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Pan-cancer analyses of classical
protein tyrosine phosphatases
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therapy in cancer
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Yanjiao Zhao1, Yang Yu1* and Bing Wang1*

1College of Life and Health Sciences, Northeastern University, Shenyang, China, 2Department of
Pathophysiology, Bengbu Medical College, Bengbu, China, 3Department of Thoracic surgery, The
First Affiliated Hospital of Bengbu Medical College, Bengbu, China
Protein tyrosine phosphatases function in dephosphorylating target proteins to

regulate signaling pathways that control a broad spectrum of fundamental

physiological and pathological processes. Detailed knowledge concerning the

roles of classical PTPs in human cancer merits in-depth investigation. We

comprehensively analyzed the regulatory mechanisms and clinical relevance of

classical PTPs in more than 9000 tumor patients across 33 types of cancer. The

independent datasets and functional experiments were employed to validate

our findings. We exhibited the extensive dysregulation of classical PTPs and

constructed the gene regulatory network in human cancer. Moreover, we

characterized the correlation of classical PTPs with both drug-resistant and

drug-sensitive responses to anti-cancer drugs. To evaluate the PTP activity in

cancer prognosis, we generated a PTPscore based on the expression and

hazard ratio of classical PTPs. Our study highlights the notable role of classical

PTPs in cancer biology and provides novel intelligence to improve potential

therapeutic strategies based on pTyr regulation.

KEYWORDS

classical PTPs, GRNs, PTPscore, prognosis, drug-resistance
Introduction

Protein tyrosine phosphorylation is a dynamic and reversible post-translational

modification regulated by protein tyrosine kinases (PTKs) and protein tyrosine

phosphatases (PTPs). It is a fundamental mechanism for regulating innumerable

biological processes (1, 2). Since several PTKs play an oncogenic role in activating
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growth factor-mediated cellular processes, PTPs are typically

considered the negative regulators of these events and,

accordingly, tumor suppressive. Nevertheless, accumulating

evidence reveals that PTPs do not habitually counteract the

activity of PTKs in catalyzing tyrosine phosphorylation but can

also take prominent roles in the initiation and progression of

signaling cascades that govern cell functions (3). Therefore,

abnormal expression of encoding PTPs by genetic and

epigenetic alterations can break the equilibrium of kinase-

phosphatase activity, resulting in aberrant cell proliferation or

cancer (4). Classical PTPs are a cysteine-based subclass of the

PTP superfamily, including the transmembrane receptor-like

and the intracellular nonreceptor proteins. Unlike some PTPs

with more substrate specificity, including phosphothreonine and

phosphoserine, classical PTPs strictly dephosphorylate

phosphotyrosine (pTyr) in their substrates (5). Targeted

methods effectively use PTK inhibitors that have previously

been authorized for use in therapy; nevertheless, the

therapeutic potential of regulating PTPs is still underexplored

even though multiple PTPs have been identified as high-value

targets (6, 7). Given the involvement of classical PTPs in human

cancer, a more comprehensive understanding of them helps

develop more efficient therapeutic interventions.

This study comprehensively characterized the molecular

regulatory mechanisms and clinical relevance of classical PTPs

in 33 types of cancer. We discovered that copy number

variations (CNVs) are the predominant factor leading to

abnormal expression of classical PTPs across cancer types. We

further displayed the architecture and features of gene regulatory

networks (GRN) by transcription factors (TFs) and microRNAs

(miRNAs). In addition, we assessed the clinical prognosis for

classical PTPs and constructed a rigorous model to evaluate the

PTP activity in cancer. Finally, we explored the interaction

network of classical PTPs with FDA-approved drugs and

identified that classical PTPs are promising drug targets for

improving therapeutic strategies.
Materials and methods

Human tissue samples collections

All human samples used in this study were collected from

patients subjected to clinical surgery in the First affiliated

hospital of Bengbu medical college. Before RNA isolation and

protein extraction, samples were stored at -80 ℃. Collections of

human samples were obtained and approved by the ethics

committee of Bengbu medical college. Written informed

consent was obtained from individual or guardian participants.
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Multi-omics data sources

The pan-cancer analyses were based on the Cancer Genome

Atlas (TCGA) Research Network. We systematically analyzed 38

classical PTPs in 33 TCGA cancer projects. Every project

indicates a particular cancer type. RNA-seq data for the

transcriptional expression of 33 types of cancer were

downloaded using the TCGAbiolinks R package (8). The

somatic mutation data were acquired from the MC3 project of

the TCGA PanCanAtla (9). The CNV data were downloaded

from Broad GDAC Firehose in January 2016 (https://gdac.

broadinstitute.org/). GISTIC2 was employed to define the

significant gain or loss in genomic regions (10). The clinical

data associated with TCGA patients were obtained from the

published study (11) or downloaded using the TCGAbiolinks R

package. The Chinese Glioma Genome Atlas (CGGA) (12), the

Gene Expression Omnibus (GEO) database under the accession

numbers GSE4290 (13), and the GlioVis dataset (14) were used

to validate the results.

