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A cellular senescence-related
classifier based on a
tumorigenesis- and immune
infiltration-guided strategy can
predict prognosis,
immunotherapy response, and
candidate drugs in
hepatocellular carcinoma

Yi Luo1†, Hao Liu2†, Hong Fu1, Guo-Shan Ding1* and Fei Teng1*

1Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical
University, Shanghai, China, 2Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong
University, School of Medicine, Shanghai, China
Background: Cellular senescence plays an irreplaceable role in tumorigenesis,

progression, and tumor microenvironment (TME) remodeling. However, to

date, there is limited research delineating the landscape of cellular senescence

in hepatocellular carcinoma (HCC), and an improved understanding on the

interaction of tumor-associated cellular senescence with HCC prognosis, TME,

and response to immunotherapy is warrant.

Methods: Tumorigenic and immune infiltration-associated senescence genes

were determined by weighted gene co-expression network analysis (WGCNA)

and the Estimation of STromal and Immune cells in MAlignant Tumor tissues

using Expression data (ESTIMATE) algorithm, and subsequently, a prognostic

scoring model (named TIS) was constructed using multiple survival analysis

algorithms to classify the senescence-related subtypes of HCC. Gene set

enrichment analysis (GSEA) and gene set variation analysis (GSVA) were

conducted to identify the distinct hallmark pathways between high- and

low-risk subtypes. Additionally, we carried out correlation analyses for TIS

and clinical traits, senescence-associated secretory phenotype (SASP), immune

infiltration and evasion, immune checkpoint factors, drug response, and

immunotherapeutic efficacy. External experimental validation was conducted

to delineate the association of CPEP3 (a TIS gene) with HCC phenotypes

through assays of proliferation, colony formation, and invasion.

Results: A five-gene TIS, composed of NET1, ATP6V0B, MMP1, GTDC1, and

CPEB3, was constructed and validated using TCGA and ICGC datasets,

respectively, and showed a highly robust and plausible signature for overall

survival (OS) prediction of HCC in both training and validation cohorts. Patients
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in the TIS-high group were accompanied by worse OS, activation of

carcinogenetic pathways, infiltration of immunosuppressive cells, exclusion

of effector killing cells, overexpression of immunomodulatory genes and SASP,

and unsatisfied response to immunotherapy. In response to anticancer drugs,

patients in the TIS-high group exhibited enhanced susceptibility to several

conventional chemotherapeutic agents (5-fluorouracil, docetaxel,

doxorubicin, gemcitabine, and etoposide), as well as several inhibitors of

pathways involved in cellular senescence (cell-cycle inhibitors, bromodomain

and extraterminal domain family (BET) inhibitors, PI3K-AKT pathway inhibitors,

and multikinase inhibitors). Additionally, four putative drugs (palbociclib, JAK3

inhibitor VI, floxuridine, and lestaurtinib) were identified as potential

compounds for patients in the TIS-high group. Notably, in vitro functional

validation showed that CPEB3 knockdown boosted the phenotypes of

proliferation, clonogenicity, and invasion in HCC cells, whereas CPEB3

overexpression attenuated these phenotypes.

Conclusions: Our study provides comprehensive clues demonstrating the role

of novel TIS in predicting HCC prognosis, immunotherapeutic response, and

candidate drugs. This work highlights the significance of tumorigenesis- and

immune infiltration-related cellular senescence in cancer therapy.
KEYWORDS

cellular senescence, hepatocellular carcinoma, tumor microenvironment,
prognosis, immunotherapy
Introduction

Hepatocellular carcinoma (HCC) is a major contributor to

the worldwide health burden with high morbidity and mortality.

