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Characterization of the immune
cell landscape in CRC: Clinical
implications of tumour-
infiltrating leukocytes in early-
and late-stage CRC
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and Isabella T. Tai1,2*

1Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver,
BC, Canada, 2Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver,
BC, Canada
Introduction: Colorectal cancer (CRC) is the third leading cause of cancer-

related deaths globally. Tumour-infiltrating leukocytes play an important role in

cancers, including CRC. We therefore sought to characterize the impact of

tumour-infiltrating leukocytes on CRC prognosis.

Methods: To determine whether the immune cell profile within CRC tissue

could influence prognosis, we employed three computational methodologies

(CIBERSORT, xCell and MCPcounter) to predict abundance of immune cell

types, based on gene expression. This was done using two patient cohorts,

TCGA and BC Cancer Personalized OncoGenomics (POG).

Results:Weobserved significant differences in immune cell composition between

CRC and normal adjacent colon tissue, as well as differences in based on method

of analysis. Evaluation of survival based on immune cell types revealed dendritic

cells as a positive prognosticmarker, consistently acrossmethodologies. Mast cells

were also found to be a positive prognostic marker, but in a stage-dependent

manner. Unsupervised cluster analysis demonstrated that significant differences in

immune cell composition has a more pronounced effect on prognosis in early-

stage CRC, compared to late-stage CRC. This analysis revealed a distinct group of

individuals with early-stage CRC which have an immune infiltration signature that

indicates better survival probability.

Conclusions: Taken together, characterization of the immune landscape in

CRC has provided a powerful tool to assess prognosis. We anticipate that

further characterization of the immune landscape will facilitate use of

immunotherapies in CRC.
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Background

Colorectal cancer (CRC) is the third leading cause of cancer-

related deaths worldwide (1). While screening strategies and

therapeutics have improved outcomes for colorectal cancer over

the past few decades, prognosis for advanced stages remains very

poor (2). CRC is conventionally classified by clinicopathological

characteristics, such as TNM stage and histology (3, 4).

Unfortunately, these features are often ambiguous in predicting

clinical outcomes and response to therapeutics. In an attempt to

circumvent this, CRC is often further characterized by genomic

factors such as microsatellite instability status, as well as BRAF and

KRAS mutational status (4, 5). While these factors are collectively

better able to predict prognosis and drug response, they are limited

and heterogeneity in clinical outcome remains problematic.

Therefore, there is an urgent need for further identification of

genomic and phenotypic features for the development of more

effective prognostics and therapeutics for CRC.

Recent studies have sought to understand the complex

relationship between the immune system and cancer.

Importantly, studies have demonstrated that tumour

progression and prognosis are influenced by immune cell

infiltration in tumours and their surrounding tissues.

Specifically, lymphocytic infiltration has been associated with

good prognosis in breast, lung, prostate, ovarian and CRC (6–9).

Due to this correlation, it has become evident that exploiting the

immune system is not only a viable therapeutic strategy, but also

may prove to be effective for prognostic purposes.

Several studies have identified tumour-infiltrating

lymphocytes in CRC (9–11). These studies have shown that

lymphocytic infiltration of CRC is associated with more

favourable prognosis. Furthermore, a study by Galon et al.

demonstrated that immunological infiltration of CRC is a

better prognostic indicator than conventional histopathological

staining (12). Additionally, infiltration of CRC with memory T

cells was shown to be inversely correlated with signs of early

metastatic invasion (13, 14). Collectively, these factors identify

CRC as a promising target for immunotherapy. However, while

immunotherapy is approved for a number of cancer types (14–

16), clinical trials in unselected patients with CRC have not

yielded promising clinical outcomes (17, 18). Currently,

approval of checkpoint inhibition immunotherapy for CRC is

limited to a subset of patients with microsatellite instability-high

(MSI-H) or mismatch repair deficient (dMMR) tumours (19).

While MSI-H or dMMR CRC, response to checkpoint inhibitor

immunotherapy is encouraging, these subtypes only account for

approximately 15% of CRC cases (20). It is therefore evident that

further studies are necessary to identify additional factors that

influence response to immunotherapy treatment in CRC.

Traditional methods used to identify infiltrated immune

cells include immunohistochemistry and flow cytometry.
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Unfortunately, both of these methods are limited in their

ability to accurately identify subsets of immune cells within a

bulk tumour (14, 21). Several novel methods have been

employed using gene expression profiles to predict abundance

o f spec ific immune ce l l s w i th in a bu lk tumour .

Microenvironment Cell Populations-counter (MCP-counter),

is a method use to quantify the absolute abundance of eight

immune and two stromal cell types (22). MCP-counter uses gene

expression data to generate an abundance score for B

lymphocytes, cytotoxic lymphocytes, CD3+ T cells, CD8+ T

cells, monocytic lineage cells, myeloid dendritic cells,

neutrophils, NK cells, endothelial cells and fibroblasts (22).

CIBERSORT is a deconvolution method used to identify

subsets of infiltrated immune cells within a tumour and

determine correlations to clinical outcomes (14, 21, 23).