The omics data of cell lines, including gene expression profiles,

somatic mutations, and CNVs, were acquired from the Broad

Institute Cancer Cell Line Encyclopedia (CCLE) and the Genomics

of Drug Sensitivity in Cancer databases (GDSC) (15, 16). The

mutation and CNV frequency were defined as the proportion of

cell lines with the variations in each cancer type (17, 18).
Differentially expressed classical
PTPs analysis

To avoid instability between tumor and normal samples in

differential analyses caused by batch effect, we downloaded the

gene expression profiles from the TCGA project, and the

Genotype-Tissue Expression (GTEx) project that is re-

computed by the UCSC Xena project depended on a defined

pipeline. Thirty-eight differentially classical PTPs were acquired

using the limma R package (19). The BH-adjusted p-value< 0.05

was regarded as the differentially expressed genes in each

cancer type.
Oncogenic pathway analysis across
cancer types

Gene Set Variation Analysis (GSVA) was performed to

compute the activity of 50 cancer hallmark-related pathways

across 33 types of cancer. After that, the spearman correlation

between the expression to classical PTPs and pathway activity

was estimated. BH-adjusted p-valued< 0.05 and |Rs| > 0.3 were

defined as significant.
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Construction of gene
regulatory networks

To identify the interactions between miRNA and target

genes (classical PTPs and TFs), we collected miRNAs from

four target prediction databases: miRDB, miRTarBase, PITA,

and TargetScan (20–23). The interaction pairs in at least two

databases above were preserved for further research.

Next, we downloaded the promoter region sequence (from

-1000 to +200 bp around the transcription start site) of target

genes from the UCSC Table Brower depending on the human

wgEncodeGencodeBasic V37 database. TF-binding sites were

identified using the TFBSTools R package combined with

JASPAR2020 datasets (24, 25). P-value< 0.00001 was retained.

Then, the feed-forward loops (FFLs) were extracted from the

combination of miRNAs-genes and TFs-genes using

MotifPredictor (publicly available at https://www.uth.edu/

bioinfo/software.htm). The raw FFLs networks were further

refined using TCGA expression profiles to improve the

accuracy. The spearman correlation calculated TFs, miRNAs,

and target genes for every FFLs in the raw network. For

miRNAs-genes pairs, p-value< 0.05 and Rs< 0 was defined as

significant. For TFs-genes pairs, p-value< 0.05 and Rs > 0 was

defined as significant. The less significant FFLs networks were

removed from raw networks to produce the final refined co-

regulatory networks in each cancer type. In addition, the refined

pan-cancer network was used to perform centrality measure and

MCC analysis using the cytoHubba plugin (26), which was

extracted modules using MCL that are both implemented in

Cytoscape (version 3.7.2) (27).

Finally, we analyzed the correlation between classical PTPs

and GO terms that contributed to nine cancer hallmarks as in

previous studies (28, 29).
Drug response analysis

The clinically actionable genes (CAGs) were retrieved from

prior research as FDA-approved therapeutic drugs or biomarker

targets (30). The therapeutic drugs and their known targets were

adopted from the DrugBank database (31). CAGs with matching

drugs as therapeutic targets were retained for further analysis.

We obtained the drug sensitivity area under the dose-

response curve (AUC) and gene expression profiles for cancer

cell lines from GDSC to examine drug sensitivity in cancer cell

lines (32). We computed Spearman’s correlation between gene

expression and the AUCs from GDSC and defined statistical

significance as Spearman’s correlation coefficient |Rs| > 0.25 and

FDR< 0.05. To evaluate drug response in TCGA patient samples,

we retrieved the imputed tumor response to 138 anti-cancer

drugs from prior research (33). We used Spearman’s correlation

to determine the association between imputed drug response
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and mRNA, miRNA, protein, and DNA methylation of target

genes. We defined statistical significance as |Rs| > 0.3 and

FDR< 0.05.
Clinical relevance and survival analysis

The survival analysis of classical PTPs was analyzed using

the Kaplan-Meier method with the log-rank test by the survival

R package. The cut-off point in each set was estimated using the

survminer R package. P-value< 0.05 was defined as significant.

Moreover, the Cox proportional hazard regression model was

applied to estimate the hazard ratio (HR) for every classical PTP.

The log2 transformed expression profiles were first z-

normalized for the classical PTPs with significant HR values

across the analyzed samples (34). PTPscore was defined as the

mean value of significant PTPs weighted by HR for each patient:

PTP score =  
1
no

n

i=1
e  �  HR

where n is the number of analyzed samples, and e is the z-

normalized expression data of involved PTPs with a

significant HR.

