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mice by modulation of gut
microbiota in mice
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Obesity is a risk factor for many serious health problems, associated with

inflammation, hyperlipidemia, and gut dysbiosis. Prevention of obesity is

especially important for human health. Tolypocladium sinense is one of the

fungi isolated from Chinese caterpillar fungus, which is a traditional Chinese

medicine with putative gut microbiota modulation effects. Here, we established

a high-fat diet (HFD)-induced hyperlipidemia mice model, which was

supplemented with lyophilized T. sinense mycelium (TSP) daily to evaluate its

anti-obesity effects. The results indicated that TSP supplementation can effectively

alleviate the inflammatory response and oxidative stress levels caused by obesity.

TSP significantly prevented obesity and suppressed dyslipidemia by regulating the

expression of lipid metabolism genes in the liver. TSP is also effective in preventing

the HFD-induced decline in short-chain fatty acid (SCFA) content. Gut microbiota

profiling showed that TSP supplementation reversed HFD diet-induced bacterial

abundance and also altered themetabolic pathways of functional microorganisms,

as revealed by KEGG analysis. It is noteworthy that, correlation analysis reveals the

up-regulated gut microbiota (Lactobacillus and Prevotella_9) are closely

correlated with lipid metabolism parameters, gene expression of liver lipid

metabolism and inflammatory. Additionally, the role of TSP in the regulation of

lipid metabolism was reconfirmed by fecal microbiota transplantation. To sum up,

our results provide the evidence that TSP may be used as prebiotic agents to

prevent obesity by altering the gut microbiota, alleviating the inflammatory

response and regulating gene expression of liver lipid metabolism.
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Introduction

Non-communicable Disease Risk Factor Collaboration

reported that the global rate of the prevalence of the age-

standardized obesity increased approximately 2-3 times in

2014 compared with that in 1975. Approximately 1.9 billion

people in the world are overweight, and among them, 600

million are obese. Obesity has become a serious hazard to

human health, it can induce diabetes, non-alcoholic fatty liver

disease, hypertension and certain (1, 2). Multiple factors

contribute to the development of obesity, including energy

consumption, high fat intake and the microbiome (3). Many

reports reveal that gut microbiota acts an important modulator

in the diet and metabolic syndrome is caused by obesity (4, 5).

Diet is a significant factor altering the diversification and

metabolism of the gut microbiota, consequently inducing or

preventing obesity (6, 7).

The over consumption of food in the host and consequent

increase in energy intake is the main cause of obesity; the

intestinal flora is involved in the regulation of nutrient

absorption and energy balance. The results of some basic

studies showed that the intestinal permeability of obese mice is

significantly enhanced, the diversity of the intestinal flora is

reduced, Bacteroidetes decrease by approximately 50%, and the

number of Firmicutes increased in proportion, as compared with

lean mice (8, 9). The results of a clinical research show that

Bacteroides ferment dietary fibers to produce short chain fatty

acids, while Firmicutes obtain energy from food and store it in

the form of adipose tissue (10). Studies in animal models suggest

that certain gut microbes can prevent diet-induced obesity.

Indeed, several probiotics have been used in clinical trials to

reduce lipid levels in obesity-regulated subjects, achieving good

results (11–13).

Chinese caterpillar fungus is a traditional Chinese medicinal

mushroom, which contain a wide range of immuno-modulatory

and bioactive compound with many medical effects, such as anti-

aging, anti-bacteria, anti-cancer, expanding blood vessels,

improving arteriosclerosis, hepatoprotective and hypolipidemic

(14). Tolypocladium sinense is one of the fungi isolated from

Chinese caterpillar fungus. The research and application of T.

sinense mainly focus on the culture conditions and the

preliminary pharmacological analysis of its chemical

components (15, 16). Fang (17) carried out pharmacological

experiments on the mycelium culture of T. sinense in mice. The

results showed that it possesses sedative effects, anti-

inflammatory activity, hypoxia tolerance, organ expansion and

androgen like promotion. In the acute toxicity test, the dose of

80 g (maximum allowable volume) per mouse was administered

once by gavage, and no adverse effects were found. Gao (18)

reported that the mycelium extract and polysaccharide extract of

T. sinense possess scavenging effects on DPPH free radicals. The

test results showed that T. sinense has potential application and

development prospects as antioxidant and anti-tumorigenic.
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At present, the research on the pharmacological value of T.

sinense is not complete, since its role in preventing obesity and

its ability to change the gut microbiota composition is still

unclear. Therefore, the purpose of our study was to determine

the effects of T. sinense mycelium (TSP) in the prevention of

hyperlipidemia and to understand its potential lipid-lowering

mechanism. This study could provide a theoretical basis for the

development of prebiotic agents to prevent obesity from a

Chinese traditional edible fungus.
Materials and methods

Materials and reagents

Serum biochemical detection index kit such as total

cholesterol (TC), triglyceride (TG) and ELISA detection kit

were purchased from Nanjing Jiancheng Institute of

Bioengineering (Jiangsu, China). Blood glucose assay kit was

obtained from Jiangsu Yuyue Medical Equipment & Supply Co.,

Ltd. (Jiangsu, China). All other chemical reagents were

analytical grade.
Preparation and identification of
Tolypocladium sinense fungus powder

Natural fresh Chinese caterpillar fungus was collected in the

plateau area at an altitude of 4000 ~ 4500 m in the Naqu, Tibet

Autonomous Region. The fungus was thoroughly rinsed with tap

water. Then it was submerged in 10% bleach water for 20 min and

rinsed with sterile distilled water. The fruiting bodies of Chinese

caterpillar fungus were cut into small pieces of 2 ~ 5 mm and

cultured on a separation medium (10 g/L peptone, 100 g/L

glucose, 3 g/L yeast extract, 0.5 g/L MgSO4, 1 g/L KH2PO4, 100

U/L penicillin, and 20 g/L agar) at 26 °C. After the grow of the

mycelium, the tip was collected and inoculated on fresh medium.