CIBERSORT uses relative gene expression of 547 genes that

distinguishes 22 human hematopoietic cell types (referred to as

a leukocyte gene signature matrix, LM22). LM22 is specifically

able to phenotypically distinguish B cells, dendritic cells,

eosinophils, macrophages, mast cells, monocytes, neutrophils,

natural killer cells, plasma cells and T cells. xCell is a gene-

signature based method, which uses a combination of gene set

enrichment with deconvolution to analyze microarray and

RNA-seq expression profiles (24). This method is able to

predict abundance of 64 cell types, including immune cells,

hematopoietic cells, and epithelial cells. Specifically, xCell can

also generate abundance scores for adaptive and innate

immune cells, including T cells, B cells, macrophages,

monocytes, neutrophils, dendritic cells and natural killer cells

(24). In this study, we employ MCP-counter, CIBERSORT and

xCell to assess the immune cell composition in CRC and

identify an immune profile associated with improved

outcomes in survival.
Materials and methods

Data Mining

For the exploration datasets, publicly available expression

data were downloaded from The Cancer Genome Atlas (TCGA)

up to June 31, 2018 with the Genomic Data Commons (GDC)

application. The data, which consist of RNA-sequencing data of

644 tumours and 51 adjacent normal tissues from CRC patients,

were generated using the Illumina HiSeq platform. Clinical data

from these patients were also retrieved from TCGA. To compare

primary tumours with metastatic tumours, expression data and

clinical data were retrieved from BC Cancer Personalized

OncoGenomics (POG) Program on September 10, 2018, which

consisted of RNA-sequencing data of 73 tumours from

metastatic CRC patients.
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Determination of tumour-infiltrating
immune profile

The R-script for the CIBERSORT algorithm was

downloaded from https://cibersort.stanford.edu/ and run

under R version 3.4.1 environment (21, 23). Immune profiles

of 22 types of infiltrating immune cells were determined with

CIBERSORT using the default signature matrix (designated as

“LM22” by the authors) at 1000 permutations. Quantile

normalization was turned off for the exploration TCGA

dataset consisting of RNA-sequencing data (21). The default

signature matrix containing 547 immune marker genes was used

to characterize immune cell composition of 22 immune cell

types. The gene annotation was examined to ensure

nomenclature consistency between TCGA and CIBERSORT.

Eleven genes were renamed with the most recent gene ID

published on HUGO Gene Nomenclature Committee (HGNC,

https://www.genenames.org/); five genes or ncRNAs (GSTT1,

LILRA3, LINC00597, LOC100130100, LOC126987) were

removed from the matrix due to their retirement in the latest

human genome annotation (hg38) which was used for the

TCGA expression data. As a summary, CIBERSORT provides

a P-value for each sample using Monte Carlo sampling,

indicating its significance level in the results (21).

Deconvolution to identify immune cell subsets was also

performed using xCell and MCPcounter (22, 24). xCell uses an

ssGSEA approach to quantify the enrichment of gene signatures

for 64 immune and stromal cell subsets, while MCPcounter

quantifies the abundance of 8 immune and 2 non-immune

stromal populations in heterogeneous tissue samples. All

downstream analyses were performed using CIBERSORT,

xCell and MCPcounter deconvolution results.
Comparative Analyses of TCGA data

RNA-sequencing data from a total of 644 tumour samples

and 51 adjacent normal samples were run through the

CIBERSORT algorithm. A subset of 308 out of 644 (~48%)

tumour samples and 40 out of 51 (~78%) adjacent normal

samples, passed CIBERSORT analysis with P-value <0.05 and

were used for downtown analyses. Comparative analyses for

relative percentage of immune cells, total number of infiltrating

immune cells as well as individual gene expression level were

done with Wilcoxon signed-rank test (between two groups) for

normal vs. CRC groups. Five levels of significance were used in

comparative analyses (and subsequently used in figures),

determined by P-values: “ns” (not significant) “*” for p < 0.05,

“**” for p < 0.01, “***” for p < 0.001 and “****” for p < 0.0001.
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Survival analyses of TCGA data

Survival curves were generated and plotted with R package

“Survminer” (version 0.4.3) (25). For comparative survival

analyses, the threshold for high and low cell fractions or

expression levels were determined with ROC curve, as

previously described (26), and the log-rank test was applied to

analyze differences among groups. Statistics such as hazard ratio,

mean survival and confident intervals were extracted from the

survival objects constructed with R package “survival” (version

2.42-6) (27).
Analyses of POG data

The POG dataset (metastatic cohort), which consisted of

expression and clinical data from 73 metastatic CRC samples,

were re-formatted to match the format of the TCGA expression

and clinical data, which was then used as input for the

bioinformatic pipeline that was used for the TCGA

exploration dataset. The same filtering step for CIBERSORT,

xCell and MCP analyses were used and 58 samples that passed

the p<0.05 in CIBERSORT analysis were used for downstream

expression, survival and other comparative analyses, as

described previously for the TCGA dataset. As no p-value is

provided with xCell and MCPcounter, all results were used for

downstream analyses using these deconvolution methods.
Clustering of CRC samples based on
immune profile

To identify subtypes of CRC tumours based on immune

profiles, unsupervised k-means clustering analysis was

completed utilizing all CRC tumour samples. This heuristic

algorithm uses the centroid principle, which is used on a

geometric centre of a cluster and will minimize the distance

between a point and a centroid to assign this point to a cluster

(28). First, we computed the optimal number of clusters (the k

value) that would be best attributed to the TCGA data; a

silhouette analysis was carried out to determine the inter-

cluster distances, which informs the relative distances of each

cluster to the others. A simulation silhouette analysis for several

k values (k = 1, k = 2… k = 10) was conducted (29), and the most

significant value corresponded to k = 2 for an average silhouette

score of 0.09. Once all CRC tumour samples (N = 308) were

attributed to two clusters, the relative number of immune cells

were compared between the two clusters (Cluster 1 with 142

samples; Cluster 2 with 166 samples). Supervised clustering was

then performed using immune cells that significantly differed
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between the two clusters that emerged from the unsupervised

clustering. These cell types were used as attributors, which

refined the two clusters with minimal number of tumour

samples in the overlapping region between the two clusters

(Cluster 1 with 141 samples; Cluster 2 with 167 samples).

