironment

Tumour progression is not only related to the anabolic

metabolism of tumour cells themselves, but also to the

extracellular matrix in the tumour microenvironment (TME).

Within TME, stromal cells maintain tissue homeostasis which

favours the growth of tumours, while Treg cells dominate the

formation of immunosuppressive TME, resulting in the failure

of launching effective anti-tumour responses (18). Although the

ablation of Treg cells can eradicate tumours rapidly, severe

autoimmune and inflammatory complications are developed

due to the loss of Treg cell function (19). During the

development of tumours, Treg cells proliferate and undergo

functional maturation, which are promoted by metabolites
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produced by tumour cells. Therefore, a deep understanding of

underlying mechanisms of FOXP3+ Treg cells mediated

immune homeostasis and anti-tumour immunity is required

for developing more effective anti-tumour immunotherapies.

The main function of Treg cells is to maintain the immune

balance and promote tissue homeostasis. In the tumour

microenvironment, Treg cells have multiple functions and

could suppress the anti-tumour response through several

mechanisms. Treg cells express immune inhibitory receptors

and ligands such as CTLA-4, PD-1, and PD-L1 (20). In addition,

Treg cells can express high-affinity IL-2 receptor subunit CD25,

which may deplete the pro-inflammatory factor IL-2 in TME

(21). Treg cells also express cell surface ectonucleotidases CD39

and CD73, which degrade extracellular ATP into adenosine,

leading to the functional immunosuppression of target cells (22).

FOXP3+ Treg cells may also secrete anti-inflammatory factors

(TGF-b, IL-10, and IL-35), perforins, and granzymes to inhibit

or kill T cells, NK cells, and antigen-presenting cells (23). Blimp1

in Treg cells affects the growth rate of tumours dependent on the

expression of Eomesodermin (Eomes), and causes changes in

CD45 cells’ type I interferon in TME, resulting in the changes of

the downstream angiogenic related genes, MHC I and MHC II

molecules, and antigens, thereby altering the activity of tumour

immune cells and immunogenicity of the tumour (24).
An updated view of FOXP3+
Treg cells and solid
tumour microenvironment

This review will focus on the functional regulation of

tumour-infiltrating FOXP3+ Treg cell dynamics in accordance

with well-established and new emerging cancer hallmarks in

order to provide a more comprehensive understanding of the

mutual regulation between FOXP3+ Treg cell dynamics and

solid tumour progression (as shown in Figure 1).
FOXP3+ Treg cells and the
new hallmark: Nonmutational
epigenetic reprogramming

Douglas Hanahan has proposed “nonmutational epigenetic

reprogramming” as one of the emerging hallmarks of cancer (6).

It has been reported that epigenetic changes within TME, such as

excessive alteration of DNA methylation, histone modification,

chromatin accessibility, and posttranslational modification,

significantly contribute to the development and progression of

malignant tumours (6).

Malignant cells apply epigenetic modifications to

dysregulate the expression of certain ligands and affect the

immunosuppressive ability of Treg cells. One persuasive
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example is in lymphoma. Pharmacologic inhibition/blockade of

Histone deacetylase (HDAC) 11 enhances the expression of

OX40L in Hodgkin lymphoma (HL) cells, and the HDAC

inhibitor-induced OX40L inhibits the immunosuppressive

function of interleukin 10 (IL-10)-producing Treg cells and

alters cytokine secretion of HL cells to favour a Th1- and

Th17-type response (25). Moreover, studies have reported that

OX40 triggers the inhibition of FOXP3 gene expression and the

TGF-b–induced conversion of CD4+ naive T cells into CD4+

CD25+ FOXP3+ Treg cells (26, 27).

Cancer epigenetic reprogram also modulates Treg cell

functions via PD-L1 expression. The interaction between PD-1

and PD-L1 negatively impacts the functions of effector and

immunosuppressive T cells. Thus, blocking PD-1/PD-L1 may

reactivate anti-tumour T cell immunity, thereby inhibiting

tumour growth. Both HDAC inhibitors and DNA-

methyltransferase-targeted inhibitors may increase PD-L1
Frontiers in Immunology 03
expression in various tumours (28–31). Combination of

epigenetic modulators with anti-PD-1/PD-L1 antibodies

emerges as promising therapeutics for cancer treatment (29,

32–34). Our recent study has found that gallic acid, a small

molecule compound found in traditional Chinese medicine,

when combined with anti-PD-1 antibody, significantly

dampen tumour- infiltrating FOXP3+ Treg cell function by

impairing PD-1/PD-L1 signaling and Foxp3 stability in

colorectal cancer (CRC) model (35). By inhibiting the

inducible expression of PD-L1, the metabolic molecule L-5-

hydroxytryptophan could also stimulate anti-tumour immunity

(36). In Treg cells, the PD-1/PD-L1 axis inhibits the

phosphorylation of ZAP70 and AKT through phosphorylation

of SHP2, which are well established in CD8+ T cells (37–39).

Interaction between malignant cells and Tregs is mediated in

part through PDL1 and PD1 and epigenetic mechanisms

modulated PD-L1 expression level (31, 40). The increase of
FIGURE 1

The schematic representation of the associations between FOXP3+ Treg cells and eight cancer hallmarks. Over the past decades, our
understanding of cancer has evolved tremendously. Recently, Hanahan and Weinberg have categorized and summarized knowledge of cancers
into 14 hallmarks, including 10 well-estlabished hallmarks (grey) and 4 new emerging hallmarks (green). Here we briefly introduce the
connection between Treg cells dynamics and the feature of eight either well-established or new emerging cancer hallmarks including 1)
nonmutational epigenetic reprogramming, 2) Avoiding immune destruction, 3) tumour-promoting inflammation, 4) polymorphic microbiomes,
5) activating invasion & metastasis, 6) inducing or accessing vasculature, 7) senescent cells, and 8) deregulating cellular metabolism. As very few
papers have reported the association of Treg cells with the remaining hallmarks and thus will not be included.
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PD-L1 by malignant cells enhances PD-L1 and PD-1

interactions, which might inhibit both effector T cells and Treg

cells, suggesting the epigenetic inhibition might affect anti-

tumour immune response. Therefore, the balance of PD-1

expressed by effector T cells and Treg cells in TME, might be

considered in the combination of PD-1/PD-L1 blockage and

epigenetic inhibition (41).