The separation and passages were repeated several times until the

colonies with consistent morphology were obtained (18, 19). The

strain identification was performed as follows: the mycelial DNA

was extracted, the whole genome was used as the template, and the

universal primers ITS1 and ITS4 as primers (Table S1) were used

for PCR amplification. The amplified products were sequenced

and analyzed by Shanghai Sangon Biotech Co., Ltd. The strain

screened by morphological observation and sequencing

identification was T. sinense. After the identification of the

strain, the metabolites of the bacterial mycelium were analyzed

by Beijing BioMarker Technology Co., Ltd. (Supplemental

Methods and Figure S1). In total, we detected 1652 metabolites

from T. sinense fungus mycelium, and most of them belong to

Organic acids, Nucleic acids, Glycerophospholipids, Fatty Acyls,

Organoheterocyclic compounds, Carbohydrates, Polyketides,
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Organic oxygen compounds and Sterol Lipids. Pick up the

cultured colonies, connect with 5% seed culture medium for

culture, shake at 26 °C for 4-5 days (150 r·min-1), centrifuge the

obtained fermentation culture medium at 4000 r · min-1 for

10 min, take the precipitation and freeze-dry to obtain the dried

mycelium powder.
Animals and diet

Six-week-old male C57BL/6 mice weighing 20.0 ± 1.0g were

provided by the experimental animal center of Qiqihar Medical

University (SYXK (HEI) 2016-001). The mice were then

randomly divided into the following groups (n = 8 per group):

NC group, in which the mice were fed with a standard diet (total

calories: 4.3 kcal/g, 10 kcal% fat); HFD group, in which the mice

were fed with a high-fat diet (total calories: 6.1 kcal/g, 60 kcal%

fat); TSP group, in which the mice were fed with a high-fat diet

supplemented with T. sinense mycelium (400 mg·kg-1·day−1).

Animal weight and food intake were recorded weekly during the

study. Fresh feces were collected in a separate sterile EP tube

after 10 weeks and stored at − 80°C for subsequent microbiota

analysis. The mice were sacrificed after fasting overnight. Liver

tissue, fat pad and blood samples were collected. Serum was

obtained by centrifugation (1200 g, 15 min) and stored at -80°C

for further study. Serological analysis and histology were

described in the supplementary data.
TSP treatment for antibiotic-treated mice

The male C57BL/6J mice aged 6 weeks (20.0 ± 2.0g) were fed

with the NC-diet and treated with antibiotics (0.5 g/L

vancomycin, 1.0 g/L ampicillin, 1 g/L metronidazole, 1 g/L

zincomycin sulfate) to establish pseudo germ-free mice, mixed

antibiotics diluted daily with distilled water for drinking (20).

After 14 days of antibiotics treatment, the microbiota-depleted

mice were randomly allocated into three groups, MTNC,

MTHFD and MTTSP (n=12/group) which were transplanted

with the microbiota from mice fed with NC, HFD, and TSP

(treated for 10 weeks) respectively. In detail, every 200 mg of

pollution-free feces was added into 5 mL PBS/DTT sterile

solution to a 5 mL sterile EP tube, which was shaken and

rotated for 2 min in anaerobic state (20). The impurities were

removed by 100 mm sterile filter for three times. After 7 days, 4

mice were randomly selected to collect fresh feces to detect

colonization by high-throughput sequencing (16SrDNA v3-v4).

The results are shown in the supplementary data (Figure S2).

Then half of the mice in each microbiota transplanted group fed

with the NC diet and the other half fed with HFD for 15 days.

Then, blood, tissues and feces were collected for analyses.
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Quantitative real-time PCR

Total RNA from hepatic tissue was isolated using Biozol

reagent (Invitrogen Carlsbad, CA, USA) by a method previously

described (21), and the concentration was determined by

NanoDrop spectrophotometer (BioTeke, Beijing, China).

cDNA was synthesized using a reverse transcriptase Kit

(manufacturer) according to the manufacturer’s instructions.

SYBR Green real-time (TransGen Biotech, Beijing, China) was

used for quantitative PCR in real time. The primer sequences

used in this study are listed in Table S1 of the supplementary

data. The quantification of the target genes was performed using

the 2-△△Ct method (22) using b-actin as the reference gene and

the NC group as control.
Short chain fatty acids analysis

The concentration of short chain fatty acids (SCFAs) was

measured by gas chromatography (GC) as previously described

with some modification (23, 24). Feces were collected from each

rat, 2 g into were placed into a sterile centrifuge tube, and 1 ml

methanol solution was added. The tube was left standing for

10 min, then it was shaken and well mixed to form a fecal

suspension. Then, a concentrated sulfuric acid was used to adjust

its pH to 2 ~ 3, the tube was left standing for 5 min, and then it

was shaken and mixed several times. Next, the tube was

centrifuged at 5000 r·min-1 for 20 min, the supernatant was

collected and centrifuged at 5000 r·min-1 for 5 min, and the

supernatant was collected and placed into the gas

chromatograph for the analysis. An Agilent kit was used to

determine the content of short chain fatty acids. The gas

chromatograph 7890a used in this analysis was equipped with

a flame ionization detector. The da-ffap column (30 m ×

0.320 mm × 0.25 m m) was used to separate short chain fatty

acids. The parameters of the gas chromatograph were the

following: temperature of injection port, 250°C; nitrogen as

carrier gas, with purity ≥ 99.99%; carrier gas flow rate, 30

mL·min-1 injection mode, split injection; split ratio, 50:1;

injection volume, 1 mL; detector temperature 250°C;