Differential gene expression analysis was performed on the

clusters identified in the TCGA and POG data using DESeq2 in R

(v.1.28.1) (30). Functional annotation of the resulting gene sets was

performed using clusterProfiler in R (v.3.16.1) (31). Significance was

determined using an adjusted p-value cutoff of 0.1 for both methods.
Univariate and multivariate survival
analyses and statistics

To identify genes important for prognosis of CRC patients

based on immune profiles, univariate and multivariate survival

analyses were performed using significantly differentially

expressed genes identified in the previous section. In addition

to the log-rank test described previously, the univariate random

forests analysis was also used to determine if a gene could play a

role in the survival of CRC patients. The R package, ranger,

implemented a high performance random forest method based

on survival analyses (version 0.10.) (32). Statistical significances

for the output (the variable: importance score) was measured

based on the empirical null distribution as described previously

(33). For the multivariate counterpart of survival analysis, the

multivariate Cox-model was used to compare relative

contributions of different factors, such as immune cell types or

candidate genes. Hazard ratio, mean survival time and

confidence interval values based on the log-rank test and Cox-
Frontiers in Immunology 04
model were extracted from the survival objects constructed in

the R environment during univariate and multivariate survival

analyses with the packages described above.
Comparison of immune profiling
between early- and late-stage CRC

The clinical data on tumour stage was obtained from the

TCGA CRC clinical database. The early-stage CRC cohort

contained 169 (~55% of the total 308 samples) samples from

stage I and II tumours; and the late-stage CRC cohort contained

127 (~41%) samples from stage III and IV tumours. The

remaining 12 samples (~4%) did not have their tumour stage

specified and were excluded from the early- vs. late-stage CRC

analyses. Immune profiles, cluster, expression and survival

analyses were subsequently repeated for the early- and late-

stage CRC cohorts, following the same methods that were used

for the entire CRC dataset, as described previously. The results

for each analysis were compared among the entire CRC dataset,

the early-stage CRC and the late-stage CRC cohorts.
Results

Immune cell composition in CRC

CIBERSORT, xCell and MCP-counter revealed that the

immune cell landscape in CRC is distinctly different from

normal tissues (Figure 1).
B C

A

FIGURE 1

Analysis of immune cell composition of CRC samples using CIBERSORT, xCell and MCP-counter. (A) Immune cell abundance in CRC tissue
compared to normal adjacent colon tissue, based on CIBERSORT analysis. (B) Immune cell abundance in CRC tissue compared to normal
adjacent colon tissue, based on MCP-counter analysis. (C) Immune cell abundance in CRC tissue compared to normal adjacent colon tissue,
based on xCell analysis. CRC was compared to normal tissue using the Wilcoxon test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, n.s.
non-significant.
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CIBERSORT, used to estimate cell fractions of 22 immune

cell types in CRC and normal adjacent colon tissue,

demonstrated differences in relative immune cell composition

in CRC, compared to adjacent normal tissue, (Figure 1A). Cell

abundance is a quantitative measure of the cell composition,

based on the gene expression. Specifically, there was an

abundance of M2 macrophages, resting dendritic cells, resting

mast cells, monocytes, eosinophils, activated natural killer cells,

CD8+ T cells, regulatory T cells, CD4+ memory resting T cells

and plasma cells in adjacent normal colon tissue, compared to

CRC (p < 0.0001), (Figure 1A). In contrast, an abundance of M0

macrophages, M1 macrophages, resting natural killer cells,

activated mast cells, and CD4+ memory activated T cells was

observed in CRC (p < 0.0001), compared to adjacent normal

colon tissue (Figure 1A).

MCP-counter was used to quantify abundance of 8 immune

cell types in CRC and adjacent normal colon tissue. B cells,

cytotoxic lymphocytes, natural killer cells and T cells were

significantly more abundant in adjacent normal colon

compared to CRC (p < 0.0001) (Figure 1B). xCell examined

the abundance of 64 cell types, of which 35 were characterized as

immune cells. Significant differences were observed in the

immune cell composition in CRC vs. adjacent normal colon

tissue. Specifically, abundance of B cells, memory B cells, plasma

cells, neutrophils and M1 macrophages were significantly higher

in adjacent normal colon tissue vs. CRC (p < 0.0001)

(Figure 1C). Additionally, abundance of several types of
Frontiers in Immunology 05
dendritic cells including activated, conventional, plasmacytoid,

and immature dendritic cells were significantly higher in

adjacent normal colon vs. CRC (p < 0.0001) (Figure 1C).

Furthermore, common lymphoid progenitor cells (CLP) were

significantly higher in CRC vs. adjacent normal colon tissue (p <

0.0001) (Figure 1C).

Unlike MCP-counter, CIBERSORT and xCell both generate

total immune cell infiltration scores, based on the abundance of

immune cells within each sample. Specifically, the absolute

leukocyte abundance from the CIBERSORT analysis, and the

Immunoscore from xCell are both values representing the total

immune cell infiltration within a patient sample. As shown in

Figure 2A, the absolute leukocyte abundance for normal colon

was significantly higher compared to CRC (p < 0.0001).