To identify classical PTPs essential to the proliferation and

survival of cancer cells, we applied CERES across 342 cancer cell

lines (35). CERES is a computational method to estimate gene

dependency levels from CRISPR-Cas9 essentiality screens while

accounting for the copy-number-specific effect.
Cell culture, transfection, and
western blotting

BT-549, CAL-51, U-251 MG, and U-118 MG cell lines were

cultured in Dulbecco’s modified Eagle’s medium (DMEM;

HyClone, Thermo Fisher) supplemented with 10% fetal bovine

serum (FBS; HyClone, Thermo Fisher) and 1% Penicillin/

Streptomycin. U-87 cell line was cultured in Eagle’s Minimum

Essential Medium (EMEM; HyClone, Thermo Fisher)

supplemented with 20% fetal bovine serum and 1% Penicillin/

Streptomycin. All cell lines were maintained at 37℃ in a

humidified 5% CO2 chamber. Lipofectamine 3000 (Thermo

Fisher) was applied to transiently transfection for plasmids

and siRNAs following the manufacture`s instruction. After 48

h transfection, cells were lysed on the ice, and western blotting

analysis was performed as previously described (36).
Luciferase reporter assay

Cells were co-transfected with siRNA or plasmid and

luciferase reporter plasmid containing the target promoter for
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48 h. The luciferase activity was detected by the Luciferase Assay

System (Promega, Madison, WI) and plate reader (BioTek,

VT, USA).
Cell cycle and apoptosis analysis

Cell cycle and apoptosis were analyzed using propidium

iodide (1 mg/ml) and ribonuclease-A (10 g/ml) (PI/RNase; BD

Biosciences), and Annexin V/PI assay by flow cytometry (BD

Biosciences, Franklin Lakes, NJ, USA) respectively as we

previously described (37).
Cell proliferation assay

Cells were seeded in 96-well plates and evaluated with Cell

Counting Kit-8 (CCK8; Bimake, Houston, TX, USA) according

to the manufacturer`s instruction at the indicated time points. A

plate reader (BioTek, VT, USA) was used at the endpoint to

assess the results.
Colony formation assay

Cells were seeded in six-well plates at a density of 1000 cells.

After two weeks of growth, colonies were fixed with

paraformaldehyde for 30 minutes and marked with 0.1%

crystal violet solution for 15 min. Finally, an optical

microscope was used to counter the number of colonies.
Tumorigenesis in nude mice

Male mice (Four-week-old; BALB/c nude) were acquired

from Charles River (Beijing, China) and fed in the house in the

pathogen-free condition. All procedures were approved by the

Institutional Committee on Animal Care of Northeastern

University. U-257 cells stably expressing PTPN12 and empty

vector were injected subcutaneously into nude mice’s right super

lateral tissue (six mice per group, 2 x 106 cells in serum-free

DMEM). Mice were anatomized after two weeks. Western blot

was used to detect the protein level of the target gene. The animal

study was reviewed and approved by the Animal Care and Use

Committee of Northeastern University.
Statistical analysis

Statistical analysis and graphical visualization were

performed in R, version 4.0.0 (https://cran.r-project.org/). The
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student’s t-test and the Wilcoxon rank-sum test were utilized to

compare normally distributed variables and non-normally

distributed variables. The p-values were two-sided and

adjusted according to the Benjamini–Hochberg (BH) approach

to control the false discovery rate (FDR). A BH-adjusted p-

value< 0.05 was considered statistically significant unless

otherwise indicated.
Results

Extensive dysexpression of classical PTPs
in human cancer

In this study, we reviewed the literature and explored the

roles of classical PTPs in human cancer (Figures 1A, B). We first

quantified the differential expression of classical PTPs in cancers

by integrating the TCGA and GTEx data and found that the

abnormal expression of classical PTPs was universal (Figure 1C).

We further exhibited that some cancer types expressed a higher

ratio of up-regulated PTPs (such as pancreatic adenocarcinoma

(PAAD) and diffuse large b-cell lymphoma (DLBC)), and other

cancers had more down-regulated PTPs (such as adrenocortical

carcinoma (ACC) and uterine carcinosarcoma (UCS))

(Figure 1D). Since genes do not work in isolation, several

PTPs may participate in an event simultaneously or not (2).

We thus inspected the expression correlation among classical

PTPs and discovered significant expression patterns across 33

cancer types (Figure 1E). For instance, PTPN22 was positively

correlated with PTPRC (Rs = 0.863, FDR< 5.78 × 10-8), and

PTPN6 was negatively correlated with PTPRG (Rs = -0.286,

FDR< 5.12 × 10-5).

