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Systemic lupus erythematosus (SLE) patients display an increased risk of

cardiovascular disease (CVD). With the improved clinical management of other

classical severe manifestation of the disease, CVD is becoming one of the most

relevant complications of SLE, and it is an important factor causingmorbidity and

mortality. Several immune constituents have been shown to be involved in the

pathogenesis of atherosclerosis and endothelial damage in SLE patients,

including specific circulating cell populations, autoantibodies, and

inflammatory mediators. In this review, we summarize the presentation of CVD

in SLE and the role of the autoimmune responses present in SLE patients in the

induction of atherogenesis, endothelial impairment and cardiac disease.

Additionally, we discuss the utility of these immune mediators as early CVD

biomarkers and targets for clinical intervention in SLE patients.

KEYWORDS
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Introduction

The prevalence of cardiac diseases in systemic lupus erythematosus (SLE) is reported to

be higher than 50% at some point in the patients’ life (1). Growing evidence shows that the

immune system has a significant influence on the generation of the atherosclerotic plaque and

cardiovascular disease (CVD). SLE is a heterogeneous autoimmune disease associated with

significant morbidity and mortality. In the ‘70s, a bimodal mortality peak for lupus patients

was described; the first one was attributed to secondary infections and tissue damage and the

second to CVD events (2). Thirty years later, current progress in disease management has
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resulted in a decrease of mortality due to disease activity; however,

CVD events and infections remain major mortality causes (3). The

traditional risk factors associated with atherosclerosis like smoking,

diabetes, increased body mass index (BMI), dyslipidemia or

hypertension, are also present in SLE patients. However, the high

rates of ischemic events observed so far cannot be explained by the

standard Framingham scores (4), since the atherosclerotic process is

accelerated in SLE patients due to a complex interaction of

traditional and inflammatory mechanisms (Figure 1) (5–7).

Moreover, SLE itself is considered an independent risk factor for

endothelial dysfunction (8). Consequently, other scores have been

published with the aim of better measuring CVD risk specifically in

SLE patients: Urowitz et al. proposed a risk score for a broad class of

cardiovascular events derived by simply multiplying the

components of the Framingham risk score by 2 (9). The SLE

cardiovascular risk score derived by Petri et al, identified both

traditional cardiovascular and SLE-related risk factors, including

global activity score (the SELENA-SLEDAI score), low C3 and the

lupus anticoagulant (10). The QRISK3 score was designed to

address CVD risk associated with SLE and, apart from the

presence of SLE, it includes the following items: chronic kidney

disease, migraine, severe mental illness, atypical antipsychotic use,

corticosteroid use, erectile dysfunction and systolic blood pressure

variations over time (11). Finally, the global APS score (GAPSS)

(12) and its adjusted version (13) was designed to bring

improvement in risk prediction of thrombosis by scoring

traditional risk factors such as hyperlipidemia and arterial
Frontiers in Immunology 02
hypertension, in combination with antiphospholipid antibodies

(lupus anticoagulant, anti-cardiolipins, anti-b2-glycoprotein I and

anti-phosphatidylserine-prothrombin). All these scores specifically

constructed to evaluate risk of CVD in SLE still require independent

external validation before being widely used in the clinical practice.

The prevalence of ischemic heart disease in SLE patients is

estimated between 3.8% and 16%, depending of the study (3, 14).

This is a 10-fold risk compared to the general population, and a 50-

fold risk in young women at reproductive age (4). Different studies

showed an increase of 2 to 8-fold in the risk of stroke in SLE patients

(4, 15, 16). There is evidence of subclinical atherosclerosis lesions in

30–40% of patients with SLE, which varied according to the method

of diagnosis used. The carotid plaque thickness in SLE patients is

particularly unusual in those patients under 55 years old and several

reports show that SLE patients have higher prevalence of

atherosclerotic plaques compared with healthy donors (3, 5). In a

meta-analysis, SLE patients had 2-fold prevalence of carotid plaques

compared with matched controls (17). A longitudinal study showed

that SLE women with carotid plaque at baseline had a significant

increase in the incidence of CVD during an 8 years follow-up (18).
Cardiovascular manifestations in SLE

Cardiac involvement in patients with SLE can negatively impact

all components of the cardiovascular system and heart, including

the valve endocardium, myocardium, pericardium, conducting
FIGURE 1

Main immune mechanisms of involved atherogenesis in SLE patients. APL, anti-phospholipid antibody; EC, endothelial cell; (ox)HDL, (oxidized)
high-density lipoprotein; IFN-I, type I interferon; LDG, low-density granulocytes; (ox)LDL, (oxidized) low-density lipoprotein; pDC, plasmacytoid
dendritic cell; Tang, angiogenic T cell.
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system and coronary arteries. Thus, the main cardiological or

cardiovascular manifestations that we can find in SLE are:

endocardial involvement (endocarditis) (19), myocardial

involvement (subclinical myocardial involvement and lupus

myocarditis) (20), pericardial involvement (pericarditis, pericardial

effusion, and tamponade) (21), conducting system involvement

(bradiarrytmias, taquiarrytmias, long QT syndrome) (22) and

coronary artery disease (CAD). In the field of diagnosis,

systematic screening for coronary disease in asymptomatic

patients is not established in the clinical practice. In symptomatic

patients, echocardiography, ischemia induction tests, noninvasive

coronary angiography using computed tomography (Figure 2), and

invasive coronary angiography using cardiac catheterization

are recommended.