Enhancer of zeste homologue 2 (EZH2) is a histone H3K27

methyltransferase of the polycomb repressor complex 2 (PRC2)

(42). Blockade of this epigenetic regulator dramatically represses

tumour via a T cell-dependent mechanism. EZH2 inhibition,

either pharmacologically or genetically, destabilizes FOXP3

expression in Treg cells and specifically reprograms tumour-

infiltrating Treg cells through driving the expression pro-

inflammatory genes (e.g., IL-2) while inhibiting key

immunosuppressive genes such as IL-10 and TGF-b (43). Treg

cell reprogramming toward pro-inflammatory activities is

critical for the efficacy of anti-tumour immune responses and

enhancing immunotherapy.
FOXP3+ Treg cells and the immune
escape of cancer

The induction and recruitment of immunosuppressive

Treg cells is one of the critical processes involved in the

acquisition of immune escape in cancer. First, cancer cells

can establish immunosuppressive microenvironment by

recruiting Treg cells into the tumour through multiple

mechanisms. Specific combination of chemotactic molecules

and their receptors are engaged in this process. CCR8,

exhibiting chemotaxis to CCL1 (44), is a selectively

upregulated molecule in intratumoural Treg cells (45, 46). In

mouse and human tumour tissues, CCR8+ Treg cells account

for 30% -80% of total tumour-infiltrating Treg cells, while that

accounts for less than 10% in other tissues (47). Increased

Helios+ CCR8+ Treg cell frequency in pancreatic ductal

adenocarcinoma (PDAC) is associated with an invasive

phenotype and poor survival (48). Anti-CCR8 monoclonal

antibodies and anti-CCR8 antibody with Fc-dependent

ADCC (antibody dependent cellular cytotoxicity) selectively

depletes tumour-infiltrating Treg cells due to significantly

increased CCR8 expression by the activated Treg cells in

TME, resulting in a durable anti-tumour immune response

without deleterious autoimmunity and the anti-tumour effects

can be synergized with PD-1 blockers (47, 49, 50). CCR4, binds

to CCL22 and CCL17, is another crucial chemokine receptor

mediating Treg cells trafficking into the TME (51, 52).

Increased CCR4 expression is observed in activated Treg

cells. Inhibition of CCR4 has been shown to reduce Treg

cells accumulation, potentiate anti-tumour immune activity,

sensitize tumours to PD-1 blockade and improve survival (53–

56). CCL5, activated by cancer FOXP3, is responsible for
Frontiers in Immunology 04
FOXP3 + Treg cells infiltration in pancreatic ductal

adenocarcinoma (57). Moreover, CCR5-dependent Treg cell

recruitment is reportedly in colon cancer and melanoma (58,

59). Beyond the traditional chemotactic mediators, recent

studies have also demonstrated that the G protein-coupled

receptor 15 (GPR15), an unconventional chemokine receptor,

directs the infiltration of Treg cells into the colon and

subsequently promotes immune evasion of colorectal

cancer (60).

Second, Treg cells may also accumulate in tumour to

mediate immunosuppression by conversion of conventional

CD4 T (Tconv) cells to Treg cells. Specific cytokines and

growth factors in TME are capable to initiate this process.

Indoleamine 2,3-dioxygenase (IDO) expressed by cancer cells

directly amplifies Treg cells by transforming CD4+CD25-T cells

to CD4+CD25+ Treg cells (61). Tumour-derived TGF-b, IL-10,
and vascular endothelial growth factor (VEGF) promote the

expansion of natural Treg (nTreg) cells assisted by antigen-

presenting cells (APCs) in a tolerogenic manner (62). Tumour-

infiltrating Treg cells directly promote tumour immune evasion

in multiple ways. One of the most important mechanisms is the

expression of checkpoint suppressor molecules such as CTLA-4,

PD-1, TIM-3, LAG-3, and TIGIT (17, 63). Treg cells function to

bind and block corresponding ligands on APCs through these

co-inhibitory receptor molecules, thereby inhibiting the

maturation and function of APCs. CTLA-4 is constitutively

expressed on Treg cells. Compared to CD28, CTLA4 has a

higher affinity for CD80/CD86 (64). Once bound, Treg cells

can reduce APCs’ expression of CD80/CD86 via CTLA-4–

dependent trogocytosis (65–67). This CD80/CD86 reduction

on APCs also upregulates free PD-L1 on APCs (67).

Treatment with CTLA-4 blockers significantly enhances anti-

tumour immunity (68). LAG3 expressed by Treg cells can inhibit

the expression of MHC II in dendritic cells (DCs) (69). However,

it has been demonstrated that the primary fuction of MHC II in

LAG-3 immunosuppression is actually mediated by the

fibrinogen-like protein 1 FGL1 (70).

Additionally, Treg cells express high levels of CD39 and

CD73. These two ecto-nucleotidases contribute to the

conversion of ATP released from apoptotic Treg cells into

adenosine (71). This directly inhibits the growth of effector T

cells and the function of dendritic cells through the adenosine

A2A receptor (A2AR) (71). CD39 and CD73 expression in Treg

cell are increased in human cancers (72). Blockade of adenosine

A2A receptor has been shown to significantly reduce Treg cells

and boosts the anti-tumour activity (73). Targeting CD39 by

antisense oligonucleotide also represents a promising

strategy (74).