To characterize the genomic alterations of classical PTPs, we

identified their somatic mutations and CNVs frequency across

33 cancers (Figure 1F). The general average mutation frequency

of classical PTPs was low, ranging from 0.00 to 27.59% (90%

classical PTPs< 4.38%) (Figure S1A). Several PTPs, like PTPRT,

PTPRB, and PTPRD, demonstrated a high mutation rate in skin

cutaneous melanoma (SKCM) and uterine corpus endometrial

carcinoma (UCEC) compared with other cancers due to the

higher global mutation burden in the two cancer types. These

results showed that the somatic mutations were not the primary

driver for the abnormal expression of classical PTPs. Moreover,

we systematically explored the CNV alteration frequency for

classical PTPs and observed that CNV alterations are widespread

(Figure S1B), especially in ovarian serous cystadenocarcinoma

(OV) and uterine carcinosarcoma (UCS) (Figure S1C). We also

found that PTPN23 showed the most widespread CNV

alterations across cancer types (Figure S1D). In contrast to

PTPN23, the dysregulation of PTPRN was not significant with

CNVs across cancer types (Figure S1E). Interestingly, the
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abnormal up-regulation of some classical PTPs was associated

with CNV gain such as PTPRA in rectum adenocarcinoma

(READ) (Rs = 0.81, FDR< 1.68 × 10-32) and PTPN2 in UCS

(Rs = 0.74, FDR< 5.53 × 10-9), and some abnormal down-

regulations were associated with CNV loss such as PTPN23 in

UCS (Rs = 0.66, FDR< 8.23 × 10-7) and PTPRS in OV (Rs = 0.53,

FDR< 5.78 × 10-19) (Figure S1E). These results suggested that

CNV is the dominating event for dysregulation of classical PTPs

in human cancer.
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Gene regulatory networks of
classical PTPs

To further explore the gene regulatory mechanisms of classical

PTPs, we constructed the gene regulatory networks based on TFs

and miRNAs. We divided the feed-forward loops (FFLs) into

three categories referenced in the published study (38), including

TF-FFLs (the TFs only directly regulate the miRNAs), miRNA-

FFLs (the miRNAs only directly regulate the TFs), and composite-
B

C

D E F

A

FIGURE 1

Genetic and expression landscape of classical PTPs in human cancer. (A) Classification of PTP superfamily. (B) Gene location on the chromosome.
(C) Differential gene expression of classical PTPs across 27 types of cancer. (D) The proportion of significantly dysregulated classical PTPs for each
tumor. (E) Correlation among the expression of classical PTPs in pan-cancer. (F) Detailed heatmap of alteration frequencies.
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FFLs (the TFs and the miRNAs regulate each other) (Figure 2A).

The distribution of the nodes in each FFLs was shown in Figure 2B

across 33 types of cancer. Before constructing the hierarchical

model, the representatives of classical PTPs targeted by TFs and

miRNAs were characterized and validated, respectively. The

network for TFs-PTPs pairs was illustrated (Figures S2A, B). 66

TFs were implicated as potential regulators of classical PTPs

across cancers (Figure S2C). Some TFs are associated with

multiple PTPs, such as several tumor metastasis regulators

(ZEB1, SNAI3, and SMAD2). Since PTPN2 had the most

potential TFs, we examined the correlation between the

expression of PTPN2 and their potential TFs in 33 cancers

(Figure S2D). Combined with chip-seq data acquired from

Cistrome Data Browser (39) and molecular experiments, we

proved that NRF1 is the accurate TF for PTPN2 in breast

cancer cell lines (Figures S2E–H). Meanwhile, the features and

validations of miRNAs-PTPs pairs were also identified (Figures

S3A–F). In brief, these results strengthen the veracity of GRNs for

classical PTPs.

To describe the regulatory mechanisms of GRNs in extenso,

we constructed the co-regulatory network and integrated TCGA

expression data to refine the FFL patterns (Figure S4A). The core

subnetwork generated by the MCC algorithm contained 50

nodes (including five miRNAs, 23 TFs, and 22 PTPs) and 203

interactions (Figure S4B). We also got three modules using the

MCL algorithm adjacent to network topology (Figures S4C–E).
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The detailed networks of top frequency classical PTPs were

displayed (Figures S4F–I).

Despite the regulatory complexity and tumor diversity,

several cancer hallmarks can promote the efficient

development of human cancers. By calculating the correlation

between GRNs and cancer hallmarks, we constructed a

hierarchical model to interpret the contribution of classical

PTPs to cancer progression (Figure 2C).
Functional effects of classical PTPs

To characterize the functions of classical PTPs in cancer

progression, we performed the correlation analysis between the

expression of classical PTPs and the activities of 50 cancer

hallmark-related pathways. We identified that classical PTPs

were associated with activating or suppressing multiple

oncogenic pathways (|Rs| > 0.3, FDR< 0.05; Figure 3A). For

example, the expression of PTPRB, PTPRE, and PTPN12 was

associated with the activation of several oncogenic pathways.

However, PTPRZ1 was exclusively enriched in the inhibited

pathways, which followed the character of the suppressive

gene (Figure 3B).