Coronary disease is the cardiac disorder with higher correlation

with immunological parameters in SLE. The type of condition in

patients with SLE can vary and three types of pathology can be

found: thrombosis/embolization of the lumen, inflammation of the

vascular wall and coronary atherosclerosis. Most published cases of

myocardial infarction (MI) in patients with SLE are due to the

presence of coronary atherosclerosis. This condition is more

frequent in male patients, associated with older age and longer

duration of the disease (23). As for the general population,

subclinical atherosclerosis is also more prevalent than clinical
Frontiers in Immunology 03
CVD in SLE patients. But, in addition, it is also more prevalent

than in subjects without SLE. In an autopsy series, coronary

atherosclerosis was observed in up to 40% of SLE patient

segments (24). The risk of clinical CVD in patients with SLE is

highly variable depending on the studies analyzed, and is around 2-

10 times higher than that in the general population, even after

adjusting for traditional cardiovascular risk factors (4). In another

study that included 4,863 people with SLE, the adjusted HR for MI

was 2.61 compared to controls without SLE (15). This risk increased

to 5.6 during the first years after diagnosis, probably due to the role

of the active inflammation. Furthermore, it is interesting to note

that premenopausal women with SLE are around 50 times more

likely to have a MI infarction than sex and age-matched controls

(25). Regarding racial and ethnic distribution, in a recent study

including 65,788 cases of SLE, there was a reduced risk of MI

among Hispanics and Asians compared to Caucasian patients with

SLE (HR: 0.61 and HR: 0.57, respectively) (26), similarly to what is

observed in subjects without SLE.

Poorer outcomes are also observed in the evolution of long-

term ischemic heart disease, including mortality. Thus, although

post-infarction in-hospital results regarding the need for

revascularization (both percutaneous and surgical) do not

differ between patients with SLE and controls (27, 28), a

significant difference has been observed in long-term out-of-
FIGURE 2

Cardiovascular manifestations in SLE. Coronary computed tomography image showing a severe stenotic lesion in the proximal segment of the
left anterior descending coronary artery (white arrow) in a SLE patient.
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hospital results. Accordingly, patients with SLE are more likely

to experience a new MI or to need a second percutaneous

intervention in the year following the initial event (29). The

mortality rate is also affected, since SLE patients with MI are at

least 2.6 times more likely to die than non-SLE patients with the

same coronary event (30).
Traditional and non-traditional risk
factors of CVD in SLE

Metabolic syndrome is the result of a combination of central

obesity, insulin resistance, dyslipidemia and hypertension. The

prevalence rates rank from 15.8% to 32.4% vs 4.2% to 10.9%, in

SLE patients when compared to age-matched healthy donors (31,

32). In SLE patients the presence of metabolic syndrome has been

associated with the following factors: increasing age, racial/ethnic

ancestry (mainly Hispanic or Black African), disease-related

characteristics such as baseline renal disease, Systemic Lupus

International Collaborative Clinics damage index (SDI) >1, higher

disease activity, coronary atherosclerosis, arterial stiffness and

inflammatory biomarkers (3). Increased BMI was significantly

associated with subclinical atherosclerosis in SLE populations

(33). Insulin resistance also occurs more often in SLE patients,

associated with higher BMI, SDI, hypertension and corticosteroid

prescription (34).

Arterial hypertension is a recognized risk factor for CVD

(35), and is present in 33-74% of SLE patients (36, 37) and is a

recognized risk factor for CVD development in SLE patients

(35). A longitudinal study investigated the determinants of

atherosclerosis progression in 187 SLE patients, detecting age

and hypertension as being independent factors associated with

the progression of carotid intima-medial thickness (IMT) and

plaque formation (38). Renal disease, insulin levels and SLE

disease activity index (SLEDAI) have also been reported as

independent predictors of hypertension in SLE (36). The

night-time blood pressure patterns (steady, non-dipping

hypertension or nocturnal hypertension/reverse dipping) in

women with SLE were assessed in a subsequent study,

showing that these patterns were more frequent in SLE and

independently associated with increased carotid-femoral pulse

wave velocity (37).

High levels of total cholesterol and low-density lipoprotein

(LDL), combined with low levels of high-density lipoprotein (HDL),

are associated with increased risk for CVD in SLE (3, 8).

Dyslipidemia in SLE patients range from 36% to more than 60%

within a three year of follow up (38). The classical pattern found in

these patients is characterized by increased levels of very-low-

density lipoproteins (VLDL), triglycerides and low levels of HDL,

which can be worsened by disease activity (39). Besides, SLE

patients have frequently increased levels of atherogenic small

dense LDL particles (40). Similarly, circulating lipoprotein
Frontiers in Immunology 04
remnant particles and the intermediate density lipoprotein (IDL)

fraction have also been strongly associated with IMT in SLE

patients, while small HDL particles have been associated with

activation of the complement system, linked with higher IMT

values (41). A proinflammatory HDL subtype (piHDL), is also

detected in a high proportion of patients with SLE, and is associated

with carotid artery plaque and clinical CVD (3). Finally, in SLE

patients, there are higher highlipoprotein(a) [Lp(a)] levels

compared to subjects of the same sex and age, and these

increased Lp(a) values are independent predictors of

atherosclerosis (42, 43).