temperature rise procedure, 80°C, 10°C·min-1, 180°C.
Gut microbiota analysis

Genomic DNA was extracted using the MOBIO PowerSoil®

DNA Isolation Kit (MOBIO, UnitedStates), and the concentration

was determined by NanoDrop spectrophotometer (BioTeke,

Beijing, China). A total of 10 ng DNA template was used for

PCR amplification according to the sequence of 16SrDNA v3-v4

region with specific primers 338F/806R. Truseq© DNA PCR-Free
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Sample Preparation Kit was used to construct the library. The

constructed library was quantified by qubit and qPCR. After the

library was qualified, the sequencing was carried out on Illumina

Novaseq 6000 platform according to the manufacturer’s

instruction. The sequencing was completed by Beijing Bio

Marker Technology Co., Ltd. Usearch software (25) was used to

cluster the reads at 97.0% similarity level and OUT was obtained.

SILVA was used as the reference database, using naive Bayesian

classifier combined with comparison method to annotate the

feature sequence. The species classification information

corresponding to each feature was obtained, then the

community composition of each sample at each level (phylum,

class, order, family, genus, species) was counted, and the species

abundance at different classification levels was generated by the

QIIME software. Then, the community structure map of each

taxonomic level of the sample was drawn by R software (Version

3.4.1). Non-Metric Multi-Dimensional Scaling(NMDS);adopts

Bray Curtis algorithm; Lefse (26) (line discriminant analysis

(LDA) effect size) was used to find biomarkers with statistical

differences between different groups.
Serologic and hepatic index analysis

The concentrations of total triglyceride (TG), cholesterol

(CHO), low density lipoprotein (LDL-C), non-esterified fatty

acid (NEFA), malondialdehyde (MDA), superoxide dismutase

(SOD), glutathione peroxidase (GSH-Px), tumor necrosis factor-

a (TNF-a), interleukin-6 (IL-6) and interleukin-1b (IL-1b) in
serum and hepatic carried out in strict accordance with the

instructions of the kit (Nanjing Jiancheng Bioengineering

Institute, Nanjing, China).
Histological analysis

The hepatic of mice in each group were dissected and

extracted and fixed with 4% paraformaldehyde. After the

fixation was in good condition, they were trimmed,

dehydrated, embedded, sliced, stained, sealed, sliced, stained

with Hematoxylin eosin (HE), and the structure of liver tissue

was observed and analyzed under optical microscope, as it was

previously described (27).
Statistical analysis

Statistical analysis was performed using SPSS 20.0 software.

Statistical differences among different groups were analyzed by

one-way analysis of variance (ANOVA) followed by Tukey–

Kramer post hoc test. Other statistical tests for significance were

performed using R software (Version 3.4.1) for windows. Results
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were expressed as mean± SD. A value of p < 0.05 was considered

statistically significant.
Results

TSP supplementation alleviated HFD-
induced weight gain and fat
accumulation in mice

Our preliminary animal experiment was performed using

TSP at the doses of 100, 200, and 400 mg·kg-1 ·day−1. The

medium dose and high dose exerted a significant prevention of

the abnormal lipid metabolism compared to HFD group (p<

0.05; Table S2), while the low dose had no significant effect

compared to the HFD group. The effect of the high dose was

more remarkable than that of the medium dose. Therefore, 400

mg·kg-1·day−1 of TSP supplementation was the dose used in

this study.

During the 10-week experimental period (Figure 1A), the

average body weight of the NC mice group at week 10 was 29.27

± 2.89 g, and that of the HFD mice group was 40.28 ± 1.73 g

(p < 0.05 versus the NC group, Figure 1B). The increase in the

body weight of the TSP group was significantly suppressed

compared with the HFD group (p< 0.05). Consistently, the

body weight gain, liver weight and adipose tissue weight was

lower in the TSP group than that in HFD group (Figures 1C–E).

No differences were observed in the daily food intake among the

three groups (Figure 1F).

Additionally, HFD induced hepatic fat accumulation and

dyslipidemia could also be prevented by TSP supplemented, as

indicated by the serum levels of total cholesterol (TC),

triglycerides (TG), non-esterified fatty acids (NEFA) and low-

density lipoprotein-cholesterol (LDL-C) in the HFD-fed mice

sharply increased when compared with the NC group (p< 0.05,

Figures 2A–D). In addition, the HFD-fed mice were

characterized by higher levels of TC, TG, NEFA and total bile

acid (TBA) in the liver (p< 0.05, Figures 2E–H). TSP

supplementation significantly prevented these adverse changes

expect TBA in the HFD-fed mice. H&E staining showed less

ballooning degeneration in the TSP group than in the HFD

group Figure 2I).

To explore the mechanism of TSP in lipid metabolism, we

examined the expression of genes related to lipid metabolism in the

liver by qRT-PCR (Figure 3). Compared with the NC group, the

expression of ACC, HMGCR, LXRa and SREBP-1c was

significantly higher and the expression of AMPK and PPARa
was significantly lower expression in the HFD group (p<0.05).