Taking PTPN12 as an example, due to the significant

correlation with cancer progression (40), we validated the

potential function in glioma using GSEA and observed that
B

C

A

FIGURE 2

Gene regulatory network of classical PTPs across cancer types. (A) Three kinds of FFLs and matching proportions in pan-cancer.
(B) Distributions of TFs, miRNAs, and PTPs in FFLs across 33 cancers. (C) A hierarchical model for cancer hallmarks and functional regulators.
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PTPN12 contributed to several oncogenic pathways (Figure 3C),

including PI3K-AKT-mTOR signaling, and TNFa signaling

(Figures 3D–F). Further analysis found that PTPN12 was up-

regulated in human glioma from TCGA and other independent

datasets (Figure S5A). In addition, the mRNA expression of

PTPN12 displayed a strong association with the advanced grade

and short survival time in glioma (Figure 3G; Figure S5B). To

better address whether PTPN12 was correlated with glioma

tumorigenesis, we applied clinical specimens and observed that

PTPN12 was significantly overexpressed in glioma samples

contrasted with the paired adjacent samples at the protein

level (Figure S6A). The ectopic expression and knockdown

experiments were performed to evaluate the effect of PTPN12

on cell growth. We found that the overexpression of PTPN12

notably enhanced the growth velocity in different glioma cell

lines (Figure S6B), while PTPN12 silencing inhibited cell growth

(Figure S6C). Consistent with the above results, PTPN12

promoted colony formation and tumor growth in nude mice
Frontiers in Immunology 07
(Figures S6D–G). Finally, we performed cell cycle and apoptosis

analysis on PTPN12 in glioma cells. We found that PTPN12

could promote the proliferation and inhibit apoptosis of glioma

cell lines (Figures S6H, I). Furthermore, Chen et al. got the

results like us. They found that, unlike epithelial cell-derived

carcinomas, PTPN12 in glioma, primarily derived from neural

stem cells, suppressed migration/invasion but promoted growth

and v i ab i l i t y even though EGFR and HER2 are

hyperphosphorylated (41). Taken together, these results

suggest that PTPN12 is a potential oncogene in glioma and

may be a promising target for glioma treatment.
Integrative analysis of classical PTPs on
drug response

To evaluate the potential responsiveness of classical PTPs to

anti-cancer drugs, we explored Spearman’s correlation between
B C

D E F G

A

FIGURE 3

Functional analysis of classical PTPs in cancer-hallmark pathways. (A) Network of correlation between classical PTPs and cancer-hallmark
pathways. (B) The number of pathways of involved PTPs. (C) Distribution of normalized enrichment scores for pathways using GSEA analyzing
PTPN12 functions. (D–F) GSEA enrichment plot of the representative gene sets for PTPN12. (G) Relationship between the PTPN12 expression
and clinical-grade in glioma.
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the expression of classical PTPs and drug sensitivity for 252 anti-

cancer drugs from the GDSC dataset across 1,074 cancer cell

lines (32). The involved drugs target various biological processes,

including DNA replication, apoptosis regulation, and EGFR

signaling. We discovered 19 PTPs that significantly associated

with the sensitivity of a total of 124 anti-cancer drugs (|Rs| >=

0.25, FDR< 0.05; Figure 4A; Figure S7). For instance, the mRNA

expression of PTPN12 was up-regulated in ten types of cancer,

and connected with drug sensitivity to 9 anti-cancer drugs (e.g.,

Trametinib, Rs = -0.38, FDR< 3.7 × 10-20) and linked to drug

resistance to 33 anti-cancer drugs (e.g., THZ-2-102-1, Rs = 0.32,

FDR< 7.1 × 10-23). Dysregulation of the EGFR signaling pathway

is an established feature in multiple cancer types, and EGFR

signaling can be regulated by classical PTPs (42). In our analysis,

six EGFR signaling pathways drugs were significantly associated

with 12 classical PTPs (Figure S7A). Our results across cancer

cell lines showed extensive interactions between classical PTPs

and drug response, highlighting the potential of combining anti-

PTP drugs with other cancer therapies.

To further explore the impacts of classical PTPs on

therapeutic response, we conducted an integrative analysis to

assess the connections between the gene regulatory network of

classical PTPs and response to anti-cancer therapies in TCGA

patients. Taking testicular germ cell tumor (TGCT) as an

example, we identified 20 PTPs that are highly associated with

the sensitivity of 94 anti-cancer drugs and are targeted by 34 TFs

and 42 miRNAs. The expression of these PTPs and paired TFs is

negatively associated (drug-sensitive) with the response to anti-

cancer drugs. In contrast, their paired miRNAs are positively

associated (drug-resistant) with identical drugs (Figure 4B). The

involved drugs target several pTyr regulation pathways,

including EGFR and RTK signaling. For example, recent

research identified the regulation of PTPN12 in EGFR

signaling and RTK signaling (43, 44), and PTPN12 expression

negatively associated (drug-sensitive) to the response to the

EGFR signaling pathway inhibitor Gefitinib (EGFR, Rs =

-0.41, FDR< 3.0 × 10-7) and RTK pathway inhibitor Axitinib

(PDGFR, KIT, VEGFR, Rs = -0.63, FDR< 7.04 × 10-18),

Lestaurtinib (FLT3, JAK2, NTRK1, RET, Rs = -0.59, FDR<

4.94 × 10-15), Sorafenib (PDGFRA, PDGFRB, KDR, KIT,

FLT3, Rs = -0.46, FDR< 3.19 × 10-9) and PD-173074 (FGFR1,

FGFR3, Rs = -0.45, FDR< 7.11 × 10-9) (Figure 4C). Meanwhile,

three TFs target PTPN12 are also negatively associated with the

corresponding drugs, but five miRNAs are positively correlated.