Smoking has been associated with CVD, cerebrovascular and

peripheral vascular events in SLE (44), being identified as a risk

factor for progression of coronary artery calcification,

independent of gender, age, or ancestry (38).

Hyperhomocysteinemia is found in 11-81% of SLE patients

versus 0.8-20% in healthy controls, showing an association with

subsequent development of CAD, thrombotic effects and

markers of subclinical atherosclerosis (45).

Diverse factors such as high anti-phospholipids (APL)

autoantibody titers, impaired renal function, low leukocyte cell

count, lymphopenia and renal disease have been associated with

carotid IMT and arterial stiffness (46, 47). The formation of the

carotid plaques may happen twice as frequently in SLE patients

with lupus nephritis (LN) compared to age-matched non-

nephritis SLE patients and healthy controls, mainly in

hypertension patients (46). Disease duration, high SDI

chronicity scores and disease activity were identified as

important factors for CVD development in SLE (47, 48).

Duration of the disease has also been independently associated

with coronary artery calcification and carotid plaque formation

and progression. In addition, the SDI score was found to be

independently associated with clinical CVD, increased IMT,

carotid plaque formation, and arterial stiffness (3, 49).
Cytokines and CVD in SLE

New knowledge on the complex pathways linking core

abnormalities in the innate and adaptative branches of the

immune response and endothelial cell (EC) function has

broadened our comprehension of the accelerated vascular

damage occurring in SLE (Figure 1). Cytokines are important

modulators of smooth muscular cell activity and death, cell

proliferation and monocyte/macrophage localization, mediating

plaque growth and generation of the fibrous cap. Moreover,

cytokines can determine the stability of the atheromatous plaque

(50). Cytokines participating in inflammatory processes can

have a role in the early presentation of atherosclerosis in SLE,

but also the inflammatory response induced by cytokines in EC

and macrophages are important (Figure 3).

The main cytokine positively correlated with CVD in SLE is

type I interferon (IFN-I, mainly IFNa and IFNb). It dysregulates
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neutrophil function, and induces changes in cell metabolites that

are emerging as important regulators of systemic immune

dysfunction and as strong risk factors for premature CVD in

SLE. Accumulative evidences have widened the role of IFN-I in

disease, from antivirus defense to autoimmune responses and

immuno-metabolic syndromes. The significant pathogenetic

role of IFN-I in several systemic autoimmune diseases

including SLE is now well recognized. Elevated circulating

IFN-I level is associated with CVD in patients with different

interferonopathies. Additionally, experimental data have

attested that IFN-I affects plaque-residing macrophages,

potentiating foam cell and extracellular trap formation,

inducing endothelial dysfunction, and altering the

functionality of dendritic cells (DC) and T and B lymphocytes.

All these immune-pathological mechanisms lead to exacerbated

atherosclerosis outcomes and insulin resistance (51, 52). Recent

studies have also discovered a relationship between skewed IFN-

I responses and metabolic disorders. IFN-I responses to self-

nucleic acid-driven Toll-like receptor (TLR) activation in

plasmacytoid dendritic cells (pDC) is the key initiating event

shared by autoimmune and metabolic diseases (53).

Interestingly, activation of IFN signature has also been

described in platelets of SLE patients with a history of CVD,

suggesting that the presence of platelets with IFN-I signature

could be a novel marker for CVD in SLE (54).

It has been reported that the elevated levels of IFN-I associated

with SLE alter the balance between vascular damage and repair, thus

promoting CVD phenotype (55). Accordingly, an elevated serum

IFN-I activity was associated with decreased endothelial function

and severity of coronary calcification in SLE patients, even after

correction for traditional CVD risk factors (56). IFN-I promotes

early atherosclerosis in SLE, inducing an abnormal phenotype and

function of endothelial progenitor cells (EPC) and circulating

angiogenic cells (CAC), which are crucial for vessel repair after a
Frontiers in Immunology 05
vascular damage. IFNa induces the apoptosis of EPC and CAC and

polarizes myeloid cells towards a non-angiogenic phenotype.

Strikingly, neutralization of IFN-I pathway restored a normal

EPC/CAC phenotype (57). The detrimental effects of IFN-I on

vasculogenesis in SLE could also be mediated by repression of

vascular repair mediated by the IL-1 pathway. IFNa represses

mediators such as IL-1a IL-1b, IL-1R1, and VEGF, and

upregulates IL-1RA and the decoy receptor IL-1R2. Of note, IL-

1b promotes significant improvement in the functional capacity of

lupus EPC/CAC (58). The urinary levels of vascular endothelial

growth factor (VEGF) have been evaluated as a biomarker of LN. Its

role in fibrosing diseases is clear and VEGF inhibition has been used

as a therapeutic tool (59). VEGF plasma levels have been also

associated with disease activity, higher mean carotid IMT, and

could be a novel cardiovascular risk factor in premature coronary

atherosclerosis in SLE (60, 61). However, serum IL-18, which is also

processed by the inflammasome as the IL-1 familiy is elevated in

SLE patients and correlates with EPC/CAC dysfunction. Exogenous

IL-18 inhibits endothelial differentiation in EPC/CAC, supporting a

negative effect of IL-18 on vascular repair in vivo (62). Thus, the

effects of IFN-I are complex and can contribute to an elevated risk

of CVD through diverse mechanisms. Interestingly, treatment of

SLE patients with anifrolumab (bloking IFN-I receptor)

significantly reduced NETosis and TNFa levels, improving also

cardiovascular profiles (63)