FOXP3+ Treg cell-mediated immunosuppression is also

executed by the release of multiple immunosuppressive

cytokines. IL-10, IL-35, and TGF-b (75, 76) inhibit the

function of APCs and Teff cells, while granzymes and perforin

directly kill NK and CD8+ T cell (77, 78). Recent studies have
frontiersin.org

https://doi.org/10.3389/fimmu.2022.982986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2022.982986
also given special attention to T regulatory cells-derived

extracellular vesicles and their ability in generating immune

tolerance through effector T cells and DCs (79–81). Finally, Treg

cells express a higher level of IL-2R a chain (CD25) and can

compete with effector T cells for limited IL-2 in TME (82, 83),

thereby robbing essential cytokine for the survival of effector T

cells. All the above-mentioned studies further provide the

mechanistic basis for FOXP3+ Treg cells promoted immune

escape of cancer (as shown in Figure 2).
FOXP3+ Treg cells and
tumour-promoting inflammation

The inflammatory response could help our body to remove

the necrotic tissue and tumours, so it was once considered as a

beneficial anti-tumour immune response. However, subsequent

studies have demonstrated that the inflammatory process in

TME can also lead to the emergence of tumour invasive

metastasis, angiogenesis and other tumour-promoting features

(84). FOXP3+ Treg cells may play an important role in

regulating the balance of tumour inflammation. Traditionally,

Treg cells are believed to be the main anti-inflammatory cells in

humans, which suppress the function of immune cells and

reduce the inflammatory response, resulting in a poorer

prognosis in cancer patients. However, more recent studies
Frontiers in Immunology 05
have revealed the existence of different tissue resident FOXP3+

Treg cell subsets in CRC, in contrast to the classical Treg cell

immunosuppressive function, can also exhibit a pro-

inflammatory response profile and thus influence the

development and progression of CRC (85). Saito and

colleagues have grouped CRCs into two types, based on the

proportion of FOXP3(lo) non-suppressive T cells (85). FOXP3

(lo) Treg cells are distinguished from FOXP3 (+) T cells in the

absence of the naïve T cell marker CD45RA, FOXP3 instability,

and enhanced secretion of inflammatory cytokines (e.g., IFN-g)
by the FOXP3(lo) Treg subset (85). CRCs patients with

abundant FOXP3(lo) Treg cell infiltration are predicted to

have better survival. Mechanistically, Fusobacterium

nucleatum, and possibly other intestinal bacteria mediate

tumor tissues’ production of inflammatory cytokines (e.g., IL-

12, TGF-b, and TNF-a) (85–90), thereby affecting the

heterogeneity of tumour-infiltrating Treg cells in CRCs and

facilitating the expansion of pro-inflammatory FOXP3(lo)

non-Treg cells that, in turn, enhances anti-tumour immunity

and inhibits tumour formation (85).

In Colitis-Associated Colorectal Cancer (CAC), inflammation

is a key driving factor in tumourigenesis and progression. Under

extensive pro-inflammatory conditions, FOXP3+ Treg cells may

be redirected to a Th17 response by inflammatory cytokine IL-6

together with TGF-b (91). In particular, FOXP3+IL-17A+ T cells

accumulate in the colon of patients with ulcerative colitis and
FIGURE 2

Mechanisms for FOXP3+ Treg cells to mediate the immune escape of solid tumours. Several mechanisms of Treg cells have been reported to
help tumour to avoid immune destruction. For instance, Treg cells can promote the formation of immune suppressive microenvironment. Treg
cells express chemokine receptors (e.g., CCR4, CCR8, CCR5, GPR15) and are recruited to the tumour site by chemokines produced by diverse
cells within TME. Treg cells secreted immunosuppressive cytokines, TGF-b, and VEGF, which not only promote the conversion of Tconv cells to
Treg cells, but also suppress Teff cells and APCs function. Treg cells constitutively express CTLA-4, while downregulate the expression of CD80/
CD86 in APCs (through trans-endocytosis), thereby depriving co-stimulatory signals to responder T cells. Meanwhile, Treg cells inhibit the
function of DCs through LAG-3 and MHC II interactions. For metabolic adaptation, Treg cells could converse ATP to adenosine by CD39 and
CD73, which directly inhibits A2AR mediated Teff cells function. Cells within TME could also be killed by Treg cells secreted granzyme and
perforin. CCL, C-C motif chemokine ligand; CCR, C-C motif chemokine receptor; GPR, G protein-coupled receptor; Tconv, conventional CD4
T cell; TGF, transforming growth factor; IL, interleukin; VEGF, vascular endothelial growth factor; CTLA-4, cytotoxic T-lymphocyte associated
protein 4; MHC, major histocompatibility complex; FGL1, fibrinogen like 1; Teff, effector T cell; A2AR, adenosine A2A receptor; LAG-3,
lymphocyte activating 3.
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CACs. CAC patients with higher FOXP3+ Treg cell levels have a

poor prognosis (92). Treg cells co-expressing the transcription

factors FOXP3 and IL-17A-related transcription factor RORgt in
the dysplastic areas of IBD patients (93). Tumour-infiltrating

FOXP3+RORgt+ Treg cells suppress FoxO3 in DCs, leaving IL-

6 expression uncontrolled. At the same time, high IL-6 level

stimulates STAT3 activation and proliferation of dysplastic cells

(93–96). RORgt inhibition in FOXP3+RORgt+ Treg cells

suppresses IL-17A production and prevents inflammatory

cytokine-induced destabilization of FOXP3 expression induced

by pro-inflammatory cytokines (97). Also, inhibition of RORgt
increases Th17-like Treg cells’ production of IL-10, thereby

enhancing the inhibition of myeloid inflammatory factors (97).