Compared with the HFD group, TSP supplementation significantly

decreased ACC, HMGCR, LXRa and SREBP-1c expression in the

liver and enhanced AMPK and PPARa expression (p < 0.05). TSP

supplementation did not affect expression of CD36, CYP7A1, FAS,

Ldlg, LXRb or PPARg (Figure S3).
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A B D

E F G

I

H

C

FIGURE 2

Effects of TSP supplementation on the serum and hepatic (A, E) total cholesterol (TC), (B, F) triglyceride (TG), (C, G) non-esterified fatty acid
levels (NEFA), (D) low-density lipoprotein cholesterol (LDL-C) in serum, (H) Hepatic total bile acid (TBA),(I) H&E staining of mouse livers. Values
are expressed as mean ± SD in each group (n = 8), *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant p > 0.05.
A B

D EC F

FIGURE 1

Effects of TSP consumption on the (A)the experimental protocol used in this study, n=8, (B) body weight #p < 0.05, NC compare with HFD, *p <
0.05, TSP compare with HFD, (C) body weight gain, (D) liver weight (E) adipose tissue weight, (F) food intake. Data are expressed as means ± SD
(n = 8). #/*p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant p > 0.05.
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Intake of TSP notably alleviate systematic
inflammation and improve antioxidant
ability in high fat diet-fed mice

The levels of TNF-a, IL-6 and IL-1b in both serum and liver

were higher in the HFD group compared to those in the NC

group. The level of serum LPS showed the similar trends

(Figures 4A–C). TSP supplementation was able to significantly

reduce serum and hepatic TNF-a, IL-6, IL-1b and LPS (p< 0.05).
Thus, TSP supplementation significantly alleviated systemic

inflammation. In addition, the activity of the antioxidative

enzymes (SOD, GSH-Px) and MDA level were measured in

the serum and hepatic to evaluate the influence of TSP on the

antioxidant ability (Figures 4D–I). Compared with the NC

group, mice in the HFD group showed higher MDA level in

serum, while the GSH-Px activity were lower in HFD group (p <

0.05). TSP supplementation was able to significantly reduce

serum MDA level and improve SOD and GSH-Px activity (p<

0.05). The activity of SOD andMDA level in the liver showed the

same tendency. The activity of GSH-Px has no significant

differences between HFD and TSP in liver (p > 0.05).
TSP supplementation increased short
chain fatty acids contents in the feces

Compared with the NC group, the content of acetate, propionate,

butyrate, valerate and total short chain fatty acids was decreased by

34.54%, 49.58%, 33.02%, 11.11% and 35.16%, respectively, in the
Frontiers in Immunology 06
HFD group (p < 0.05, Table 1). However, compared with the HFD

group, an increased short chain fatty acids level was observed by TSP

supplementation in the TSP group (p < 0.05).
TSP modulated composition and
function of gut microbiota at different
taxonomic levels

The gut microbiota composition was analyzed by Illumina

MiSeq platform.After quality filtering, the 24 samples (n = 8 for

each group) resulted in a total of 1,501,889 clean reads, and at

least 58,512 clean reads were generated per sample. Alpha

diversity reflected the community richness and microbial

evenness. Changes in alpha diversity due to the TSP treatment

are shown in Figure 5A. The results showed that the ACE index,

Chao 1 index, Shannon index and PD-whole-tree index of the

HFD group were significantly lower than those in the NC group

(p < 0.05), indicating that the HFD induced a lower microbiota

community diversity. TSP treatment ineffectively increased

microbial richness and diversity. The Beta diversity analysis

using UPGMA clustering (Figure S4) and NMDS on the Bray-

Curtis algorithm (Figure 5B) showed that the NC group

clustered separately from the HFD and TSP groups. The

results of PERMANOVA showed a significant difference

among NC, HFD, and TSP groups (p< 0.001, R2 =

0.414, Stress=0.1481).

The relative abundance at phylum, family, and genus level

was compared among groups to identify specific changes in the
A B

D E F

C

FIGURE 3

Effect of TSP on mRNA expression levels of hepatic metabolic regulators. (A) AMPK, (B) ACC, (C) HMGCR, (D) LXRa, (E) SREBP-1c, (F) PPARa.
Data are expressed as means ± SD (n = 8), *p < 0.05, **p < 0.01, and ***p < 0.001.
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gut microbiota due to TSP supplementation. At the phylum level

(Figure 5C), HFD induced a much lower relative abundance of

Bacteroidetes than the NC group, which increased after TSP

treatment (p < 0.05). The ratio of Firmicutes to Bacteroidetes (F/

B ratio) in the HFD group was higher than that in the NC group

(p < 0.05). TSP supplementation fully prevented HFD-induced

increase in the F/B ratio, a hallmark of obesity, which is a

common indicator for gut microbiota balance. Besides, the HFD

group showed a much higher relative abundance of

Patescibacteria than NC group, with no difference in the

relative abundance of Proteobacteria between the two groups

(p > 0.05). While, the relative abundance of Proteobacteria and
Frontiers in Immunology 07
Patescibacteria significantly decreased in the TSP group

compared with HFD alone (p < 0.01).

At the family level (Figure 5D and Table S3), compare with the

NC group, the HFD group showed an increase in the abundance of

Peptostreptococcaceae and Saccharimonadaceae (p < 0.05), while

TSP supplementation decreased these two genera compared with

their abundance in the HFD group. HFD induced a much lower

abundance of Lactobacillaceae, Muribaculaceae and Prevotellaceae

and the three genera significantly increased after TSP

supplementation (p < 0.05). The mice in the TSP group showed a

lower Ruminococcaceae and Clostridiaceae_1 compared with the

mice in the HFD group (p< 0.05).
TABLE 1 Effect of TSP supplementation on the concentrations of acetate, propionate, butyrate, valerate and total SCFAs in the feces.