Other cytokines have been reported as biomarkers associated

with CVD in SLE, while with a lower level of evidence. Among

them, fibroblast growth factor 21 (FGF21) and epidermal growth

factor receptor (EGFR), which binds multiple EGF ligands, have

multiple functions that modulate vascular smooth muscle cells,

cardiomyocytes, cardiac fibroblasts, EC, adipocytes, and

immune cells (64). However, a recent study found no

significant differences in EGF levels in SLE patients with CVD

or showing atheromatous plaques (65). FGF21, a liver-secreted
FIGURE 3

Main cytokine-based biomarkers of CVD in SLE patients.
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protein, plays a crucial role in glucose homeostasis and lipid

metabolism. FGF21 has been reported to attenuate the

progression of atherosclerosis, but its impact on endothelial

progenitor cells under high oxidative stress is not clear, and no

evidence exits about the changes of levels of this cytokine in SLE.

Anyhow, FGF21 could be a promising biomarker, since its

reduction could be associated with low levels of these

progenitor cells in SLE (66).

M-CSF is an important cytokine for the differentiation and

phenotype of monocytes and macrophages, and is a marker of

M2 macrophages. M-CSF can be produced by activated

macrophages, lymphocytes and mesenchymal cells (66, 67),

and is one of the strongest risk factors for adverse outcomes

and an indicator of acute coronary syndrome in patients with

stable angina. M-CSF levels were significantly elevated in

patients with ACS compared with patients with stable angina,

probably due to smooth muscle cell loss caused by the activation

of metalloproteinases in the plaque. SerumM-CSF levels 6 weeks

after discharge in patients with severe unstable angina were

associated with of cardiac events during a 2-year follow-up (68).

Recently M-CSF has been evaluated as a biomarker of disease

activity and renal involvement in SLE, with the higher levels

being predominantly derived from monocytes. These data

highlight the potential value of M-CSF as biomarker in the

clinical management of SLE patients (67), although it is not clear

yet if in SLE patients with isolated atherosclerosis, the levels of

M-CSF are a reliable biomarker of adverse outcomes in

cardiovascular events.

Several evidences of the implication of pro-inflammatory

cytokines in CVD have been also reported (69), sometimes with

contradictory outcomes. For instance, high serum IL-6

concentration was described as an atherosclerotic risk marker

in several cohorts (70, 71), but not in others (7, 72). High plasma

TWEAK levels were strongly associated with plaque in SLE

women with higher odd ratios than piHLD (73). It is noteworthy

that TWEAK has also been described as a biomarker of LN (74).

A positive correlation between serum TNFa and cardiovascular

risk in children with SLE has been described (75). TNFa and

BAFF were also associated with CVD in adults with SLE (76). Of

note, high BAFF was associated with subclinical atherosclerosis,

and it has been suggested that the anti-BAFF biologics

belimumab could induce IMT decrease in SLE patients with

mid-low body mass index (BMI). Moreover, the use of TNF-

targeting drugs is associated with a reduction of MI and

cardiovascular events in rheumatoid arthritis patients (77).

Accordingly, the positive correlation between BAFF and

internal carotid artery thickness was lost in SLE patients with

high BMI (78). Finally, an IL19 risk allele has been associated

with stroke/MI in SLE and rheumatoid arthritis. The risk allele

affects the binding of transcription factors to the locus, and the

expression of the IL-10 protein, coded in the same locus.

Moreover, IL19 risk allele was associated with higher APL

titers in SLE patients (79).
Frontiers in Immunology 06
Autoantibodies

The accelerated atherosclerosis evolution observed in SLE

patients is characterized by an endothelial involvement inducing

the development and progression of atheromatous plaques,

stimulation and activation of EC and recruitment of neutrophils

in the areas affected (80). This results from the activity of the

innate and acquired immune responses, as well as the presence of

autoantibodies and immune complexes (see Table 1; Figure 1).

One of the hallmarks of SLE is the production of autoantibodies to

several autoantigens. Among them, APL (anticardiolipin (CL),

anti-b2-glycoprotein 1 (anti-b2GP1) and lupus anticoagulant)

have been extensively studied, with different reports detecting

them in 20-30% of patients with SLE. They have been associated

with a higher risk of atherosclerosis and cardiovascular events in

SLE patients in a cohort of more than 600 individuals (81), as well

as in the general population (81–83). APL may exert such effects

through different potential mechanisms; for example, high

expression of b2GP1 in monocytes has been reported in SLE

and antiphospholipid syndrome, and proliferative responses to it

correlate with the internal carotid artery thickness and with a

history of arterial thrombosis (84). Furthermore, anti-b2GP1
induces the assembly of inflammasomes in the EC and the

release of endothelial vesicles enriched in mature IL-1b. These
cells have a distinct miRNA profile and cause EC activation. In

turn, EC-derived extracellular vesicles activate unstimulated EC

through a pathway dependent of TLR7 and ssRNA. The

alterations in miRNA content may contribute to the ability of

these endothelial vesicles from EC cells exposed to anti-b2GP1 to
activate unstimulated EC in an autocrine and paracrine manner