Our recent studies in a colitis-associated colorectal mouse model

have shown that the inhibition of the MondoA-TXNIP regulatory

axis attenuates the immunosuppressive function of Treg cell and

induces Treg cells’ expression of Th17 signature genes in a

glycolytic metabolic pattern, thus further promoting Th17-type

inflammation in the colorectal TME (98). IL-17A expressing Treg

cells may cause CD8+ T cell exhaustion by IL-17A, which could

accelerate colorectal carcinogenesis and tumour progression.

Notably, the use of IL-17A-blocking antibodies could slow the

progression of AOM-DSS-induced colorectal cancer and reduce

the susceptibility to colorectal cancer in MondoA-deficient mice.

Combined treatment with anti-IL-17A and anti-PD-1 antibodies

further reduces the size of colorectal tumours in animal model.

Interestingly, it has been found that GPR15 expression on T cells

also enhanced IL-17 secretion. Gene expression analysis shows

that GPR15+ Treg cells have a Th17-like phenotype, leading to the

production of IL-17 and TNF-a in AOM/DSS mouse model (60).

Interestingly, during tumour development, CD4+T cells may

progressively transdifferentiate into IL-17A+ FOXP3+ and ex-

Th17 IL-17A- FOXP3+ T cells (99). FOXP3-expressing subsets

possess immunosuppressive function. IL-33, induced in

transformed epithelial cells of CRC, is an important trans-

differentiation regulator. IL-33/ST2 signaling suppresses IL-

17A production and potentially promotes the conversion of

IL-17-producing CD4+ T cell types to IL-17-negative (RORgt−)
ST2+ FOXP3+ Treg cells, modifying the inflammatory signals

within the tumour microenvironment to promote CRC (100).

Taken together , the pro- inflammatory tumour

microenvironment, whether intrinsic or induced, may influence

the phenotype and function of Treg cells, which consequently,

exert anti- or pro-tumourigenic inflammatory responses.
FOXP3+ Treg cells and the new hallmark
of cancer: Polymorphic microbiomes

The “Polymorphic microbiomes” is listed as a new hallmark

of cancer (5). Although increasing evidence has shown

microbiomes play critical roles in carcinogenesis, and the

immune system is closely associated with microbiomes, the
Frontiers in Immunology 06
relationship among tumour, Treg cells, and microbiome is still

largely unclear (101).

The association between Treg cells and microbiomes is

mainly explored in colorectal cancer, for large proportion of

microorganisms reside in the human gastrointestinal system

(102). The immune-suppressive capacity of tumour-infiltrating

Treg cells and the M2 subset of tumour-associated macrophages

(TAM) are closely correlated with intestinal microbiota in

colorectal cancer patients (103). FOXP3+ Treg cells could

intervene in the protective process of fecal microbiota

transplanted colitis-associated colon cancer mice model (104).

GPR109a signaling could also induce the differentiation of IL-

10-producing Treg cells (105). The combination of Lactobacillus

acidophilus lysate and anti-CTLA-4 therapy could enhance anti-

tumour immunity in a mouse model of colon cancer,

accompanied with increased CD8 + T cells and effector

memory T cells , but decreased Treg cel ls and M2

macrophages (106).

Apart from CRC, Treg cells and microbiomes also engage in

other cancers. High blood butyrate and propionate levels affect

anti-CTLA-4 therapy efficacy in mouse model and melanoma

patients, along with increased Treg cell proportions, reduced DC

and effector T cell activation, and lower responses to IL-2 (107).

Probiotics modulate the gut microbiome composition to produce

anti-inflammatory metabolites and promote the differentiation of

anti-inflammatory IL-10-producing Treg cells, which may help to

against hepatocarcinoma (108). Selected Bacteroides spp. (such as

B. fragilis, B. thetaiotaomicron) can modulate colonic RORgt+
Treg cells through the bile acid receptor VDR (vitamin D3

receptor), which may be of great significance in treating

gastrointestinal and hepatic cancers (109).

FOXP3+ Treg cells may also facilitate carcinogenesis

induced by several microbiomes. In gastric, mycobacterial

infection could aggravate Helicobacter pylori-induced gastric

preneoplastic pathology via inducing Treg cells (110).

Moreover, intratumour microbes are thought to create a

tolerogenic program with lower proportions of tumour-

infiltrating lymphocytes (TILs) but increased Treg cells in

various types of cancers including colorectal, pancreatic,

breast, and lung cancers (111–118).
FOXP3+ Treg cells and the
classic hallmarks of cancer:
metastasis and invasion

As invasion and metastasis are classical cancer markers,

emerging evidence suggests Treg cells also play a role in

promoting tumour metastasis via multiple manners (5, 119).

The levels of FOXP3+ Treg cells are strongly associated with

cancer metastasis in various human cancers (120). An Increasing

ratio of Treg/Th2 can promote the metastasic progression of

hepatocellular carcinoma (121). FOXP3+ Treg cell levels in the
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peripheral blood of NSCLC patients increase with tumour stage

and peak in metastatic patients (117). Increased FOXP3+ Treg

cells have also been linked to a higher risk of metastasis in other

cancers, including breast, ovarian, prostate, thyroid, gastric,

colorectal, and skin cancers (114, 115, 118, 119).

The underlying mechanisms that contribute to the increase

of tumour-infiltrating FOXP3+ Treg cells could be categorised

into three major pathways. Firstly, organs susceptible to be

invaded and metastasized tend to contain more FOXP3+ Treg

cells (120). For instance, lung tissue could induce more Treg cells

through the upregulation of prolyl-hydroxylase (PHD) proteins

and a local reduction of HIF1a, which are correlated with

increased intrapulmonary metastasis (122). On the other hand,

bone marrow has a relatively hypoxic environment, which

contributes to higher Treg cell frequency during bone

metastasis of tumours (123). FOXP3+ Treg cells also promote

osteogenesis by suppressing osteoclast differentiation and

function, a process that may favour the bone metastasis of

prostate cancer (124). Secondly, the tumour locus can recruit

Treg cells to build an immune-suppressive environment for

tumour progression and metastasis. For instance, elevated

levels of PGE2 in TME could lead to the recruitment of

FOXP3+ Treg cells, which increase the risk of bone metastasis

(125). Inhibition of the CXCL12/CXCR4 axis in combination

with IDO1 blockage could reduce Treg cell and bone metastasis

in breast cancer model (126). After the occurrence of tumour

metastasis, breast cancer cells could stimulate lung tissue to

secrete CCL17 and CCL22, which attract CCR4-positive Treg

cells to accumulate in lung tissue, and thus facilitating lung

metastasis of breast cancer (127). Thirdly, Treg cells can

promote tumour invasion and metastasis directly. Tan et al.