According to the most recent cancer statistics, 905,677 new HCC

cases were diagnosed in 2020, and over half of the patients were

older than 60 years (1, 2). Despite the increasingly expanded

indications for surgical and locoregional therapies, an estimate

of 50%–60% HCC patients ultimately required systemic

treatments (3). Currently, immunotherapy has emerged as the

mainstay therapeutic paradigm for advanced-stage HCC whose

efficacy is largely determined by the tumor microenvironment

(TME), and regrettably, only a small proportion of patients

presented clinical benefit (3). Therefore, it is imperative to

identify novel classifiers or therapeutic biomarkers to delineate

the immuno-oncology landscape and predict the benefit

stratification of immunotherapy.

Cellular senescence refers to a physiological status of cell cycle

arrest in response to endogenous and exogenous stress,

characterized by persistently ceased proliferation but retained

metabolic activity (4). Accumulative evidence has indicated that

cellular senescence governs a vital role in aged-associated chronic

liver diseases and even cancer through inducing a senescence-

associated secretory phenotype (SASP) (5–7). Senescent cells can
02
perform predominant SASP-mediated double-edged effects on

neighboring cells and microenvironment remodeling to play both

pro-tumorigenic and antitumorigenic functions, mainly depending

on the physiological context of the microenvironment (8). At the

early tumorigenic stages, cellular senescence functions as a tumor

suppressor via immune activation and TME remodeling. However,

when senescent cells are not eliminated by activated immune cells

and accumulate at advanced phases, the special SASP of

maladaptive senescence would enhance tumorigenic properties

through epithelial-to-mesenchymal transition (EMT),

angiogenesis, and extracellular matrix degrading signal, which

activate immunosuppression, boost cell proliferation, drive tumor

vascularization, and favor tumor progression (4, 9). In addition to

tumorigenic senescent neighboring cells, tumor cells also acquire

senescence as a malignant phenotype in response to the temporal

cascade in the accumulation of SASP (9, 10). Consequently, cellular

senescence is now under investigation as a therapeutic target of

interest as specified via elimination of accumulated detrimental

senescence and induction of acute cellular senescence. However, to

date, there is limited research delineating the landscape of cellular

senescence in HCC, and an improved understanding of the

interaction of tumor-associated cellular-senescence with TME,

prognosis, and response to immunotherapy is required in the

HCC setting.
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In the present study, we firstly identified tumor-associated

cellular senescence genes based on weighted gene co-expression

network analysis (WGCNA). Subsequently, we further filtered

immune-associated senescent genes and established an

innovative risk model for prognostic prediction of HCC. On

the basis of the risk model, we next focused on the analysis of the

landscapes of risk subgroups with tumor stages, immune

infiltration and evasion, immunotherapy response, and

potential therapeutic drugs.

Finally, we conducted experimental verification to delineate

the senescence-oncology role of CPEB3 (one of the model

genes). Our study provided novel insights into the substantial

immune-oncology properties of cellular senescence in TME

remodeling and for immunotherapy prediction for

HCC patients.
Materials and methods

Data acquisition and processing

Due to no definite composition about tumor-associated

senescence genes in light of the current studies, an expanded

exploration was determined to identify tumor-associated

senescence genes based on high-quality databases and

published literatures, including integrating subsets from

HAGR (https://genomics.senescence.info/genes/index.html)

(11), SenMayo gene set (https://www.biorxiv.org/content/10.

1101/2021.12.10.472095v1), and MSigDB (http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp) (12).

Transcriptomic and clinical data of HCC patients were

extracted from The Cancer Genome Atlas (TCGA, http://

cancergenome.nih.gov) and International Cancer Genome

Consortium (ICGC, https://dcc.icgc.org/releases/current/

Projects/LIRI-JP). For TCGA dataset, normalized transcripts

with log-transformed transcripts per million (TPM) were

employed for downstream analyses, and a total of 343 HCC

patients with censored survival time >30 days were enrolled as a

training cohort for model establishment (13). Similarly, a total of

231 patients with complete survival time and status from the

ICGC-LIRI-JP dataset were employed as the validation cohort,

in which transcriptomic data were normalized in the form of

log2(TPM+1).