For drug resistance of classical PTPs in TGCT, we also detected a

similar gene regulatory network strongly associated with drug

resistance to anti-cancer drugs (Figures S8A, B). Taken together,

our findings implied that classical PTPs have a complex effect on

drug response, the different drug responses to anti-cancer drugs

might lead to opposite therapeutic outcomes.
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Application of classical PTPs
in immunotherapy

Immunotherapy has become an efficient clinical approach for

cancer treatment. We, therefore, estimated the roles of classical

PTPs in anti-PD-L1 treatment (Figure 5A) and found that seven

PTPs were significantly higher in the non-responsive tumor,

including PTPN12 and PTPRE (Figure 5B). These results

indicated that up-regulation of specific PTPs might donate the

resistance to PD-1 blockades. Moreover, recent studies highlighted

the role of PTPs in modulating the immune infiltrate, the

relationship between the expression of classical PTPs and the

immune cell infiltration was calculated (Figure 5C). To

mechanically explore the functions of classical PTPs in shaping

the TME, we evaluated the cancer immunity cycle process of

PTPN12 in glioma (Figure 5D). We identified that PTPN12 was

associated with the infiltration of several immune cells, such as

Th17 cells, M1macrophages, and cytotoxic T cells (Figure 5E).We

also observed that PTPN12 was positively correlative with most

immunomodulators across cancer types (Figure 5F). These

observations provided several ways to understand classical PTPs

on intervening immunotherapy and patient survival.
Clinical implications of classical PTPs
and PTPscore

The characteristics of classical PTPs may provide important

insight into the development of clinical transformation. We

observed that classical PTPs showed significant associations

with patient survival and could be an excellent prognostic

biomarker in various cancers (Figure S9A). Some classical

PTPs exhibited carcinogenic features (Figure S9B), such as

PTPN12 in PAAD (Figure S9C) and PTPN6 in acute myeloid

leukemia (LAML). The chi-squared test revealed that patients

with high PTPN12 expression had worse clinical staging and

short lifetime, indicating that highly malignant PAAD is related

to high expressed PTPN12. In contrast, several PTPs were

identified as the suppressive genes in cancer, such as PTPRZ1

in BRCA (Figure S9D) and PTPRQ in lung adenocarcinoma

(LUAD). High expression of these potential tumor suppressors

may improve patient survival (45, 46). Further analysis found

that the carcinogenic and CNV-driven PTPs showed more

significant cell proliferation inhibition after knockout than

other PTPs (Figure S9E).

Overall survival (OS) is widely regarded as the gold standard

in cancer research, having the most straightforward and clinically

meaningful endpoint definition: dead or alive. Furthermore,

disease-specific survival (DSS) was superior to OS in patient

outcomes (47). To explore the impact of PTP activity on cancer
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FIGURE 4

Significant correlation of classical PTPs to drug response in GDSC and imputed data from TCGA. (A) Spearman correlation between mRNA
expression of classical PTPs and drug sensitivity across 1,074 cancer cell lines. (B) Sensitive interaction network of classical PTPs, PTP-targeted TFs,
PTP-targeted miRNAs, and drug response in TGCT. (C) Representative drugs correlated to PTPN12 and corresponding TFs and miRNAs in TGCT.
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FIGURE 5

Immunological characteristics of classical PTPs in the TME. (A) Relative expression of classical PTPs in the responder (green) and the non-
responder (red) subsets. (B) Significantly different PTPs between the responder and the non-responder subsets. (C) Correlation between
classical PTPs and immune cell infiltration. (D) Deviations for the cancer immunity cycle between the high- and low-PTPN12 groups in glioma.
(E) Representative IHC images of infiltrated immune cells in glioma. (F) Correlation between PTPN12 and 129 immunomodulators. *P < 0.05,
**P < 0.01, ***P < 0.0001, ****P < 0.00001. ns indicates not significant.
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progression, a 10-year OS and DSS analyses were applied based on

the PTPscore (Figure 6A). We observed a strong correlation

between the high PTPscore and the poor 10-year OS and DSS.

We further investigated the clinical relevance of PTPscore and

identified that PTPscore exhibited an excellent predictive ability in

multiple cancers (Figure 6B). The American Joint Committee on

Cancer’s (AJCC) TNM staging method is universally

acknowledged as a high predictor of therapy response and

survival in human cancer. Thus, we calculated the correlation

between PTPscore and pathological tumor TNM (pTNM) stage as

the same as survival information (Figure 6C). Our analyses

showed that a high PTPscore significantly correlated with the

advanced stage and poor survival status, especially in kidney renal

papillary cell carcinoma (KIRP) and ACC (Figures 6D, E). These

findings suggested that the PTPscore is a good indication of

prognosis and survival in multiple cancers.