Similarly, the Immunoscore for normal colon was significantly

higher compared to CRC (p < 0.0001), as shown in Figure 2C.
Overall survival based on total immune
cell infiltration of individuals with CRC

Based on the CIBERSORT analysis, we found that the absolute

leukocyte abundance was significantly correlated with lower 5-year

survival (HR = 2.0224, p = 0.01408), as shown in Figure 2E.

Furthermore, we examined the effect of total immune cell

infiltration on tumour stage at diagnosis. The 5-year survival of

patients with early-stage CRC (TCGA, stages I and II) was inversely
B C D

E F

G
H

A

FIGURE 2

Analysis of immune cell composition and survival of CRC using CIBERSORT and xCell. (A) Relative leukocyte fractions of 22 cell types were
determined using CIBERSORT for 308 CRC tumours and 40 normal adjacent colon tissue samples. Absolute leukocyte abundance was
determined by the sum of all immune cell infiltration, based on CIBERSORT, for CRC tissue and normal adjacent colon tissue. Each dot
represents one patient. (B) Relative leukocyte fractions are depicted for CRC tissue and normal adjacent colon tissue, as predicted by
CIBERSORT. (C) The Immunoscore, as determined by xCell, for CRC tissue and normal adjacent colon tissue. (D) Relative leukocyte fractions are
depicted for CRC tissue and normal adjacent colon tissue, as predicted by xCell. (E) Kaplan-Meier curves for overall five-year survival based on
the CIBERSORT absolute leukocyte abundance for all TCGA patients, patients with early-stage CRC, late-stage CRC and (F) metastatic CRC.
(G) Kaplan-Meier curves for overall five-year survival based on the xCell Immunoscore for all TCGA patients, patients with early-stage CRC, late-
stage CRC and (H) metastatic CRC. CRC was compared to normal tissue using the Wilcoxon test. ****p < 0.0001. Groups with high and low cell
numbers were compared with log-rank test.
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correlated with lower immune cell infiltration (HR = 3.2091,

p = 0.01228), and this effect was no longer observed with late-

stage CRC (TCGA, stages III and IV) (HR = 1.3363, p = 0.4539)

(Figure 2E) or metastatic (POG cohort) (HR = 0.5691, p =

0.1445) (Figure 2E).

We next examined the correlation between the

“Immunoscore” observed from the xCell analysis, and found

that the survival did not correlated with overall 5-year survival

in all patients with CRC (HR = 1.5425, p = 0.1820, Figure 2F).

Examination of the effect of the Immunoscore on overall 5-year

survival did not reveal any significant correlations based on

tumour stage. Specifically, in early-stage CRC, high

Immunoscore was non-significantly associated with poor overall

5-year survival (HR = 5.2825, p = 0.0705, Figure 2F). In late-stage

and metastatic CRC no significant associations in overall 5-year

survival were observed, based on Immunoscore (Figure 2F).
Overall survival based on immune cell
infiltration of individuals with CRC

We next performed random forest modeling to show an

association between overall survival and immune cell infiltration

(Figure 3). We identified two cell types, in the CIBERSORT

analysis, that were significantly associated with overall

survival (Figure 3A).

In CRC, regardless of stage, CIBERSORT, activated dendritic

cells (HR = 0.2013 [0.1064-0.3809], p = 0.002714) and follicular

helper T cells (HR = 1.7281 [1.0136-2.9460], p = 0.04923) were

associated with overall survival in all CRC patients (Figure 3A).

MCP-counter found cytotoxic lymphocytes (HR = 0.5825

[0.3285-1.0329], p = 0.0456), myeloid dendritic cells (HR =

0.4457 [0.2457-0.8085], p = 0.0023) and T cells (HR = 2.3514

[1.1431-4.8367], p = 0.0026) were associated with improved 5-

year survival, while xCell analysis linked activated dendritic cells

(HR = 1.9021 [1.1144-3.2467], p = 0.0255), common lymphoid

progenitors (CLP) (HR = 0.5132 [0.3010-0.8749], p = 0.0185),

neutrophils (HR = 0.5437 [0.3016-0.9802], p = 0.0244), natural

killer (NK) cells (HR = 0.3684 [0.1995-0.6801], p = 0.0162), and

type-2 helper T (Th2) cells (HR = 0.4034 [0.2289-0.7109], p =

0.0100), with better prognosis (Figure 3C).

In order to determine if specific immune cell types differ in

early vs. late stage CRC, we used the 3 algorithms to assess the

immune landscape in early (stage I + II) vs. late (stage III + IV).

Large fractions of resting natural killer cells (HR = 5.5870, p =

0.00068) and memory activated CD4+ T cells (HR = 3.7234, p =

0.01352) were associated with poor overall survival in patients,

using CIBERSORT analysis (Figure 3B). Similarly, using MCP-

counter, patients with early-stage CRC, poor overall survival was

found in individuals with, natural killer cells (HR = 8.0681, p =

0.01572), and T cells (HR = 3.2172, p = 0.01207) (Figure 3B).

MCP-counter analysis also showed large fractions of monocytic

lineage cells (HR = 7.2005, p = 0.02490) to be associated with
Frontiers in Immunology 06
poor overall survival in patients with early-stage CRC.