(85). Additionally, anti-b2GP1 can activate EC through TLR4

(86). Furthermore, anti-b2GP1 increase the expression of cell

adhesion molecules, including E-selectin, vascular cell adhesion

molecule-1 (VCAM-1) an intracellular adhesion molecule-1

(ICAM-1) and this could increase the attraction of monocytes

(87). Additionally, b2GP1forms stable and non-dissociable

complexes with oxidized LDL (oxLDL), and they are recognized

by IgG anti-b2GP1 autoantibodies, facilitating macrophage-

derived foam cell formation (88). In animal models, the oxLDL/

b2GP1/anti-b2GP1 complexes increase foam cell formation,

TLR4 expression, NF-kB activation, tissue factor expression, and

TNFa and MCP-1 secretion (89). b2GP1 expressed within the

subendothelial regions and intima-medial borders of

atherosclerotic plaques causes specific T-cells reactivity, with a

role in fatty streak formation (90). Finally, as b2GP1 inhibits von
Willebrand factor activity, and thus anti-b2GPI would induce

thrombosis (91).

Anti-dsDNA antibodies are associated with aberrant activation

of innate immune cells in particular monocytes and neutrophils.

They induce NETosis in neutrophils, apoptosis in monocytes, and

modulate inflammation, thrombosis-related molecules and EC

activation (92). Oxidant-generating enzymes, generated by

NETosis, would oxidize HDL, modifying it to a proatherogenic
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lipoprotein (93). Patiño-Trives et al. evaluated 85 patients with SLE,

finding that the presence of anti-dsDNA antibodies are associated

with endothelial dysfunction, proatherogenic dyslipidemia and

accelerated atherosclerosis. The authors suggested an alteration of

key molecular processes that drive a distinctive and coordinated

immune and vascular activation, driving an increase in

cardiovascular risk (92).

Anti-EC antibodies (AECA) is a group of antibodies directed

against EC proteins. The prevalence of AECA in patients with

SLE ranges between 15 and 88% (94). These immune complexes

have been associated in SLE patients with vasculitis, inducing the

release of proinflammatory factors and adhesion molecules

through the activation of NF-kB. This leads to the release of

E-selectin, ICAM-1, VCAM-1, cytokines (IL-1, IL-6, IL-8) and

chemokines (MCP-1) (95).

IgG autoantibodies against HDL and apoliprotein A-I (ApoA-I)

are increased in SLE patients in a study including 77 SLE patients

and paired controls, showing that the presence of IgG anti-HDL

and Apo A-I produced destabilization of the atheromatous plaque

(96). Similar results were reported in other cohorts (97). A dual

effect of HDL has been described: it can be anti-inflammatory in

basal state and pro-inflammatory (piHDL) in states of acute phase

response in a study comparing 154 SLE, 48 rheumatoid arthritis and

72 controls (98). The protective effect of HDL depends largely on

the content of apoA-I that mediates the union with macrophages.

ApoA-I can become immunogenic, inducing antibodies that

modify myeloperoxidase in neutrophils, leading to a

destabilization of atheromatous plaques (99). These antibodies

would be generated due to the protein misfolding stimulated by

the oxidative microenvironment. The misfolded and oxidized

ApoA-I is likely to be more immunogenic, leading to higher titers

of anti-ApoA-I and probably anti-HDL (100). These antibodies

correlate with a lower paraoxonase activity (96), which is associated

with subclinical atherosclerosis (101). Furthermore, anti-HDL and

anti-ApoA-I could cross-react with anti-CL, which in turn cross-

reacts to HDL and less frequently with ApoA-I. The frequency of

these antibodies in patients with SLE and APS fluctuates between
Frontiers in Immunology 07
7.7% and 32.5% (102). O’Neill et al. described the association of

these antibodies with SLE activity, and this may support the

accelerated development of atheromatous plaques in patients with

inflammatory disease, such as SLE, during active clinical activity

(103). Oxidized LDL (oxLDL) has chemotactic, immune-

stimulating properties and the ability to be taken up by

macrophages in atheromatous plaques, inducing their

differentiation to foam cells (104). Interestingly, anti-oxLDL has

been reported in more than 50% of SLE patients (105). Lopez et al.

found that patients with SLE with increased carotid IMT (n=30)

had elevated levels of IgG-oxLDL/b2GP1 immune complexes (106).

IgG anti-oxLDL is associated with atherosclerosis, but IgM anti-

oxLDL seems to be protective (107). Antibodies against the oxidized

fraction of Lp(a) have been found in patients with SLE and

antiphospholipid syndrome, and could be a way of producing

atherosclerosis (108), although more clinical and in vitro studies

must be carried out to determine their predictive value.

IgM anti-phosphorylcholine has a cardio-protective

mechanism in the general population, and also in SLE patients.