An immune checkpoint blockade (ICB) dataset containing

anti-CTLA4, anti-PD1, and anti-PDL1 cohorts was derived from

Cancer Research Institute (CRI) iAtlas (https://isb-cgc.

shinyapps.io/iatlas/), in which log2(normalized count+1) was

used for data normalization. Patients in this study were derived

from 12 integrated independent cohorts across skin cutaneous

melanoma (SKCM), kidney renal clear cell carcinoma (KIRC),

bladder urothelial carcinoma (BLCA), stomach adenocarcinoma

(STAD), glioblastoma multiforme (GBM), and head and neck

squamous cell carcinoma (HNSC), and a total of 871 patients
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with complete survival time and status were included in our

study (14–25). The flow diagram of this study is depicted

in Figure 1.
Identification of tumorigenic and
immune infiltration-associated
senescence genes by WGCNA and
ESTIMATE algorithms

Following gene filtering with expression values >0 in at least

one quarter of TCGA samples, a total of 1,889 senescence genes

(Supplementary Table S1) were enrolled to performWGCNA. R

package “WGCNA” was employed to construct the weighted

adjacency matrix and the topological overlap matrix (TOM) to

determine the correlation among senescence genes. Stringent

criteria were adopted to excavate the interconnected modules

with a minimal module size of 30, split depth of 3, and merged

threshold of 0.25. The module–phenotype relationship was

calculated to identify the gene sets most relevant to the tumor

phenotype, and selected senescence genes were extracted for

subsequent analysis.

It was documented that the tumor-immune microenvironment

could directly impact cellular senescence’s pro-tumorigenic or

antitumorigenic tendency, as well as therapy response (26).

Therefore, immune infiltration-related cellular senescence genes

were emphatically concerned in this study. Estimation of STromal

and Immune cells in MAlignant Tumor tissues using Expression

data (ESTIMATE) was utilized to evaluated the immune cell

infiltration level quantified by immune score. The correlation

between immune score and tumorigenic senescence genes was

calculated, and genes were considered when P < 0.001.
Construction and validation of the
tumorigenic and immune infiltration-
associated senescence signature

The aforementioned senescent genes were computed with

univariate Cox regression and Kaplan–Meier (KM) analyses with

overall survival (OS) as the censored endpoints, employing R

package “survival” and “survminer”. Subsequently, the

intersections of prognostic genes were calculated by Least

Absolute Shrinkage and Selection Operator (LASSO) Cox

regression analysis using package “glmnet”, and lambda.min was

determined to pick up the preliminary hub genes following 10-fold

cross validation and a 1,000-times repeat (27). Final hub senescence

genes of tumorigenic and immune infiltration-associated

senescence signature (TIS) were subjected to forward stepwise

Cox regression to further narrow and simplify variables. An

individual risk score was generated on the basis of hub gene

expression and corresponding regression coefficients. In light of

the median risk score computed by TIS, patients in the training and
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validation cohorts were dichotomized into high- and low-risk

groups. A visual differential expression of the five signature genes

between tumor and para-cancerous tissues as well as between high-

and low-risk groups was modeled utilizing TCGA RNA-sequencing

dataset. Moreover, corresponding KM curves were drawn to
Frontiers in Immunology 04
delineate the prognostic landscape of signature genes, with OS

parameter as the censored endpoint. The performance of TIS was

subsequently explicitly evaluated by receiver operating characteristic

(ROC) and calibration analyses in both training and validation

cohorts, using R packages “timeROC” and “rms”, respectively.
FIGURE 1

Flowchart of the overall study design.
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Additionally, the differential distribution of clinical characteristics,

covering age, gender, clinicopathological grade, TNM stage, and

survival status, between the TIS-high and TIS-low groups was

separately deciphered and visualized in TCGA and ICGC datasets.
Construction of a TIS-integrated
nomogram