Interestingly, xCell analysis revealed similar results: monocytes

(HR = 3.3891, p = 0.04125), M1 macrophages (HR = 2.8569, p =

0.0389), M2 macrophages (HR = 3.3126, p = 0.0457) and plasma

cells (HR = 3.4186, p = 0.03968). (Figure 3C). Similarly, were

indicative of poor overall survival in individuals with early-stage

CRC, based on xCell analysis (Figure 3C).

In late stage CRC, high resting mast cells (HR = 0.02812

[0.1302-0.6075], p = 0.02481) was associated with better overall

survival, based on CIBERSORT analysis (Figure 3C), and as well

xCellmast cells (HR = 0.4052, p = 0.01610). Using MCP-counter,

patients with late-stage CRC, large fractions of cytotoxic

lymphocytes (HR = 0.4500, p = 0.01849), and neutrophils (HR =

0.3349, p = 0.0011) were also associated with better overall survival

(Figure 3B). xCell analysis also identified neutrophils (HR = 0.3614,

p = 0.0021) and natural killer cells (HR = 0.2575, p = 0.01542), and

Th2 cells (HR = 0.2335, p = 0.00864) were found to be significantly

correlated with better overall survival (Figure 3C).

In patients with metastatic CRC, M2 macrophages (HR =

2.6132, p = 0.0059) and neutrophils (HR = 2.3441, p = 0.01769)

were associated with poor prognosis, based on CIBERSORT

analysis (Figure 3A). Plasma cells were found to be correlated

with poor overall survival in both CIBERSORT (HR = 2.1173, p =

0.04919) and xCell analysis (HR = 2.0555, p = 0.0058). Additionally,

in patients with metastatic CRC, large fractions of helper T cells

(HR = 0.2013, p = 0.002714), and activated mast cells (HR = 0.2013,

p = 0.002714) were associated with better overall survival

(Figure 3A), using CIBERSORT analysis, however mast cells (HR

= 2.7450, p = 0.01318) and Th2 cells (HR = 2.6543, p = 0.0058) were

found to be inversely correlated with overall survival, using xCell

analysis (Figure 3C).
Overall survival based on dendritic cell
infiltration in individuals with CRC

As previously mentioned, dendritic cells appeared to influence

prognosis, using all 3 platforms, CIBERSORT, xCell and MCP-

counter. We therefore examined the effects of low levels of dendritic

cell infiltration on overall survival based in early, late stage, and

metastatic CRC. Higher levels of dendritic cells in CRC were

associated with improved 5-year survival in all CRC patients,

based on CIBERSORT (HR = 0.2013 [0.1064-0.3809], p =

0.002714) and MCP-counter (HR = 0.4457 [0.2457-0.8085], p =

0.0023), but the opposite was observed when analyzed by xCell (HR

= 1.9021 [1.1144-3.2467], p = 0.0255) (Figure 5). This effect was

mostly due to the level of dendritic cell infiltration in late-stage

CRC. We observed significant differences in the dendritic cells

associated with overall survival in patients with early-stage CRC

compared to patients with late-stage CRC and metastatic CRC. We

also observed differences in overall survival based on the 3

prediction analyses that were used. Using CIBERSORT analysis,

examination of activated dendritic cells in early-stage CRC and late-
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stage CRC demonstrated associations with non-significant

favourable outcomes (HR = 0.1946 [0.0643-0.5895], p = 0.0764)

and (HR = 0.2727 [0.1151-0.6465], p = 0.0558), respectively, as

shown in Figure 4A. Furthermore, activated dendritic cell

abundance predicted by CIBERSORT analysis in metastatic CRC

did not reveal an association with overall survival (HR = 0.8836

[0.2276-3.4309], p = 0.8653), as shown in Figure 4A.

Furthermore, using myeloid dendritic cell abundance

generated by MCP-counter, we assessed the overall survival

based on tumour stage. Contrary to results obtained from

CIBERSORT, no association was observed between myeloid

dendritic cells and overall survival in early-stage CRC (HR =
Frontiers in Immunology 07
0.6705 [0.2122-2.1189], p = 0.4495), as shown in Figure 4B.

Additionally, myeloid dendritic cells were significantly

associated with better overall survival in late-stage CRC (HR =

0.4173 [0.2058-0.8460], p = 0.0089), and metastatic CRC (HR =

0.4382 [0.2154-0.8916], p = 0.0171), as shown in Figure 4B.

Next, overall survival based on tumour stage was examined

using activated dendritic cell abundance generated by the xCell

analysis. Conflicting with results obtained from CIBERSORT

and MCP-counter, high levels of activated dendritic cells were

associated with poor overall survival in early-stage CRC (HR =

3.7114 [1.4254-9.6636], p = 0.02686), as shown in Figure 4C.