To further delineate the clinically practical feasibility of

PTPscore, we explored the multidimensional alterations of 118

CAGs targeted by 86 FDA-approved drugs between high-

PTPscore and low-PTPscore patients across multiple cancers

(30) (Figure 6F; Figure S10A). We identified PTPscore-

assoc ia ted fea tures , ranging from one fea ture in

cholangiocarcinoma (CHOL) to 189 in lower grade glioma

(LGG) (Figure S10B). For instance, EGFR were biased in

PTPscore-high subgroups with mRNA alteration in eight

cnacers (e.g., ACC, logFC = 1.42, FDR< 1.64 × 10-10; LGG,

logFC = 1.50, FDR< 3.13 × 10-10), protein alteration in three

cancers (e.g., CHOL, logFC = -1.34, FDR = 0.016; LGG, logFC =

0.83, FDR< 3.13 × 10-10), CNV alteration in two cancers (PAAD,

FDR< 1.15× 10-10;LGG, FDR< 4.45× 10-12) and methylation

alteration in nine cancers (e.g., LUAD, logFC = 0.18, FDR =

0.004; liver hepatocellular carcinoma (LIHC), logFC = 0.48, FDR<

2.55× 10-11). Surprisingly, 98.3 percent (116/118) of CGAs were

connected with at least one kind of PTPscore-associated

molecular signature in at least one cancer type. Interestingly,

PTPs has an effect on a number of immunotherapeutic targets.

PDCD1 (PD-1) was shown to be strongly expressed in PTPscore-

high LUSC samples (logFC = 0.58, FDR< 4.66 × 10-11), suggesting

that PDCD1 inhibitors, such as nivolumab and pembrolizumab

(48, 49), may be more effective in PTPscore-high tumors.

We next assessed the PTPscore on drug response using the

imputed drug data from the TCGA samples. We observed that

the response to sorafenib was positively associated (drug-

resistant) to PTPscore in BRCA (Rs = 0.42, FDR< 3.94 × 10-43;

Figure S10C), which is in line with the resistance research in

breast cancer cell lines MCF7 and MDA-MB-231 and leads to

the failure of the clinical trials in phase III (50). We further

found that the response to Nilotinib was negatively associated

(drug-sensitive) with PTPscore in UVM (Rs = -0.69, FDR<

6.13 × 10-12), which is in line with the Phase II multicenter

trial in melanoma patients (51). These findings imply that our

research is dependable and yields significant clinical insights.

Patients with high-PTPsocre are resistant to multiple drugs, such
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as Vorinostat in THYM (Rs = 0.77, FDR< 3.14 × 10-24) and

Axitinib in LIHC (Rs = 0.43, FDR< 1.04 × 10-9), indicating a

possible therapeutic advantage of combining cancer therapy

with phosphatase-targeted therapy for individuals with THYM

or LIHC. Strikingly, some high-PTPsocre tumors may develop

sensitivity to other drugs, including Gefitinib in uveal melanoma

(UVM) (Rs= -0.82, FDR< 1.45 × 10-19) and AZD6244 in TGCT

(Rs = -0.68, FDR< 9.06 × 10-19), which shows that phosphatase-

targeted treatment may not be beneficial for patients with

these malignancies.
Discussion

Classical PTPs have been reported to play a role in

tumorigenesis and be designed as a drug target for cancer

therapy (52, 53). Learning in-depth about the molecular

characterization and clinical relevance of classical PTPs is

conducive to understanding cancer biology and improving

clinical treatment. By exploring the TCGA multi-omics

profiling data, we comprehensively and systematically illustrate

the landscape of molecular regulatory mechanisms of 38 classical

PTPs across more than 9000 patients from 33 types of cancer.

Because protein tyrosine phosphorylation acts as both a tumor

suppressor and a tumor promoter in different contexts,

phosphatase function is unclear. However, given its significant

involvement in cancer, it will be vital to understand its activity in

various contexts to develop therapies for cancers with abnormal

tyrosine phosphorylation. As a result, our results highlighted the

notable role of classical PTPs in cancer biology and provided

novel intelligence to improve potential therapeutic strategies

based on pTyr regulation.