The effect of IgM anti-phosphorylcholine seems to be mediated by

its effect on the reduction of pro-inflammatory and pro-atherogenic

T lymphocytes, and the increase of Tregs, keeping dendritic cells in

an immature stage, potentially tolerogenic (109, 110). These

antibodies seem to be involved in the clearance of apoptotic cells,

and their decreased levels could be related to a higher burden of

apoptotic cells or an immune dysfunction, leading to a decreased

production of protective antibodies in SLE patients (111). High

triglyceride and low HDL are associated with a low IgM anti-

phosphorylcholine level (109). Furthermore, low levels of IgM anti-

phosphorylcholine and IgM anti-malondialdehyde have been

associated with plaque occurrence in SLE (112, 113).
Immune cells

Recent discoveries about the role of innate and adaptive

immune cells in SLE immunopathology and mechanisms cross-
TABLE 1 Mechanism of action of autoantibodies in SLE-associated CVD.

Autoantibody specificity Endothelial action Atherosclerotic/atherogenic action

Antiphospholipid ⇑ ⇑

Anti-dsDNA ⇑ ⇑

AECA(1) ⇑

Anti-HDL ⇑

Anti ApoA-I ⇑

IgG anti-oxLDL ⇑

IgM anti-OxLDL ⇓

Anti Lp(a) ⇑

IgM anti-phosphorylcholine ⇓

IgM anti-malondialdehyde ⇓
(1)AECA, anti-endothelial cell antibodies; arrow up: favours, arrow down: negative regulation.
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targeting EC has greatly contributed to our understanding of the

abnormalities leading to CVD in SLE patients. Increased

proportions of pro-atherogenic CD16+ monocytes, low-density

granulocytes (LDG), Th17 cells and senescent CD4+CD28null

lymphocyte subsets, along with reduced numbers of vascular

repairing endothelial progenitor cells (EPCs) and angiogenic T

cells, all contribute jointly to the development of atheromatosis

in SLE patients. This new knowledge may set the basis for the

development of novel cell biomarkers allowing earlier

identification and opportune preventive measures of CVD risk

associated to SLE (see Box 1).

The original report of an expanded population of LDG in

patients with SLE (127) increased our understanding of the role

of innate immune mechanisms in SLE. These cells were

increased in SLE patients (n=64), and independently of

Framingham scores they associated with vascular

inflammation and coronary disease (128). LDG show an

increased propensity to produce neutrophil extracellular traps

(NETs), a modality of cell death characterized by the extrusion

of modified chromatin and cellular anti-microbial proteins used

by granulocytes to fight infectious agents (129). Compared to

normal LDG, LDG of SLE patients have a strong pro-

inflammatory signature (128) and are less able to circulate in

the microvasculature (130), rendering them more likely to

adhere and damage EC (115). Incubation of HUVEC with

LDG-derived NETs from SLE patients in vitro induces

pronounced morphological changes suggestive of endothelial

damage, as compared to normal density granulocyte-derived

NETs from healthy controls. The functional relevance was

demonstrated in thoracic aorta rings, showing a more

prominent impairment of vasodilation when exposed to LDG-

derived NETs compared to normal density granulocyte-derived

NETs. In addition, MMP-9 metalloproteinase is activated and

externalized during NETosis which, in turn activates endothelial

MMP-2 (115).

Cholesterol microcrystals induce NETosis in the early stages

of vessel plaque formation, a process accelerated by pro-

inflammatory cytokines produced by TLR2- and TLR4-
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stimulated macrophages (129). In addition, some NETs

products, such as myeloperoxidase, can oxidize LDL and HDL,

generating pro-atherogenic compounds interfering with

cholesterol efflux from macrophages in the subintima of

arterial walls (93). In addition, several metalloproteinases are

activated and externalized during NETosis; endothelial MMP-2

is activated by MMP-9 present in NETs (115). Oxidized

mitochondrial components present in NETs are potent

inducers of IFN-I in pDC (131–133), by a mechanism

involving activation of the cyclic GMP-AMP synthase (c-

GAS)-stimulator of interferon genes (STING) pathway (131).

The STING pathway contributes to the IFN-I signature observed

in SLE (134, 135). During NETosis triggered by circulating

immune complexes in SLE patients there is a production of

mitochondrial reactive oxygen species (mito-ROS), dependent

on the action of the stress sensor IRE1a (136). Interestingly,

inhibition of IRE1 delays the progression of atherosclerosis in

the apolipoprotein E-deficient mice and intraperitoneal chronic

administration of STF-083010, an inhibitor of IRE1a reduced

aorta plaque lesions by 35% (136). NETs are also known to cause

vessel occlusion directly, particularly in patients with obesity or

cancer (129), a fact that should be kept in mind especially in

those SLE patients with a thrombophilic profile. In summary,

NETosis appears as an important mechanism linking SLE

immunopathogenesis with endothelial damage and CVD.

Monocytes are key players in the early formation of

atherosclerotic plaques (137). Activated EC secrete the chemokine

CCL2 and attract monocytes to the subendothelial space, where

they undergo a differentiation process to foam cells after

phagocytizing oxLDL. Through an epigenetic reprogramming,

oxLDL-trained monocytes can actively express genes coding for

pro-inflammatory proteins, such as TNFa, IL-6, CCL2, and CD36

(138). Total monocyte counts are increased in SLE patients showing

clinical and subclinical CVD, but not in patients free of CVD. In 109

patients with disease longer than two years and 31 with earlier

disease, total monocyte counts were increased compared to normal

controls and patients' monocytes showed a more differentiated

pattern, with a higher proportion of intermediate and non-
BOX 1 Candidate cellular biomarkers of cardiovascular risk in SLE patients.