SCFAs(mmol/g) NC HFD TSP

Acetate 37.69 ± 4.45a 24.67 ± 4.76b 40.21 ± 5.77a

Propionate 2.38 ± 0.31a 1.20 ± 0.43b 2.56 ± 0.22a

Butyrate 3.21 ± 0.74a 2.15 ± 0.50b 4.29 ± 0.84c

Valerate 0.18 ± 0.04a 0.16 ± 0.04b 0.20 ± 0.05a

Total SCFAs 43.46 ± 4.29a 28.18 ± 4.81b 47.26 ± 6.21a
fro
Significant differences (p < 0.05) are indicated using different letters (a, b, c)
A B

D E F

G IH

C

FIGURE 4

Effect of TSP on inflammation in serum (A) and in hepatic, (B) Effect of TSP on LPS, (C) MDA level and antioxidative enzymes (SOD, GSH-Px) in
serum, (D–F) and in hepatic(G-I). Data are expressed as means ± SD (n = 8), *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant
p > 0.05.
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LEfSe (LDA sore > 3.5) was used to recognize the specific

altered bacterial phenotypes at each phylogenetic level (Figures 6A,

B) to further explore the difference in the gut microbiota among

NC, HFD and TSP group. A total of 61 bacteria significantly

changed among the NC group, HFD group and TSP group; they

respectively showed 15, 33 and 13 dominant microorganisms. At

the genus level, the main microbiota in the NC group were

Prevotellaceae_NK3B31_group, Alloprevotella and Faecalibaculum.

The result showed eleven discriminative features in the HFD group,

and the main microbiota were Romboutsia , Rumino

coccaceae_UCG-014 , C lo s t r id ium_sensu_s t r i c to_1 ,

Candidatus_Saccharimonas and Lachnospiraceae_NK4A13

6_group. Moreover, Lactobacillus, Allobaculum, uncultured_bac

terium_f_Lachnospiraceae and Prevotella_9 were the main

microbiota in the TSP group.

At the genus level, the microbiota with significant differences

between groups were screened using Mann Whitney U test by

pairwise comparison (Figure 6C). Collectively, the HFD group

showed an increased level of Ruminococcaceae_UCG-014,

Romboutsia, Lachnospiraceae_NK4A136_group , Candi
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da tus_Sacchar imonas and uncu l tured_bac t e r ium_

f_Ruminococcaceae compared with the NC group (p < 0.05).

Therefore, TSP supplementation reduced the abundance of the

above gut microbiota except Lachnospiraceae_NK4A136_group

compared with HFD (p < 0.05), and TSP also effectively

increased the relative abundance of Lactabacillus, Prevotella_9

and Allobaculum which have a much lower abundance by HFD

induced (p < 0.05).
Effects of TSP supplementation on
the functional change of
microbial communities

PICRUSt analysis was carried out to explore the functional

change of microbiota communities, and the comparison of top 6

metabolism category in each group is shown in Figure 7A.

Compared with the NC group, HFD group decreased the

carbohydrate metabolism, lipid metabolism and energy

metabolism (p< 0.05), while TSP supplementation increased
A B

D

C

FIGURE 5

Effect of TSP supplementation on diversity and structure of the gut microbiota. (A) Alpha diversity analysis of ACE, Chao1, Shannon and PD-
whole-tree index (B) Non-metric multidimensional scaling (NMDS) result based on Bray Curtis algorithm. (C) significantly changes (p < 0.05) of
the composition of the gut microbiota at phylum taxa level. (D) Changes of the composition of the gut microbiota at family taxa level. Data are
expressed as mean ± SD, *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant p > 0.05.
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the proportion of carbohydrate metabolism, lipid metabolism,

cofactors and vitamin metabolism and energy metabolism

compared with the HFD group (p< 0.05).

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway showed a significant difference (p< 0.05) in the

predictive function between the HFD group and TSP group

(Figure 7B). Compare with HFD, carbohydrate metabolism such

as amino sugar and nucleotide sugar metabolism, glycolysis/

gluconeogenesis, pyruvate metabolism, fructose and mannose

metabolism and galactose metabolism were significantly

increased in the TSP mice (p<0.05). Lipid metabolism such as

fatty acid biosynthesis and degradation, glycerophospholipid

metabolism as well as biosynthesis of unsaturated fatty acids

was increased in the TSP group (p< 0.05). Moreover, the amino
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acid metabolism pathway such as alanine, aspartate and

glutamate metabolism, phenylalanine, tyrosine and tryptophan

biosynthesis, arginine biosynthesis, valine, leucine and isoleucine

biosynthesis and arginine, proline metabolism and histidine

metabolism were decreased in the TSP group (p < 0.05). Only

two functions of the gut microbiota in the amino acid

metabolism pathway were increased in the TSP group than in

the HFD group (p< 0.05). The functions related to cofactors and

vitamin metabolism were increased in the TSP group, mainly

involving porphyrin and chlorophyll metabolism, thiamine

metabolism and folate biosynthesis than in the HFD group

(p< 0.05). It is worth noting that the lipopolysaccharide

biosynthesis belonging to glycan biosynthesis was decreased in

TSP mice compared with HFD mice (p< 0.05).
A B

C

FIGURE 6

TSP supplementation induced gut microbial changes in mice. (A) Linear Discriminant Analysis Effect Size (LEfSe) analysis of key genera of gut
microbiota in mice, (B) and the LDA score, (C) significantly changes (p < 0.05) among top 15 taxa of the composition of the gut microbiota at
genus taxa level, *p < 0.05, **p < 0.01, and ***p < 0.001.
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Possible relationships between reshaped
gut microbiotas and biochemical
changes

The Spearman’s correlation analysis revealed between

the abundance of significantly differential bacteria at

genus level identified above and parameters associated with

obesity (Figure 8). We found that Prevotella_9 and Lactococcus
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both showed a significant negatively correlated with

parameters of lipid metabolism except body weight gain,

liver weight, NEFA, IL-1b in serum and TC, NEFA, HMGCR

expression in liver, and significant positive correlation with

the expression of PPARa, AMPK. Allobaculum has the

same correlation trend. Candidatus_Saccharimonas and

Romboutisia both showed a significant positive correlation

with parameters of lipid metabolism except TC, IL-1b
A

B

FIGURE 7

TSP supplementation induced function microbial changes in mice. (A) Abundances of top 6 KEGG pathways in level-2 of the functional
prediction by PICRUSt, (B) Functional profiles with significant different between HFD and TSP treated groups. n = 8, *p < 0.05, **p < 0.01, and
***p < 0.001, ns, no significant p > 0.05.
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inserum and TBA, HMGCR expression in liver. The

genus uncultured_bacterium_f_Ruminococcaceae and

Ruminococcaceae_UCG-014 had the same correlation trend.
Microbiota transplantation from TSP-
supplementation mice exerts an anti-
obese Effect in HFD-fed mice