have found Treg cells to express a higher level of RANKL than

Tconvs and stimulated pulmonary metastasis of human RANK

(+)breast cancer cells, and blocking this pathway can reduce the

frequency of pulmonary metastasis (128). Oh et al. have

reported, in mouse model, increased invasive and metastatic

potential of melanoma owing to the direct contact between

melanoma cells and Treg cells. Elevated TGF-b produced by

Treg cells induces the epithelial-to-mesenchymal transition

(EMT), leading to increased lung metastasis (129).
FOXP3+ Treg cell function
in tumour angiogenesis

Inducing angiogenesis is thought to be one of the

mechanism to meet the demand of nutrients and oxygen of

cancer and evacuate metabolic wastes and carbon dioxide from

TME (5). Recent studies suggest that FOXP3+ Treg cells may

also play a functional role in tumour angiogenesis directly or

indirectly to promote carcinogenesis (130–133).

FOXP3+ Treg cells can intervene in cancer angiogenesis in

two ways: through the VEGF pathways or the modulation of
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other immune cells with inflammatory cytokine release (134).

VEGF family is closely related to blood vessel formation (135).

Multiple studies reported the association between FOXP3+ Treg

cells and VEGF in cancer patients and in vivo tumour animal

models (136–142). Hypoxia-induced CCL28 may recruit

intratumoural FOXP3+ Treg cells, which can upregulate

VEGFA levels to promote angiogenesis directly in ovarian

cancer (138) and breast cancer (142).

In addition to VEGF pathways, Treg cells can induce cancer

angiogenesis via regulating other immune cell functions. For

example, Casares et al. reported a reduction of Treg cells levels

can induce IFN-g produced by effector CD4 T cells to decrease

tumour angiogenesis and enhance anti-tumour response (143).

Beatty et al. also emphasized the critical role of IFN-gamma-

dependent inhibition of tumour angiogenesis by tumour-

infiltrating CD4+ T cells (144).

On the contrary, cancer angiogenesis could conversely exert

an effect on tumour-infiltrating FOXP3+ Treg cells. Numerous

clinical studies have demonstrated that antiangiogenic therapy,

blocking VEGFR, used in human cancers is associated with a

reduction of tumour-infiltrating FOXP3+ Treg cells (145–147).

VEGF could promote FOXP3+ Treg cell migration and its

immunosuppressive function, but the detailed mechanisms

underlying VEGFR blocking therapy and tumour-infiltrating

FOXP3+ Treg cells reduction are still unclear (148–150).
FOXP3+ Treg cells and the
newly proposed hallmark of
cancer: Cell senescence

Senescent cells are recently proposed as a new and emerging

hallmark of cancer (6). Cell senescence is an irreversible cell

cycle arrest caused by various factors including: telomere

shortening, DNA damage, cellular stress, and oncogenes’

activation (151, 152). In solid tumour tissues, the senescence

of immune cells (e.g.,macrophages and effector T cells) is

associated with increased tumour malignancy, while the

senescence of cancer cells is linked to the suppression of

cancer progression (151, 152).

FOXP3+ Treg cells have recently been reported to induce

effector T cell senescence by metabolic competition (153). The

senescent T cells are characterized by the elevated expression of

senescence-associated b-galactosidase (SA-b-gal), decreased
expression of CD27 and CD28, and acquired immune

suppressive capacities via the production of TGF-b and IL-10

(153–157). Tumour-infiltrating FOXP3+ Treg cells exhibit

higher glycolysis, which hastens glucose consumption and

reduces glucose availability within TME (158). Low

concentrations of glucose alone can significantly induce the

senescence of both CD4+ and CD8+ T cells (153). The

induction of T cell senescence, by FOXP3+ Treg cells

mediated glucose insufficient, is initiated via the activation of
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the AMP-activated protein kinase (AMPK) (159). The activated

AMPK increases the phosphorylation of p53, facilitates the

accumulation of p21WAF1, promotes the expression of p27,

inhibits the activities of telomerase, and reduces the expression

of key components in the Toll-like receptor signalosome (160,

161). In addition, the accumulation of cyclic adenosine

monophosphate (cAMP), the metabolic product of Treg cells,

is also an important inducer of T cell senescence (159). Treg cells

are able to transfer cAMP into T cells via tight junctions,and the

elevated intracellular level of cAMP in T cells triggers the nuclear

kinase ataxia-telangiectasia mutated (ATM) protein associated

DNA damage, which ultimately leads to T cell senescence (159,

162). Persistent DNA damage signaling provokes the secretion

of senescence-associated inflammatory cytokines, IL-2, IL-6, IL-

8, TNF-a, and IFN-g, which induce more T cell senescence

within the suppressive TME (as shown in Figure 3) (159). The

accumulation of immune suppressive cells enables tumour cells

to escape from anti-tumour immune responses (163). However,

the effect of Treg cells in inducing the senescence of tumour cells

is yet to be illustrated.
Metabolic connection between
FOXP3+ Treg cells and cancer cells
in the tumour microenvironment