Additionally, similar to results fromMCP-counter, high levels of
B

C

A

FIGURE 3

Immune cell infiltration and survival analysis of CRC. (A) Analysis of prognostic impact of immune cell infiltration in all patients, patients with
early-stage CRC and late-stage CRC, based on the CIBERSORT analysis. (B) Analysis of prognostic impact of immune cell infiltration in all
patients, patients with early-stage CRC and late-stage CRC, based on the MCP-counter analysis. (C) Analysis of prognostic impact of immune
cell infiltration in all patients, patients with early-stage CRC and late-stage CRC, based on the xCell analysis.
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activated dendritic cells were associated with better overall

survival in metastatic CRC (HR = 0.4429 [0.2203-0.9795], p =

0.0181) (Figure 4C). No significant impact on prognosis was

observed when comparing high and low levels of activated

dendritic cells in late-stage CRC, as shown in Figure 4C.
Overall survival based on CD8+ T cell
infiltration in individuals with CRC

CD8+ T cells have been widely demonstrated to be predictive

of prognosis in cancers, including CRC (34). We decided to

assess if CD8+ T cells in CRC tissue was associated with

prognosis. Interestingly, in our study, CD8+ T cells did not

emerge as a cell type significantly associated with 5-year survival

in CRC patients in the TCGA cohort, irrespective of stage

(Figure 5), in all 3 platforms (CIBERSORT, xCell and MCP-

counter). However, given the significance of this cell type in

literature, we further examined the significance of CD8+ T cells

on prognosis, based on tumour stage. The 5-year survival in

patients with early-stage CRC revealed better prognosis for

individuals with lower fractions of CD8+ T cells (HR = 3.8167,

95% CI [1.4706-9.9072], p = 0.0116), based on CIBERSORT

analysis (Figure 5A). Furthermore, we did not observe any

significant differences in overall survival when comparing

levels of CD8+ T cell in late-stage CRC (HR = 1.1063, 95% CI

[0.5128-2.0140], p = 0.9631) and metastatic CRC (HR = 1.7461,

95% CI [0.5936-5.1366], p = 0.2114), as shown in Figure 5A.

Next, we used xCell to assess the effects of CD8+ T cells on

overall survival, based on tumour stage. Similar to results with
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CIBERSORT, high levels of CD8+ T cells early-stage CRC were

associated with significantly poor outcome in individuals with

early-stage CRC (HR = 5.0638, 95% CI [1.9554-13.1134], p =

0.0045), as shown in Figure 5B. Additionally, as shown in

Figure 5B, we did not observe a significant association when

comparing levels of CD8+ T cell in late-stage CRC (HR = 0.6775,

95% CI [0.3459-1.5271], p = 0.2606). Contradictory to results

with CIBERSORT, higher levels of CD8+ T cells were associated

with better overall survival in individuals with metastatic CRC

(HR = 0.4870, 95% CI [0.2188-1.0840], p = 0.0401), Figure 5B.

Furthermore, analysis with MCP-counter did not reveal any

significant associations with CD8+ T cells in early-stage CRC,

late-stage CRC or metastatic CRC and prognosis (Figure 5C).
Unsupervised clustering of patients
based on immune cell infiltration

An unsupervised clustering algorithm was used to cluster the

308 samples based on immune cell composition generated by

CIBERSORT, xCell and MCP-counter. Additionally,

unsupervised clustering was used to cluster early-stage CRC,

late-stage CRC and metastatic CRC. For each analysis, two

distinct groups emerged from the clustering algorithm and 5-

yearsurvival was examined for each cluster.

The unsupervised clustering analysis, using CIBERSORT,

yielded two distinct clusters for all patients and patients with

early-, late-stage, and metastatic CRC (Supplementary Figure 1;

Figure 6A). While these clusters differed in their immune cell

landscape (Supplementary Figure 1; Figure 6B), we did not
B

C

A

FIGURE 4

Immune cell infiltration and survival analysis of CRC based on activated dendritic cells. (A) Kaplan-Meier curve for overall five-year survival based
on relative cell fractions of activated dendritic cells, based on CIBERSORT analysis for all patients, patients with early-stage CRC, late-stage CRC
and metastatic CRC. (B) Kaplan-Meier curve for overall five-year survival based on relative cell fractions of activated dendritic cells, based on
MCP-counter analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC. (C) Kaplan-Meier curve for overall
five-year survival based on relative cell fractions of activated dendritic cells, based on xCell analysis for all patients, patients with early-stage
CRC, late-stage CRC and metastatic CRC. Groups with high and low cell numbers were compared with log-rank test.
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observe a significant difference in overall survival when clustering all

patients (HR = 0.6762, 95% CI [0.3961-1.1543], p = 0.1621)

(Supplementary Figure 1C) and patients with late-stage CRC (HR

= 0.9975, 95% CI [0.4935-2.0160], p = 0.9944) (Supplementary

Figure 1I). However, as shown in Figure 6C, we did observe a

significant difference in overall 5-year survival in patients in cluster

1 vs. cluster 2, in early-stage CRC (HR = 3.0906, 95% CI [1.1940-

7.9996], p = 0.03745). As shown in Figure 6D, these two clusters

significantly differed in abundance of macrophages (M0 and M1),

resting and activated mast cells, resting dendritic cells, plasma cells,

follicular helper T cells, CD4+ activated memory T cells, CD8+ T

cells, naïve B cells, monocytes, neutrophils, activated and resting NK

cells and gamma delta T cell types. Specifically, patients in cluster 1

had significantly larger fractions ofM0macrophages, activatedmast

cells, neutrophils and resting NK cells. These patients also had

significantly smaller fractions of M1 macrophages, resting mast

cells, resting dendritic cells, plasma cells, follicular helper T cells,

CD4+ memory T cells, CD8+ T cells, naïve B cells, monocytes,

activated NK cells and gamma delta T cells.