Univariate and multivariate Cox analyses were utilized to

identify the independent predictive and prognostic potential of

TIS in HCC, and forest plots were employed for visualization

with R package “forestplot”. Subsequently, a quantitative TIS

and TNM stage integrated nomogram was generated to compute

individualized risk for HCC patients. Calibration plot, the area

under the ROC curve (AUC), and decision curve analysis (DCA)

were utilized to determine the TIS performance with “rms”,

“timeROC”, and “ggDCA” packages, respectively. Furthermore,

the KM diagram of the TIS-integrated nomogram was delineated

in TCGA dataset, when OS, disease-special survival (DSS),

progression-free interval (PFI), and disease-free interval (DFI)

were employed as the censored endpoints.
Pathway enrichment analysis with gene
set enrichment analysis and gene set
variation analysis

In the current study, gene set enrichment analysis (GSEA)

was implemented to decipher the underlying mechanism of TIS

with regard to the 50 hallmark pathways (v7.5.1) deposited in

the molecular signature database, whose result was computed

with the “clusterProfiler” package and was visualized with the

“enrichplot” package (28, 29).

The gene set variation analysis (GSVA) enrichment score of

the above 50 oncogenic pathways for each patient was

determined using the “GSVA” package (30). Subsequently, KM

diagrams were operated to determine the prognostic pattern of

the top overlapping oncogenic pathways of GSVA and GSEA.
The association of TIS with immune
infiltration and immunomodulatory
genes

Single-sample gene set enrichment analysis (ssGSEA) could

determine the relative infiltration of 28 immune cell types and

two stromal components (fibroblasts and endothelial cells) based

on immune deconvolution analyses with special feature gene

panels for each immune and stromal cell subset, and the relative

abundance of each cell type of each tumor sample was

represented by an enrichment score which can be used for

subsequent analyses (31). In the present research study, we
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introduced ssGSEA to quantify the abundance of 28 immune

cells for each TCGA sample between TIS-high and TIS-low

groups (32). Beyond this, key immune characteristics (33),

including leukocyte fraction, loss of heterozygosity (LOH),

homologous recombination deficiency (HRD), and intratumor

heterogeneity (ITH), were downloaded from https://gdc.cancer.

gov/about-data/publications/panimmune and were compared

between the TIS-high and TIS-low groups. The scores of

myeloid-derived suppressor cell (MDSC) and cytotoxic T

lymphocyte (CTL) exclusion were downloaded from Tumor

Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.

harvard.edu/) (34). Heatmap, chordal graph, and boxplots

were implemented to delineate the correlation of TIS with

immune checkpoint genes and 50 immunomodulatory genes.
Prediction of immunotherapeutic
response

Immunophenoscore (IPS), which has been documented with

favorable predictive power to ICB response, was downloaded

from The Cancer Immunome Atlas (https://tcia.at), with a

higher score referring to a higher response to ICB (32).

Subsequently, the differential distribution between the TIS-

high and TIS-low groups was visualized with violin plots. To

verify the response-efficacy prediction of TIS in real-world data,

an immunotherapeutic dataset of solid tumors was also

dichotomized into the TIS-high and TIS-low groups according

to the corresponding regression coefficients of the TIS model.

Four response-efficacy indices of immunotherapy, namely,

progressive disease (PD), stable disease (SD), partial response

(PR), and complete response (CR), were employed to evaluate

the predictive power. A KM plot was described to decipher the

prognostic pattern of the TIS-high and TIS-low group in the

real-world cohort. Box and bar plots were performed to identify

the differential distribution of risk score and response-efficacy

indices between the TIS-high and TIS-low groups.
Prediction of antitumor drug sensitivity
and potential candidate compounds

Drug response information, measured with AUC across

various cancer cells, of 212 drugs for HCC was obtained from

the Cancer Genome Project (CGP) via R package “pRRophetic”

(35). Normalized half-maximal inhibitory concentrations (IC50)

of each TCGA sample were quantified. A Boxplot was carried

out to capture the differential drug sensitivity between the TIS-

high and TIS-low groups.