• Detection and quantification of NETs by flow cytometry as a marker of enhanced endothelial damage in SLE (114).
• Measurement of MMP-9 and of MMP-9/anti- MMP-9 complexes in serum (115).
• Genomic microarrays to identify LDGs with increased potential for inducing endothelial damage in SLE patients (116).
• Proteomic analysis of LDG to test for citrullinated H3, a known marker of NETosis in sepsis and cancer (117), as well as other epigenetically modified

neutrophil components potentially exacerbating endothelial damage.
• Measurement of circulating EPC as a cell marker of subclinical atherosclerosis in SLE (118).
• Measurement of CD14dimCD16+ (non-classical monocytes) as cell marker related to IMT in SLE patients (119).
• Monocyte to HDL ratio (MHR) as a biomarker of systemic inflammation, subclinical cardiovascular risk, cardiovascular risk in chronic kidney disease (120–

122).
• CD8+ Tang cells as a biomarker of endothelial damage and lupus nephritis relapse (123, 124).
• CD8+Tang cells + anti-dsDNA as markers of endothelial damage (125).
• CD4+CD28- T cells as markers of immunosenescence, chronic inflammation and endothelial damage (126).
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classical monocytes, in direct correlation with higher IL-17 and

IFN-I serum levels (139). The inflammatory milieu usually present

in SLE patients may induce overactivation of monocytes, and their

migration to the intima-media vascular layer, contributing to

endothelial dysfunction (139). Monocytes produce intermediate

mediators such as ROS and pro-inflammatory cytokines such as

TNFa and IL-1b, building up endothelial damage through the

vicious cycle of inflammation and oxidative stress. An imbalance

within the monocyte subsets defined by their expression of CD14

and CD16, is of relevance in the CV risk of SLE patients. Classical,

quiescent, monocytes are strongly positive for CD14, the

lipopolysaccharide receptor, but do not express the Fcg receptor

III CD16. In contrast, monocytes co-expressing CD16 and CD14,

(intermediate monocytes), and CD14dimCD16+ (non-classical

monocytes) are proinflammatory and pro-atherogenic. They

associate with myocardial dysfunction and recovery following MI

in the general population, although their relationship to subclinical

atherosclerosis is less clearly defined (119). Non-classical

CD14lowCD16+ and intermediate CD14+CD16+ monocytes

represent almost 30% of all circulating monocytes and are more

differentiated. There are evidence showing a reduction in non-

classical monocytes in active SLE patients (140). Mikołajczyk et al,

assessed the relationships between the three monocyte

subpopulations and IMT in SLE patients. The percentage and

absolute numbers of CD14dimCD16+ or non-classical monocytes

positively correlated with IMT in a small cohort of SLE patients

(n=42) (119), while the other two subpopulations did not reach a

statistically significant difference with healthy controls. It is worth

noticing that another study showed augmented amounts of

intermediate CD14+CD16+ monocytes in SLE patients

independently of their CV status (139).

Given the pro-inflammatory activity of monocytes and the anti-

inflammatory effect of HDL, the monocyte/HDL ratio (MHR) has

been proposed as a biomarker of systemic inflammation (141) and

has been demonstrated to be a prognostic indicator of CV risk in

patients with chronic kidney disease (120). In addition, higher

MHR ratios were significantly and independently associated with

serum levels of high sensitive C-reactive protein and slow coronary

flow (142), and with the severity of CAD in patients with acute

coronary syndrome (143). In a cohort of 104 patients with SLE

Wang et al. demonstrated higher values of MHR in those patients

with carotid atherosclerotic plaques (0.32 ± 0.18 vs 0.26 ± 0.15; p =

0.015), as well as positive correlations of MHRwith the carotid IMT

(cIMT: r = 0.228; p = 0.001) in patients with SLE (122). Besides

MHR, the ratio of CD14-CD16- LDG/HDL (nLDR) can also be of

value as a biomarker to identify SLE patients with subclinical CVD

in the absence of traditional risk factors (139).

The preservation of endothelial integrity depends on the

recruitment of sufficient numbers of bone marrow-derived EPC

to the site of vascular injury. In addition, functional angiogenic

CD3+CD31+CXCR4+CD28+ (either CD4+ or CD8+) T cells

(Tang) cooperate with EPC in repairing damaged endothelium

(144, 145) through a paracrine effect mediated by the production
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of multiple proangiogenic cytokines, including VEGF, IL-8, and

MMPs. An inverse relationship of Tang cells with age and CVD

has been described (144), and they could be useful as new

immunological biomarkers for the assessment of CV risk.