Furthermore, using the immune cell compositions generated

by MCP-counter, we also performed unsupervised clustering

analysis on all patients and patient with early-, late-stage and

metastatic CRC, independently. All of the clusters differed in

their immune cell landscape (Supplementary Figure 2), however

we did not observe a significant difference in overall survival

when clustering all patients (HR = 0.9017, 95% CI [0.5265-

1.6791], p = 0.7105) and patients with late-stage CRC (HR =

0.9887, 95% CI [0.5043-1.9384], p = 0.9737) (Supplementary

Figure 2C, I). We observed non-significant difference in overall

5-year survival in patients in cluster 1 vs. cluster 2, in early-stage
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CRC (HR = 0.3475, 95% CI [0.1341-0.9008], p = 0.0528)

(Supplementary Figure 2F). As shown in Supplementary

Figure 2E, these two clusters significantly differed in

abundance of B cells, CD8+ T cells, cytotoxic lymphocytes,

endothelial cells, fibroblasts, monocytes, myeloid dendritic

cells, neutrophils, NK cells and T cell types with patients in

cluster 1 showing a higher level of infiltration of each cell type

when compared to those in cluster 2.

Furthermore, using immune cell compositions based on the

xCell analysis, we performed unsupervised clustering analysis on

all patients, and patients with early- and late-stage CRC,

independently. Each cluster differed in immune cell

composition (Supplementary Figures 3B, E, H), however no

significant associations were observed in survival of all

individuals (HR = 1.0564, 95% CI [0.5710-1.9544], p =

0.8631), early-stage CRC (HR = 0, 95% CI (0–0), p = 0.4601)

and late-stage CRC (HR = 0.7174, 95% CI [0.3065-1.6791], p =

0.4905), as shown in Supplementary Figures 3C, F, I. This is

likely because the unsupervised cluster analysis was performed

on all 64 cell types.
Differential gene expression analysis of
unsupervised clusters

The CIBERSORT unsupervised cluster analysis for patients

with early-stage CRC resulted in clusters with significantly

different survival. Therefore, we sought to determine what genes

were differentially expressed between the clusters. Pathway

analysis, based on the differentially expressed genes revealed
B

C

A

FIGURE 5

Immune cell infiltration and survival analysis of CRC based on CD8+ T cells. (A) Kaplan-Meier curve for overall five-year survival based on relative cell
fractions of CD8+ T cells, based on CIBERSORT analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC. (B) Kaplan-
Meier curve for overall five-year survival based on relative cell fractions of CD8+ T cells, based on xCell analysis for all patients, patients with early-stage
CRC, late-stage CRC and metastatic CRC, based on MCP-counter analysis. (C) Kaplan-Meier curve for overall five-year survival based on relative cell
fractions of CD8+ T cells, based on xCell analysis for all patients, patients with early-stage CRC, late-stage CRC and metastatic CRC, based on MCP-
counter analysis. Groups with high and low cell numbers were compared with log-rank test.
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distinct up-regulation and down-regulation of pathways in each

cluster. Specifically, shown in Figure 6D, pathways involved in

extracellular matrix organization, and cell adhesion were

significantly up-regulated in cluster 2, compared to cluster 1.

Additionally, pathways involved in immune response, including B

cell activation, were significantly down-regulated in cluster 2,

compared to cluster 1 (Figure 6E).
Discussion

There is growing evidence of a dynamic interaction between

cancer cel ls and immune cel ls within the tumour

microenvironment, and how this plays a crucial role in disease

progression (35). The composition of immune cells within the
Frontiers in Immunology 10
tumour has a profound impact on tumour behaviour and can

affect therapeutic responses (36). We therefore sought to

elucidate the distribution of leukocytes within the colorectal

tumour microenvironment, as this may represent an active

engagement of the immune system in this cancer.

This study used three transcriptome-based computational

approaches, CIBERSORT, xCell, and MCP-counter, to quantify

the abundance of immune cells within the CRC tumour

microenvironment. CIBERSORT utilizes a deconvolution

algorithm that relies on a reference matrix to estimate fractions

of 22 immune cell types (21). xCell is a method that utilizes gene

signatures and deconvolution to quantify the abundance of 64

immune cell types (24). MCP-counter utilizes transcriptomic

markers expressed in a cell population to quantify the

abundance of 10 cell types within a sample (22). These methods
B C

D

E

A

FIGURE 6

Unsupervised clustering of patients with CRC, based on immune cell infiltration, using CIBERSORT analysis. (A) Unsupervised clustering of early-
stage CRC patients, based on immune cell infiltration, using CIBERSORT analysis. (B) Heatmap of immune cell infiltration, of patients in cluster 1
and 2, based on CIBERSORT analysis. (C) Kaplan-Meier curve for overall five-year survival for clusters 1 and 2, resulting from unsupervised
clustering for early-stage CRC patients, based on CIBERSORT analysis. (D) Pathway analysis of genes down-regulated in cluster 2 vs. cluster 1,
based on unsupervised clustering of patients with early-stage CRC. (E) Pathway analysis of genes up-regulated in cluster 2 vs. cluster 1, based
on unsupervised clustering of patients with early-stage CRC. Groups with high and low cell numbers were compared with log-rank test.
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use arbitrary units to score cell type abundance within a bulk

tumour (37). Our study demonstrates similarities in analysis of

immune cell composition when comparing each method.

Comparing immune cell abundance in CRC tissue vs. normal

adjacent tissue, we found similar trends with respect to abundance

of B cell lineage across computational methodologies. This is

consistent with Sturm et al., who previously reported a high

correlation of B cell estimates using these methods (37). Our

results also show high correlation in dendritic cell abundance

predicted by CIBERSORT and xCell, but not MCP-counter.