The fecal bacteria from NC-, HFD-, or TSP-fed mice (ten

weeks) were transplanted to pseudo germ-free mice to explore

whether TSP supplementation could attenuate hyperlipidemia in

HFD-diet mice by altering gut microbiota (Figure 9). As revealed

in Figure 9A, after microbiota transplantation, the weight of

body, liver and adipose tissue and the indexes of lipid
Frontiers in Immunology 11
metabolism in serum (TC, TG, NEFA, and LDL) in mice fed

with NC-diet have no significant different (p > 0.05).

It had different results in microbiota-transplanted mice fed

with HFD (Figure 9B). Compared with MTHFD group, the

weight of body and adipose tissue in MTNC and MTTSP mice

was significantly decreased (p < 0.05). Furthermore, MTNC

group mice significantly reduced the serum content of TG and

LDL compared to MTHFD group. However, there was no

significant different in the liver weight and serum levels of TC

and NEFA among the three groups (p > 0.05). The detailed

experimental scheme is shown in Figure 9C.

Then, the gut microbiota phylotypes of microbiota-

transplanted mice fed with HFD-diet were further measured

by sequencing the bacterial 16S rRNA. As revealed in

Figure 10A, no significant different was observed in alpha
FIGURE 8

Heatmap of Spearman’s correlation between the gut microbiota and obesity-related indices. The intensity of the colors represented the degree
of association (red, positive correlation; blue, negative correlation). Significant correlations are marked by *p < 0.05; **p < 0.01.
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diversity among all groups. Furthermore, we analyzed b diversity
which indicate the gut microbiota structural changes by using

the NMDS on the Bray-Curtis algorithm (Figure 10B) showed

significant different among the three groups (p< 0.01, R2 = 0.26,

Stress=0.1576). At the phylum level, the alterations in the

relative abundances of Bacteroidetes and Patescibacteria in

MTHFD mice showed the same trends as it of HFD-fed mice
Frontiers in Immunology 12
(Figure 10C). Meanwhile, the relative abundance of

Peptostreptococcaceae at the family level in MTNC and

MTTSP mice tended to decrease relative to the MTHFD mice

(p < 0 . 0 5 ) , whe r e a s t h e r e l a t i v e abundanc e o f

Saccharimonadaceae in MTTSP group significantly decreased

compared with MTNC and MTHFD group (p < 0.05,

Figure 10D). Additionally, the relative abundance of
A

B

C

FIGURE 9

Microbiota Transplantation from TSP- supplementation Mice Exerts an Anti-Obese Effect in HFD-Fed Mice. (A) Microbiota-transplanted mice fed
with NC-diet; (B) microbiota-transplanted mice fed with HFD-diet; (C) The experiment design of microbiota transplantation. Data are presented
as mean ± SEM, differences were denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001; ns, no significant p > 0.05.
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Lactabacillus and Romboutsia at the genus level was significantly

changed among the three groups (p< 0.05, Figure 10E), and they

also showed the same trends as it of HFD-fed mice. The relative

abundance of Candidatus_Saccharimonas in MTTSP group was

significantly reduced compared with MTNC and MTHFD group

(p < 0.01). Overall, these data indicate that mechanism of TSP to

inhibit the occurrence of lipid metabolism disorder and obesity

may be realized by regulating intestinal microbiome.
Discussion

Tolypocldium sinenis is an entomogenous fungus isolated

from the mycelial tissue of the sclerotia and cotyledon

of Chinese caterpillar fungus. Some gene sequencing results of

TSP are compared with the gene sequencing results of
Frontiers in Immunology 13
Cordyceps sinensis (accession number AF291749) in the gene

database, and the similarity is 99% (28). Relevant studies

showed that TSP and C. sinensis have basically the same

pharmacological effects, indicating that TSP has a potential

pharmacological value. At present, some reports on the

bacteriostatic, anti-inflammatory, antioxidative stress and anti-

tumor effects of TSP are available, but the effect of TSP on

preventing obesity and on the change of the intestinal

microbiota has not been studied. The regulation of the

composition of the gut microbiota is a promising approach to

prevent the development of obesity and related metabolic

disorders. This study was the first showing that the dietary

supplementation TSP prevented HFD-induced obesity and

hyperlipemia. The potential mechanism could reduce systemic

inflammation and by regulating the composition and potential

function of the gut microbiota.
A B

D

E

C

FIGURE 10

Gut microbiota in response to microbiota transplantation from NC (MTNC), HFD (MTHFD), and TSP (MTTSP) groups (n = 6), (A) Indexes of Chao
1 and Shannon in a-diversity analysis, (B) NMDS plot analysis from each sample, (C) significantly changes of the composition of the gut
microbiota at phylum taxa level (p < 0.05), (D) microbiota compositions at the family level, and (E) significantly changes of the composition of
the gut microbiota at the genus level (p < 0.05). Data are expressed as mean ± SD, *p **p ***p/span>, ns, no significant, p > 0.05.
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As a global epidemic, obesity increases the risk of a variety of

chronic diseases, reduces life expectancy and brings a serious

personal and socio-economic burden (29–31). Different

theoretical explanations in obesity research are available. One

of the important reasons is the change of people’s diet, since the

high-fat diet is an important factor in obesity. The excessive

weight gain leads to the abnormal increase in blood lipid and

blood glucose levels (32). Our results also revealed that HFD

feeding promoted an evident increase in body weight, liver

weight, serum lipid levels, and fat vacuoles in hepatocytes in

mice when compared with these parameters in the NC group,

which was in agreement with previously published reports (33,

34). TSP supplementation reduced the accumulation of

abdominal adipose tissue induced by HFD and effectively

prevented the increase in body weight and liver weight in

mice. Moreover, TSP decreased the levels of TC, TG and

NFFA in serum and liver, and prevented the increase of serum

LDL-C and TBA in liver, indicating its potential preventive effect

on the development of fatty liver disease induced by HFD.