There is contrasting evidence of the role of Tang cells in

patients with SLE, from increased proportions in patients with

LN (125), to reduced total numbers but increased percentage of

the senescent CD28- subset (126), and no differences with

healthy controls (125, 139). The presence of anti-dsDNA

autoantibodies may identify a subset of SLE patients associated

with increased Tang cells, endothelial damage and higher risk of

vasculopathy (125). It is possible that an early phenotypic

transition to a CD28- and cytotoxic phenotype may cancel the

pro-angiogenic properties of Tang cells and turn them

vasculotoxic in SLE patients (126, 139). On the other hand,

Th1/Th17 and senescent CD4+CD28- T cells cause direct

endothelial damage (139). The decreased number of pro-

angiogenic EPC and Tang cells found in SLE patients, even in

those without CVD, may compromise the repairing of vascular

damage caused by the combined effect of LDG, intermediate

monocytes, CD4+CD28- senescent and Th17 cells. Increased

serum VEGF and circulating Tang cells and EPC have been

described in patients with LN (124), supporting the hypothesis

that Tang cells may play a significant role in the repair of

damaged endothelium in SLE patients with renal involvement

(124). However, the expansion of an immunosenescent CD28-

Tang cell subset with pathogenic potential may also contribute

to the enhanced risk of CVD associated to SLE. Further studies

are required to clarify the function of CD4+, CD8+ and CD28-

Tang cell subsets, and the net result of their differential

expression in SLE patients.

The plasma of SLE patients has atherogenic properties by

promoting endothelium damage and accelerating the

development of atherosclerosis (146). Normally, the

cholesterol-rich VLDL is converted to LDL after undergoing

lipolysis in plasma. However, in SLE patients with anti-

lipoprotein lipase autoantibodies suppress its lipoprotein lipase

activity required to hydrolyze chylomicrons and triglycerides in

VLDL, leading to their accumulation in the plasma. In addition,

a small dense LDL subtype that undergoes oxidative stress by

reactive oxygen species (ROS) in the subendothelial space, is

elevated in SLE patients (147, 148), and is able to penetrate easily

through the vascular wall and promote atherogenesis (149).

Aggregation of immune complexes in blood vessels of SLE

patients promotes fixation of the early complement

component C1q, followed by upregulation of adhesion

molecules and increased monocyte and platelet adherence,

leading to endothelial damage (146). Subsequently, monocytes

uptake oxLDL and get transformed into foam cells, the building

blocks of the fatty streak in the blood vessel intima (146).

EPC generation is the primary endothelial health protection

mechanism, by maintaining angiogenesis and preserving the

endothelial integrity. IFN-I and other pro-inflammatory factors
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induce significant impairment in the capacity of EPC to

differentiate into mature EC and repair the vasculature. For

example, IFN-a down-regulates IL-1b and VEGF, and

upregulates IL-18 and its activator caspase-1; IL-1b promotes

the differentiation of EPC, whereas IL-18 inhibits the

differentiation of EPC. IL-10 inhibits EC differentiation further

aggravating the IFNa-mediated EPC dysfunction (150). A

reduction of circulating EPC associates with subclinical

atherosclerosis in 46 SLE patients. It also correlated with

hypertension, tobacco use, insulin resistance, and metabolic

syndrome, suggesting that their measurement in peripheral

blood could be useful as a biological marker of CVD risk in

SLE (118). It should be mentioned that the finding of low

proportions of EPC in lupus has not been universally

confirmed (149). It is possible that differences in the methods

of detection, quantification and identification of EPC and in

their correlation with clinical status and treatment protocols of

patients might explain these controversial findings.
Concluding remarks

Higher cardiovascular risk in SLE is a leading cause of death

among SLE patients. Classical immune modulatory treatments

can regulate atherosclerosis development, supporting a

relationship between CVD and chronic inflammation. To date,

no drug has proven a preventive activity on atherosclerosis. The

recent reports of clinical trials using anti-inflammatory agents

suggest that targeting specific inflammatory pathways is a

promising opportunity for the prevention and treatment of

CVD in SLE (151). Thus, the management of atherosclerosis

in SLE patients requires the monitoring of inflammatory activity

in addition to classical cardiovascular risk factors. Given the

central role of IFN-I in the induction of endothelial damage and

plaque formation, the arrival of new drugs addressing the IFN-I

pathway to the field of SLE treatment can potentially change

drastically the cardiovascular outcome of the patients in a near

future. The definition of precise pathogenic immune mediators

involved in CVD in SLE will be key in the development of CVD

biomarkers in a near future, allowing prevention and early

detection of cardiovascular events in SLE patients.
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Ana Marıá Blasini, Centro Nacional de Enfermedades
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Reumáticas (CREAR), Grupo Oroño, Rosario, Argentina. Rosana

Quintana, Centro Regional de Enfermedades Autoinmunes y
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142. Canpolat U, Çetin EH, Cetin S, Aydin S, Akboga MK, Yayla C, et al.
Association of monocyte-to-Hdl cholesterol ratio with slow coronary flow is linked
to systemic inflammation. Clin Appl Thromb Hemost (2016) 22(5):476–82.
doi: 10.1177/1076029615594002

143. Cetin MS, Ozcan Cetin EH, Kalender E, Aydin S, Topaloglu S, Kisacik HL,
et al. Monocyte to hdl cholesterol ratio predicts coronary artery disease severity and
future major cardiovascular adverse events in acute coronary syndrome. Heart
Lung Circ (2016) 25(11):1077–86. doi: 10.1016/j.hlc.2016.02.023

144. Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH, et al. Identification
of a novel role of T cells in postnatal vasculogenesis: Characterization of endothelial
progenitor cell colonies. Circulation (2007) 116(15):1671–82. doi: 10.1161/
CIRCULATIONAHA.107.694778
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