Although immune receptors, signaling proteins, and

transcription factors have participated in T cell responses,

cellular metabolism has been recognized as one of the core

determining factors for the survival, proliferation, and function
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of T cells. In general, immunosuppressive FOXP3+ Treg cells are

more dependent on b-oxidation than glycolysis, compared with

effector T cells (164, 165). However, lactic acid may provide

metabolic support to tumour-infiltrating FOXP3+ Treg cells in

highly glycolytic TME (166, 167). The ablation of lactate

transporter MCT1 in B16 melanoma inoculated Slc16a1f/f

Foxp3cre mice leads to decreased tumour growth, indicating the

immunosuppressive function of Treg cells may be closely related

to their ability of ingesting lactate acid (167). Tumour-infiltrating

FOXP3+ Treg cells may convert lactic acid to pyruvate, which is

then converted into malic acid and citric acid that ultimately

participates in the tricarboxylic acid cycle (167). Further study has

shown that a high lactic acid environment allows effector Treg

(eTreg) cells to use MCT1 to uptake lactic acid, which upgrades

the level of PD-1, leading to the functional and phenotypic

changes of eTreg cells (166). In trials comparing the effects of

high glycolysis tumours with low glycolysis tumours on CTLA-4

immunotherapy, the therapeutic effect of low glycolysis tumours is

found to be more pronounced (168). Our recent studies have also

found that the deletion of the MondoA-TXNIP transcriptional

regulatory axis allows Treg cells to increase the expression and cell

membrane localization of glucose transporter Glut1 for stronger

glucose uptake and glycolytic metabolic capacity (98). Inhibiting

mitochondria is liable to weaken Treg cells function (169–172). In

Treg cells, the loss of mitochondrial transcription factor A

(TFAM) is important for mitochondrial respiratory chain

activity, impairs the accumulation and cell lineage stability of

the tumour-infiltrating Treg cells, and thus, inhibits tumour

growth (169, 170). Eliminating Treg cell-specific mitochondrial

complex III increases DNA methylation, as well as enhances the
FIGURE 3

Mechanisms for FOXP3+ Treg cells to induce T cell senescence in the tumour microenvironment. The direct transfer of cAMPs, by Treg cells via
cell junctions, induces the senescence of naïve and effector T cells. The induced senescent T cells cease the expression of CD27 and CD28 but
increase the secretion of pro-inflammatory cytokines. Thus, those senescent T cells exhibit immunosuppressive features and argument the
immunosuppression within TME. So far, no study of direct effect of tumour-associated Treg cells on tumour cell senescence has been found.
However, Treg cells might mediate the senescence of tumour cells indirectly. For instance, the Treg cells induced senescent T cells exhibit
unique SASP, which is characterized by augmented release of cytokines, chemokines, proteases, and metabolic wastes. The accumulation of
these molecules as well as low glucose availability, caused by hyper-glycolysis of Treg cells, create a stress environment, thus may facilitate
thesenescence of tumour cells. cAMP, cyclic adenosine monophosphate; IL, interleukin; TNF, tumour necrosis factor; IFN, interferon; TME,
tumour microenvironment; SASP, senescence-associated secretory phenotype.
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accumulation of metabolites 2-hydroxyglutaric acid (2-HG) and

succinic acid, thereby inhibiting Treg cells function (172).

FOXP3+ Treg cells lacking transcription factor c-Myc have

disrupted mitochondrial oxidative metabolic process, which

decreases the accumulation and functional activation of Treg

cells (171). In addition, there are other pathways related to the

metabolic regulation of tissue-resident FOXP3+ Treg cells. For

instance, glucose metabolism and glycolysis are selectively

inhibited by TLR8 activation in tumour-infiltrating Treg cells

(158). Moreover, CD36 expression on tumour-infiltrating Treg

cells may mediate the uptake of long-chain fatty acids. Although

the knockout of CD36 reduces FOXP3+ Treg cells within

tumours, the preservation of peroxisome proliferation activation

receptor-b (PPAR-b) signal-dependent mitochondrial

adaptability leads to the inhibition of tumour growth (173).

Inhibition of fatty acid binding protein 5 (FABP5) leads to

changes in mitochondria that enhance the inhibitory capacity of

FOXP3+ Treg cells (174). Besides, redox homeostasis is thought to

modulate development and function of Treg cells (175, 176).

Previous studies have demonstrated that increased Treg cells in

tumour sites may be attributed to their increased antioxidative

capacity (177, 178). Furthermore, scientists have also paid more

attention to the association between Treg cells and redox

homeostasis in TME. Thomas-Schoemann et al. have shown

arsenic trioxide could increase anti-tumor immune response by

decreasing Treg cell numbers. This Treg cell reduction is mediated

by oxidative and nitrosative stress (179). Wang et al. have

demonstrated that antioxidant protein thioredoxin (TRX)

enhances Treg cell infiltration in melanoma, which in turn

decreased anti-tumor immune reactions. Recently, Xu et al.

have reported that glutathione peroxidase 4 (Gpx4) could

prevent Treg cells from lipid peroxidation and ferroptosis in

regulating immune homeostasis and anti-tumor immunity (180).
Conclusion and prospective

FOXP3+ Treg cells in the tumour microenvironment are

regulated at multiple levels, which include Treg cell instability

(181–183), Treg cell plasticity (184, 185), and tissue Treg cell

specificity (186–188). Tissue-resident Treg cells maintain tissue

homeostasis and improve tissue repair to prevent inflammation-

induced cancer generation. While, within TME, Treg cells

repress the anti-tumour immune responses. Treg cells also

influence other hallmarks of tumour through cytokines or or

other ligands to activate multiple signal pathways, for example,

TGF-b is shown to promote tumour metastasis. Tumour cells

recruit Treg cells through chemokines, cytokines, and metabolic

regulation. Single-cell sequencing and FACS data indicate that in

the tumour site there are different Treg cell subsets showing

different functions, cytokine expression, and relationships with

patient prognosis.
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The efficacy of immunotherapy with immune checkpoint

antibodies or engineered T cells, especially CAR-T cells, is also

regulated by the tumour-infiltrating Treg cells. Several new

strategies may be developed in the future to treat tumour by

targeting Treg cells. First, develop dual-antibodies to suppress

the function of tumour-infiltrating Treg cells; second, generate

CAR-T cells resistant to the suppression of Treg cells; and last

but not least, convert the suppressive Treg cells into Th1 or

Th17-like Treg cells, which may improve their anti-tumour

activity. Our understanding of the mutual regulation between

tumour-infiltrating FOXP3+ Treg cells and the key hallmarks in

solid tumours will provide new clues for generating engineered T

cells to cure cancer patients.
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Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in
malignant canine mammary tumors. Vet Immunol Immunopathol (2016) 178:1–9.
doi: 10.1016/j.vetimm.2016.06.006

138. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P,
et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and t(reg)
cells. Nature (2011) 475:226–30. doi: 10.1038/nature10169

139. Morimoto Y, Tamura R, Ohara K, Kosugi K, Oishi Y, Kuranari Y, et al.
Prognostic significance of VEGF receptors expression on the tumor cells in skull
base chordoma. J Neurooncol (2019) 144:65–77. doi: 10.1007/s11060-019-03221-z

140. Ning H, Shao Q-Q, Ding K-J, Gao D-X, Lu Q, Cao Q-W, et al. Tumor-
infiltrating regulatory T cells are positively correlated with angiogenic status in
renal cell carcinoma. Chin (Engl) (2012) 125:2120–5. doi: 10.3760/cma.j.issn.0366-
6999.2012.12.008

141. Gupta S, Joshi K, Wig JD, Arora SK. Intratumoral FOXP3 expression in
infiltrating breast carcinoma: Its association with clinicopathologic parameters and
angiogenesis. Acta Oncol (2007) 46:792–7. doi: 10.1080/02841860701233443

142. Kajal K, Bose S, Panda AK, Chakraborty D, Chakraborty S, Pati S, et al.
Transcriptional regulation of VEGFA expression in T-regulatory cells from breast
cancer patients. Cancer Immunol Immunother (2021) 70:1877–91. doi: 10.1007/
s00262-020-02808-0

143. Casares N, Arribillaga L, Sarobe P, Dotor J, Lopez-Diaz de Cerio A, Melero
I, et al. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T
cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting
tumor immunity elicited by peptide vaccination. J Immunol (2003) 171:5931–9.
doi: 10.4049/jimmunol.171.11.5931

144. Beatty G, Paterson Y. IFN-gamma-dependent inhibition of tumor
angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness
to IFN-gamma. J Immunol (2001) 166:2276–82. doi: 10.4049/jimmunol.166.4.2276

145. Adotevi O, Pere H, Ravel P, Haicheur N, Badoual C, Merillon N, et al. A
decrease of regulatory T cells correlates with overall survival after sunitinib-based
antiangiogenic therapy in metastatic renal cancer patients. J Immunother (2010)
33:991–8. doi: 10.1097/CJI.0b013e3181f4c208

146. Chen M-L, Yan B-S, Lu W-C, Chen M-H, Yu S-L, Yang P-C, et al.
Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in
tumor microenvironment to augment antitumor immunity. Int J Cancer (2014)
134:319–31. doi: 10.1002/ijc.28362

147. Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, et al.
Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in
renal cell carcinoma patients. Clin Cancer Res (2008) 14:6674–82. doi: 10.1158/
1078-0432.CCR-07-5212

148. Suzuki H, Onishi H, Wada J, Yamasaki A, Tanaka H, Nakano K, et al.
VEGFR2 is selectively expressed by FOXP3high CD4+ treg. Eur J Immunol (2010)
40:197–203. doi: 10.1002/eji.200939887

149. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O,
et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell
Frontiers in Immunology 13
proliferation in colorectal cancer. Cancer Res (2013) 73:539–49. doi: 10.1158/0008-
5472.CAN-12-2325

150. Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2+
regulatory T cells in tumor immunity. Onco Targets Ther (2017) 10:4315–9.
doi: 10.2147/OTT.S142085

151. Park SS, Choi YW, Kim J-H, Kim HS, Park TJ. Senescent tumor cells: an
overlooked adversary in the battle against cancer. Exp Mol Med (2021) 53:1834–41.
doi: 10.1038/s12276-021-00717-5

152. Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, et al.
Senescence and cancer: A review of clinical implications of senescence and
senotherapies. Cancers (Basel) (2020) 12(8):2134. doi: 10.3390/cancers12082134

153. Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells
trigger effector T cell DNA damage and senescence caused by metabolic
competition. Nat Commun (2018) 9:249. doi: 10.1038/s41467-017-02689-5

154. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A
biomarker that identifies senescent human cells in culture and in aging skin in vivo.
Proc Natl Acad Sci U.S.A. (1995) 92:9363–7. doi: 10.1073/pnas.92.20.9363

155. Vallejo AN. CD28 extinction in human T cells: altered functions and the
program of T-cell senescence. Immunol Rev (2005) 205:158–69. doi: 10.1111/
j.0105-2896.2005.00256.x

156. Ye J, Huang X, Hsueh EC, Zhang Q, Ma C, Zhang Y, et al. Human
regulatory T cells induce T-lymphocyte senescence. Blood (2012) 120:2021–31.
doi: 10.1182/blood-2012-03-416040

157. Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, et al. Tumor-
derived gd regulatory T cells suppress innate and adaptive immunity through the
induction of immunosenescence. J Immunol (2013) 190:2403–14. doi: 10.4049/
jimmunol.1202369

158. Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, et al. TLR8-mediated
metabolic control of human treg function: A mechanistic target for cancer
immunotherapy. Cell Metab (2019) 29:103–123.e5. doi: 10.1016/j.cmet.2018.09.020

159. Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor
microenvironments: emerging target for tumor immunotherapy. J Clin Invest
(2020) 130:1073–83. doi: 10.1172/JCI133679

160. Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle
regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator,
5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human
hepatocellular carcinoma cell line. Biochem Biophys Res Commun (2001)
287:562–7. doi: 10.1006/bbrc.2001.5627

161. Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M, et al. The energy
sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the
decision to enter autophagy or apoptosis. Nat Cell Biol (2007) 9:218–24.
doi: 10.1038/ncb1537

162. van Nguyen T, Puebla-Osorio N, Pang H, Dujka ME, Zhu C. DNA
Damage-induced cellular senescence is sufficient to suppress tumorigenesis: a
mouse model. J Exp Med (2007) 204:1453–61. doi: 10.1084/jem.20062453

163. Domblides C, Lartigue L, Faustin B. Control of the antitumor immune
response by cancer metabolism. Cells (2019) 8(2):104. doi: 10.3390/cells8020104

164. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason
EF, et al. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs
are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011)
186:3299–303. doi: 10.4049/jimmunol.1003613

165. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-
dependent glycolytic pathway orchestrates a metabolic checkpoint for the
differentiation of TH17 and treg cells. J Exp Med (2011) 208:1367–76.
doi: 10.1084/jem.20110278

166. Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin Y-T, Togashi Y,
et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic
tumor microenvironments. Cancer Cell (2022) 40:201–218.e9. doi: 10.1016/
j.ccell.2022.01.001

167. Watson MJ, Vignali PD, Mullett SJ, Overacre-Delgoffe AE, Peralta RM,
Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by
lactic acid. Nature (2021) 591:645–51. doi: 10.1038/s41586-020-03045-2

168. Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y,
et al. CTLA-4 blockade drives loss of treg stability in glycolysis-low tumours.
Nature (2021) 591:652–8. doi: 10.1038/s41586-021-03326-4

169. Chapman NM, Zeng H, Nguyen T-LM, Wang Y, Vogel P, Dhungana Y,
et al. mTOR coordinates transcriptional programs and mitochondrial metabolism
of activated treg subsets to protect tissue homeostasis. Nat Commun (2018) 9:2095.
doi: 10.1038/s41467-018-04392-5

170. Fu Z, Ye J, Dean JW, Bostick JW,Weinberg SE, Xiong L, et al. Requirement
of mitochondrial transcription factor a in tissue-resident regulatory T cell
maintenance and function. Cell Rep (2019) 28:159–171.e4. doi: 10.1016/
j.celrep.2019.06.024
frontiersin.org

https://doi.org/10.1038/nature09707
https://doi.org/10.1038/nature09707
https://doi.org/10.3390/cells8111387
https://doi.org/10.1002/ijc.27920
https://doi.org/10.1016/j.ygyno.2008.04.021
https://doi.org/10.1002/ijc.27634
https://doi.org/10.7314/apjcp.2012.13.3.867
https://doi.org/10.7314/apjcp.2012.13.3.867
https://doi.org/10.4049/jimmunol.2000574
https://doi.org/10.1038/nm0603-669
https://doi.org/10.1186/s12885-019-5909-5
https://doi.org/10.1016/j.vetimm.2016.06.006
https://doi.org/10.1038/nature10169
https://doi.org/10.1007/s11060-019-03221-z
https://doi.org/10.3760/cma.j.issn.0366-6999.2012.12.008
https://doi.org/10.3760/cma.j.issn.0366-6999.2012.12.008
https://doi.org/10.1080/02841860701233443
https://doi.org/10.1007/s00262-020-02808-0
https://doi.org/10.1007/s00262-020-02808-0
https://doi.org/10.4049/jimmunol.171.11.5931
https://doi.org/10.4049/jimmunol.166.4.2276
https://doi.org/10.1097/CJI.0b013e3181f4c208
https://doi.org/10.1002/ijc.28362
https://doi.org/10.1158/1078-0432.CCR-07-5212
https://doi.org/10.1158/1078-0432.CCR-07-5212
https://doi.org/10.1002/eji.200939887
https://doi.org/10.1158/0008-5472.CAN-12-2325
https://doi.org/10.1158/0008-5472.CAN-12-2325
https://doi.org/10.2147/OTT.S142085
https://doi.org/10.1038/s12276-021-00717-5
https://doi.org/10.3390/cancers12082134
https://doi.org/10.1038/s41467-017-02689-5
https://doi.org/10.1073/pnas.92.20.9363
https://doi.org/10.1111/j.0105-2896.2005.00256.x
https://doi.org/10.1111/j.0105-2896.2005.00256.x
https://doi.org/10.1182/blood-2012-03-416040
https://doi.org/10.4049/jimmunol.1202369
https://doi.org/10.4049/jimmunol.1202369
https://doi.org/10.1016/j.cmet.2018.09.020
https://doi.org/10.1172/JCI133679
https://doi.org/10.1006/bbrc.2001.5627
https://doi.org/10.1038/ncb1537
https://doi.org/10.1084/jem.20062453
https://doi.org/10.3390/cells8020104
https://doi.org/10.4049/jimmunol.1003613
https://doi.org/10.1084/jem.20110278
https://doi.org/10.1016/j.ccell.2022.01.001
https://doi.org/10.1016/j.ccell.2022.01.001
https://doi.org/10.1038/s41586-020-03045-2
https://doi.org/10.1038/s41586-021-03326-4
https://doi.org/10.1038/s41467-018-04392-5
https://doi.org/10.1016/j.celrep.2019.06.024
https://doi.org/10.1016/j.celrep.2019.06.024
https://doi.org/10.3389/fimmu.2022.982986
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2022.982986
171. Saravia J, Zeng H, Dhungana Y, Bastardo Blanco D, Nguyen T-LM,
Chapman NM, et al. Homeostasis and transitional activation of regulatory
T cells require c-myc. Sci Adv (2020) 6:eaaw6443. doi: 10.1126/sciadv.aaw6443

172. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM,
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