In this study, we observed the widespread abnormal

expression of classical PTPs in human cancer and wondered

what factors contribute to it. We examined the somatic

mutations and found that classical PTPs displayed a low

mutation rate in most cancers, probably attributed to the

highly conservative PTP superfamily. However, PTPRT

showed higher mutation frequency in cancer, which accorded

with several studies (54, 55). Moreover, the enzymatic activity of

classical PTP is mainly regulated by Cys and Asp in the catalytic

domain (e.g. Cys229 and Dsp197 in PTPN18; Cys227 and

Dsp195 in PTPN22) (56). Due to the highly conserved

properties of classical PTP in cancer, the mutation frequency

of these sites is very low, so the expression level is the main factor

affecting the enzymatic activity. We further found that the high

frequency of CNVs alterations is the main factor responsible for

the dysregulation of classical PTPs. These results implied that

CNVs alterations could change gene dosage and contribute to

tumorigenesis or aberrant cell proliferation. For example, in this

study, PTPRF, defined as the CNV-driven gene, was frequently

amplified and up-regulated in multiple cancer. PTPRF was also

associated with poor survival in ACC, LAML, LGG, and SKCM,
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FIGURE 6

Predictive ability of PTPscore across cancers. (A) Kaplan–Meier plot showing the 10-year OS (left) and PFS (right) for PTPscore in pan-cancer.
(B) The HR of OS and DSS for PTPscore in different cancer. (C) Correlation between PTPscore and AJCC stage. (D, E) PTPscore predicted values
distribution with patient survival status (top), survival years (middle), and AJCC TNM staging status (bottom) for KIRP and ACC. (F) Association
between FDA-approved drugs and their linked CAGs (right) and alterations of these genes at mRNA, protein, DNA methylation, mutation, and
SCNA levels based on PTPscore across cancers (left). Different symbol shapes indicate various types of molecular signatures. Filled cells suggest
that the gene is a therapeutic target of clinical practice in the corresponding cancer type. Bar plots in the right panel indicate the number of
cancer types with a positive correlation (drug-sensitive, blue) and negative correlation (drug-resistant, red) between PTPscore and drug
response (Spearman’s correlation).
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which agreed with several studies (57, 58). Interestingly, some

studies regarded PTPRF as the potential predictor for treatment

with Erlotinib in lung cancer (59), indicating the clinical

application of PTPRF in cancer therapy. In addition, we

observed that PTPRF was co-amplified or co-deleted with

PTPRK and PTPN3 in various cancers. PTPRK was reported

to inhibit tumor progression by directly targeting STAT3

activation (60). PTPN3 could suppress cell growth and

metastasis by inhibiting PI3k/AKT signaling (61). These three

classical PTPs may synergistically participate in tumorigenesis

by CNV-driven patterns in specific cancer. Therefore, we

concluded that the dysregulation of classical PTPs by CNVs

alterations might cause dysfunctions of pTyr and contribute to

tumorigenesis in particular contexts.

We further presented a comprehensive study of the

miRNAs-TFs-PTPs regulatory network. To our knowledge,

this study shows the first report of the GRNs for classical

PTPs across multiple tumor types based on experimental

validation of TF and miRNA regulations. Thereby, we

exhibited the topological properties of pan-cancer FFLs and

revealed that PTPs in FFLs were more likely to be the hubs and

bottlenecks. Furthermore, the specificity of GRNs in each cancer

was identified and well documented to have essential roles in

tumorigenesis. All these findings supported that GRNs were not

only intensely connected in terms of network topology but also

cancer prognosis and treatment. It is worth noting that this study

is primarily based on TCGA RNA-seq data. However, the

regulation of PTP is complex. Apart from the CNV, miRNA,

and TF-mediated regulation examined in this work, epigenetic

and post-translational alterations also play a significant role in

PTPs in cancer. Given that our results are based on

bioinformatic analysis, the function of the classical PTPs

should be further confirmed and shown.

Finally, we explored the interactions of the classical PTPs

with FDA-approved drugs and constructed the PTPscore to

evaluate the impact of PTP activity on cancer progression. A

surprising result is that 116 out of 118 CAGs are biased in at least

one molecular signature layer across different cancer types.

These CAGs are the targets of cancer treatments authorized by

the FDA, such as immunotherapy, chemotherapy, hormone

therapy, and targeted therapy. Our extensive analysis reveals

that many CAGs are biased toward samples with a high

PTPscore and supports that phosphatase-targeted treatment is

promising cancer therapy, most likely as a component of

combination therapy targeting CAGs. However, several

phosphatase-targeted treatment clinical studies have had poor

outcomes (7, 62–64), which is likely due to our imperfect

knowledge of how molecular markers are impacted by the

pTyr microenvironment and our lack of sensible combination

therapy. Most therapeutic studies address the drug-resistant

effects of pTyr, but pTyr may potentially increase treatment

sensitivity in certain patients. These individuals may not

experience therapeutic benefits from phosphatase-targeted
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therapy and/or combination therapies. Consequently, our

systematic categorization of classical PTPs and identification

of pTyr-biased signatures have significant therapeutic

consequences; this research may aid in determining the

clinical value of phosphatase-targeted treatment. We have

exhibited the prevailing genetical and expression dysregulation

of classical PTPs in human cancer. Classical PTPs are

significantly associated with the activation and suppression of

cancer-associated pathways and implicated with clinical

prognosis. Taken together, the systematic panorama for the

molecular hallmarks and clinical implications of classical PTPs

provide a solid foundation for understanding the dysregulation

of pTyr. It will further provide insights into the development of

therapeutic strategies.
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