However, our results revealed that food consumption and

energy intake of mice supplemented with TSP were similar to

those in the HFD group, indicating that the role of TSP in

preventing obesity was not related to the reduction of appetite.

The genes related to liver lipid/cholesterol synthesis and

metabolism were measured by qRT-PCR to further clarify how

TSP supplementation prevented HFD feeding-induced liver

lipid metabolism disorder. The results revealed that TSP

supplement down-regulated the expression of ACC, HMGCR,

LXRa and SREBP-1c, which involved in hepatic lipid/

cholesterol synthesis and metabolism (35), and up-regulated

the expression of AMPK and PPARa, that involved in fatty acid

oxidation (36, 37), compared with their expression in the HFD

group. HMGCR catalyzes 3-hydroxyl in the process of

cholesterol synthesis 3-methylglutaryl CoA is the rate limiting

enzyme for the conversion of 3-methylglutaryl CoA to

mevalonate (37). Therefore, the inhibition of the activity of

HMGCR in the liver reduces the synthesis of cholesterol in the

body, thus regulating the disorder of lipid metabolism. SREBPs

promotes the regulation of cholesterol and adipose formation by

a strict transcription and post-translational regulation. SREBP1c

is an important subtype of SREBPs that positively regulates

cholesterol and fatty acid syntheses and uptake in the

hepatocytes (38). PPARa is one of the PPAR family proteins,

and play an important role in lipid metabolism, glucose

homeostasis and anti-inflammatory effects, and upregulation

the mRNA level of PPARa expression could promote fatty

acid catabolism and reduce fat mass (7, 39, 40). PPARa
enhances the antioxidant function of hepatocytes by regulating

the levels of SOD, ALT and AST (41). In addition, PPARa
reduces serum cholesterol and LDL levels by regulating

cholesterol 7A-hydroxylase, sterol 12a-hydroxylase, increases

the level of high-density lipoprotein (HDL), hydrolyzes very
Frontiers in Immunology 14
low-density lipoprotein (VLDL), and delays the progression of

coronary atherosclerosis (42). Thus, TSP supplementation might

partially contribute to the regulation of genes of the lipid

metabolism involved genes in liver, preventing adipose tissue

deposition and improved hyperlipidemia in HFD mice.

Studies showed that chronic obesity is closely related to low-

grade inflammation. Obesity-induced inflammation is called

metabolic inflammation, which is different from the classical

inflammation because the metabolic inflammation belongs to

the chronic and low-grade inflammation (43). Mice fed with

long-term HFD have hyperglycemia, hyperlipidemia, as well as

increased systemic chronic inflammation and proinflammatory

factors (44–46). Our results showed that HFD feeding promoted

the occurrence of inflammation in the serum and liver tissue,

and the daily supplement of TSP effectively inhibited the

inflammatory factors (TNF-a, IL-6, and IL-1b). Some studies

reported that oxidative stress is a part of the inflammatory

response, which activates the cascade of inflammatory signals

to promote the occurrence of inflammation. Furthermore, the

oxygen free radicals produced by inflammatory activated

immune cells further aggravate the oxidative stress response

(47). Obese people are often accompanied by impaired

mitochondrial function, such as decreased mitochondrial

density and ATP synthesis (48). It is reported that

mitochondrial dysfunction precedes hepatic steatosis and

insulin resistance in obese rodent model (49),. The increased

level of circulating fatty acids in obese individuals leads to the

excessive accumulation of lipids in cells, the damage of the

mitochondrial function and the increase in the content of ROS.

Excessive ROS not only damages the ability of mitochondrial

ATP synthesis and oxidative phosphorylation, but also interferes

with the replication of mitochondrial DNA and RNA, affecting

the structure and function of mitochondria, and leading to

mitochondrial dysfunction and further increase in the

production of ROS (50). Relevant studies confirmed that the

mycelial extract and mycelial polysaccharide of TSP have

sedative, anti-inflammatory and antioxidant effects (16, 18,

51), which might be due to the effect of cyclosporin A rich in

TSP. Cyclosporin A is widely used as an immunosuppressant to

avoid rejection of organs after transplantation, and has a certain

antifungal and anti-inflammatory effects (52, 53). Our study

found that TSP supplementation effectively inhibited the

increase of MDA level in the serum and liver caused by HFD,

as well as it significantly increased the SOD and GSH-Px activity.

Different dietary structure can modify and change the

composition and structure of the intestinal flora, so as to

change the physiological metabolism of the host. As a

bioreactor of human food, the intestinal microorganisms are

related to many physiological effects and diseases of the host,

especially obesity (54, 55). More and more studies showed that

intestinal microorganisms can affect host metabolism through

immune, endocrine and intestinal brain axis (56–58), so as to
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regulate human energy absorption, lipid metabolism and

inflammatory response. For example, the gut microbiota

metabolizes complex carbohydrates and plant polysaccharides

to produce short chain fatty acids, which are an important

substrate providing energy for the human body and

microorganisms (59). It mainly includes acetic acid, butyric

acid, and propionic acid. In addition to being a direct energy

supplier, short chain fatty acids also play a role in metabolic

regulation after entering the tissues and organs by blood

circulation, working as signal molecules by stimulating the

release of saturated hormone peptides (60) and glucagon

peptides (61, 62). The intestine by activating nutrient receptors

to reduce physical inflammation and brain signal transmission.