All three methodologies indicate that the immune cell

landscape within CRC tissue differs significantly from normal

adjacent colon tissue. The majority of immune cell types are

present in lower abundance in the tumour microenvironment

compared to normal colon tissue, reinforcing the existence of

immune “cold” tumours. Our cluster analysis revealed stark

differences in immune cell composition, which is especially

observed in the unsupervised cluster analysis based on MCP-

counter, clearly outlining a population of “cold” tumours.

However, these drastic distinctions do not translate to

significant differences in overall survival. The unsupervised

clustering based on CIBERSORT does, however, suggest that a

more comprehensive analysis of the immune cell composition

may reveal a distinct population with a survival advantage.

Specifically, our results indicate that a subpopulation of

individuals with early-stage CRC have significantly better

prognosis, if their tumours have a higher abundance of immune

cell infiltration. Although the overall abundance of immune cell

composition does not correlate to survival benefit with late-stage

CRC or metastatic CRC, we did find specific immune cell types

(dendritic cells) that provided a survival advantage.

Tumour infiltrating leukocytes have been characterized as

both pro-tumourigenic and anti-tumourigenic (38). In general,

studies have demonstrated that immune infiltration is correlated

with better prognosis in cancers, including CRC (12, 39).

Importantly, our results indicate an inverse correlation

between overall survival and absolute leukocyte abundance, as

measured by CIBERSORT (Figure 2). It is noteworthy that the

Immunoscore derived from the xCell analysis was not correlated

to overall survival. While the total immune landscape should be

considered, it is apparent that infiltration of specific cell types

has a more profound influence on overall survival and prognosis.

For example, total infiltration of CD3+ and CD8+ T cells have

been used as measure of prognosis in CRC (39). This method is

determined by scoring densities of CD3+ and CD8+ staining in

colorectal tumours and their invasive margins. Furthermore,

Diederichsen et al. demonstrated that a low ratio of CD4+/CD8+

cells was associated with better prognosis in patients with CRC

(34). Collectively, these studies used immunohistochemical

staining to identify lymphocyte infiltration. Consistent with

these studies, CD8+ T cells were correlated with better overall

survival in metastatic CRC, based on xCell. However,

inconsistent with previous studies, our study identified CD8+
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T cells as negative predictors of prognosis in patients with early-

stage CRC, based on both CIBERSORT and xCell analysis.

Additionally, we demonstrated that the prognostic impacts of

plasma cells and mast cells were also dependent on tumour stage.

The dependence on tumour stage may indicate that disease

progression, resulting in metastatic lesions, yields contributions

of the metastatic tumour microenvironment that are not

accounted for in the studies of the primary tumour.

Interestingly, the majority of studies have demonstrated that

mast cells promote tumour angiogenesis in various cancers by

secreting pro-angiogenic factors such as VEGF, bFGF and IL-8

(40). Additional studies have suggested that mast cells can act as

both pro- and anti-tumourigenic (41). Importantly, in our study

mast cells emerged as a positive prognostic marker in late-stage

CRC, (predicted by both CIBERSORT and xCell). This is in

keeping with a study in prostate cancer which demonstrates that

the role of mast cells is dynamic and dependent on tumour stage

(42). Further research is warranted to address the stage-

dependent role of mast cells in CRC.

In our study, dendritic cells were found to consistently have

a significant impact on prognosis in all patients and across

methodologies. Dendritic cells are antigen-presenting cells and

are functionally important for the induction of a coordinated

immune response, which results in the activation and expansion

of cytotoxic T cells (43). While activated dendritic cells are

shown to have a positive impact on prognosis, immature

dendritic cells were also found to be associated with better

overall survival, specifically in metastatic CRC. This is

intriguing as immature dendritic cells are shown as

immunosuppressive and accumulation of these cells suggests

inhibition of dendritic cell maturation by chemokines present in

the tumour microenvironment, including vascular endothelial

growth factor and interleukins such as IL-6 and IL-10 (44, 45).

Studies of other cancers have shown that tumour-associated

dendritic cells are impaired in antigen up-take and presentation,

demonstrating that the role of immature dendritic cells differs

from their activated counterparts.

Importantly, chemotherapies and immunotherapies have

been shown to influence and change the immune cell

landscape in colorectal cancer. Specifically, 5-fluorouracil

depletes myeloid-derived suppressor cells, resulting in an

antitumor response (46). Intriguingly, Cetuximab has been

shown to increase CD8+ T cells and promote cytotoxic activity

in colorectal cancer (47). Additionally, oxaliplatin treatment

significantly increased CD8+ T cell infiltration in a murine

colon cancer model (48). These findings suggest that stage-

related differences observed in immune cell composition, may be

influenced by specific therapies used to treat each patient.

Therefore, the impact of chemotherapy and immunotherapy

treatments on immune cell infiltration in colorectal cancer

should be further explored.

Collectively, using gene expression analysis, we have

evaluated the prognostic value of the immune cell landscape in
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CRC, utilizing three computational methods. We have

demonstrated that differences in the immune cell infiltration of

CRC infer prognostic value. We also demonstrated that

influences on prognosis by specific cell types are dependent on

tumour stage. Further research is warranted to assess whether

these cell types can be used to implement an immunoscore that

can be used in clinical practice. Further research is also warranted

to understand whether the presence or absence of these cell types

can predict response to immunotherapies and other treatments at

different stages of cancer progression. We anticipate that this

research offers potential targets for immunotherapy, to aid the

therapeutic process and improve overall survival of CRC patients.
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