Previous studies showed that dietary short chain fatty acid

supplementation is effective in preventing obesity and

dyslipidemia in HFD-fed mice (63, 64). TSP supplementation

partially restored the HFD-induced decrease in SCFAs,

especially the content of butyrate was significantly higher than

that of the blank control, while acetate and propionate went back

to normal levels. Butyric acid strengthens the intestinal barrier

by affecting the length of small intestinal villi and mucosal

thickening to control the occurrence of metabolic diseases (65).

Since the gut microbiota serves as a pivotal mediator in the

regulation of host energy absorption, appetite and consumption

(66), our study also found that the alpha diversity of gut

microbiota was significantly lower in the HFD group than that

in the NC group. Generally, dietary supplementation or weight

loss contribute to the recovery of gut microbial diversity (67).

Our results showed that although TSP supplementation

inhibited weight gain, it did not restore gut microbial diversity,

which might be related to its pharmacological properties. The

efficacy of TSP is associated to immune regulation, anti-tumor

and antioxidant effect, as well as bacteriostasis (68). Therefore,

TSP supplementation might inhibit some non-probiotics and

reduce the gut microbial diversity. Our study demonstrated that

TSP supplementation could alter the gut microbiota structure

and composition revealed by NMDS and hierarchical cluster

analysis. TSP supplementation did not affect the relative

abundance of Firmicutes, but it significantly enhanced the

relative abundance of Bacteroidetes, thus significantly

decreasing the F/B ratio. The higher F/B ratio in the intestines

of obese individuals could promote obesity of the host by

absorbing energy from food (69). Wu et al (70). suggested that

reducing the HFD-induced increase of the F/B ratio together

with the reduction of the inflammatory markers IL-2, IL-6 and

TNF-a in mice serum could be obtained by promoting the

growth of Bacteroidetes. TSP also significantly inhibited the

proliferation of Proteobacteria and Patescibacteria. Studies

suggested that the proportion of Bacteroidetes in the gut

microbiota of NAFLD patients was lower than non-obese

people, accompanied by an increase in Actinomycetes,

Firmicutes and Proteobacteria and the abnormal increase of

Proteobacteria in gut microbiota reflects the imbalance of
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microecology or the instability of gut microbiota structure (71,

72). The specific families reported as increased by HFD include

Lactobacillaceae, Ruminococcaceae, Lachnospiraceae and

Clostridiaceae (70). Our results showed that daily

supplementation of TSP effectively and significantly reduced

the relative abundance Ruminococcaceae and Clostridiaceae

compared with the HFD mice. On the contrary, TSP mice

showed a higher and significant relative abundance of

Lactobacillaceae than HFD mice. Lactobacillus is traditional

probiotics that play an important role in the balance of the

human intestinal microecology. Some studies reported that the

increase in Lactobacillus effectively reduces serum cholesterol

level and body fat (73), and it also prevents chronic

inflammation and the worsening of insulin resistance and are

recognized as beneficial bacteria (74, 75). The correlation

analysis showed that Lactobacillus was significantly negatively

correlated with inflammatory factors and lipid metabolism in

our study. The comprehensive analysis revealed that the HFD

group showed a higher abundant of Romboutsia and

Candidatus_Saccharimonas which positively correlated with

obesity and obesity-related physiological markers. However,

TSP group mice had significantly lower abundance of bacteria

linked to obesity than HFD-fed mice. Romboutsia are linked

with obese like features and they are highly abundant in obese

mice (76–78). The spearman correlation analysis also found that

Romboutsia were positively correlated with serum and liver

inflammatory factors in our study. In some ways, TSP

supplementation also effectively increased the relative

abundance of the two species Prevotella_9 and Allobaculum.

The abundance of genera Prevotella is associated with

carbohydrate intake (79). A recent study further revealed that

individuals with a high abundance of Prevotella were more likely

to lose weight than those with Bacteroides, when these

individuals go on a diet (80). To summarize our discovery, our

work demonstrated that the beneficial bacteria that protects the

body increased after TSP supplementation and it protects the

balance of the gut microbiota from being destroyed by high-fat

diet, inhibiting the growth of bacteria that promote obesity, and

improving the relative abundance of beneficial bacteria.

The change of microbial composition is always accompanied

with significant functional alteration and changes in the gut

microbiota that inevitably lead to changes in the host

metabolism (81, 82). Therefore, in this study, the functional

abilities of the microbial communities were analyzed by

PICRUSt. The reduced lipid accumulation in the liver of TSP

mice might be caused by the functions related to carbohydrate

and lipid metabolism in microbiota. TSP effectively enhanced

the carbohydrate and lipid metabolism ability, suggesting that

the microbiome in TSP mice might consume more dietary lipid

and more carbohydrates. These findings are also consistent with

the more profound downregulation of lipogenic gene

expressions by TSP treatment. Combining with the existing

results, our hypothesis was that the effects of TSP on
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attenuating HFD-induced lipid metabolism disorders were

mediated, at least in part, by the modulation of the gut

microbiota. We confirmed this hypothesis with the fecal

bacteria transplant experiment, that gut microbiota might be

required for TSP to carry out its anti-obese and prevent

hyperlipidemia effects on HFD-fed mice.
Conclusion

In summary, TSP supplementation confers protective effects

against HFD-induced obese and hyperlipidemia by altering the

gut microbiota, alleviate the inflammatory response and

regulating gene expression of liver lipid metabolism. It raises

the possibility that TSP poses great therapeutic potential in

treating obesity and its complications. Therefore, the

development of TSP act as daily health food has a good prospect.
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