In order to figure out the putative drug for TIS-high patients,

we performed chemotherapeutics forecast via the “query”

module of the connectivity map (CMap, https://clue.io/query)

(36). Following uploading of the upregulated and downregulated
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genes between the TIS-high and TIS-low groups, permuted

results were obtained, and subsequently, the 2D and 3D drug

structures of the top four potential compounds were further

visualized via the PubChem website (https://pubchem.ncbi.nlm.

nih.gov/).
Cell culture and lentivirus transfection

Human-derived hepatoma cells (Hep3B, SNU-182, SNU-

387, Huh-7, SKHEP1), human embryonic kidney-293T cells

(HEK-293T), and human immortalized hepatocytes (L02) were

obtained from the National Key Laboratory of Medical

Immunology and Institute of Immunology, Navy Medical

University. Except SNU-182 and SNU-387 which were

cultured in Roswell Park Memorial Institute 1640 (RPMI-

1640, Gibco, 11875093), all cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco,

11095092) supplemented with 10% fetal bovine serum (Gibco,

10099141), 100 IU/ml penicillin, and 100 µg/ml streptomycin.

Lentivirus carrying full-length CPEB3 mRNA (NM014912)

followed by 1 × 3′-FLAG tag, short hairpin RNA (shRNA)

sequences against CPEB3, and corresponding negative control

(NC) sequences were constructed by Tsingke Biological

Technology (Nanjing, China) and are available in Supplementary

Table S2. For stable cell line establishment, a Hep3B cell was

transfected with the indicated lentivirus with 6 µg/ml polybrene,

and 72 h after transfection, a final concentration of 4 ug/ml

puromycin was added to screen the positive cells for 7 days.
RNA extraction, cDNA synthesis, and
qRT-PCR

Total RNA was extracted using an RNA isolation kit

(Vazyme Biotech, RC112-01) and was subsequently reverse

transcribed into cDNA using the PrimeScript RT reagent Kit

(TAKARA, RR036A) according to the manufacturer’s

instructions. All qRT-PCR reactions were performed in

triplicate with b-actin expression as a normalized internal

reference, using SYBR Premix Ex Taq (TAKARA, RR420A).

The PCR primers are listed in Supplementary Table S3.
Western blotting

Detailed procedures for Western blot were performed as

previously described (37). The characteristics and working

dilutions of the antibodies used are provided in Supplementary

Table S4.
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Cell proliferation assay

Hep3B cells and stably transfected Hep3B cells were seeded

into 96-well plates at a concentration of 4,000 cells/well. Cell

proliferation capacity was assessed at 24, 48, 72, and 96 h by

CCK-8 assays (Topscience, C0005).
Colony formation assay

To determine the capacity of population dependence and

clonal proliferation, cells were seeded in a six-well plate at a

density of 5.0 × 102/well and continuously incubated for 14 days.

Colony fixation was done with methanol for 20 min, and

subsequently, colonies were stained with 0.2% crystal violet for

30 min. ImageJ software was employed for colony count.
Matrigel invasion assay

A Transwell chamber (8-mm pore size, Corning

Incorporated, 3422) covered with 40 µl BD Matrigel (diluted

1:8 with serum-free medium) was used for cell invasion assay.

Hep3B cells (6.0 × 104) suspended in 200 ml of FBS-free medium

were seeded in the upper chamber, and 600 µl medium

containing 10% FBS was added to the lower chamber.

Following a 36-h incubation, cells adhering to the lower filter

surface were fixed, stained, and counted. Of note, cells were

pretreated with 10 µg/ml of mitomycin c (Selleck Chemicals,

S8146) for 2 h to eliminate the effect of cell proliferation.
Statistical analysis

R software (version 4.1.3) was implemented for public data

processing, statistical analysis, and diagram formation.

Differential distributions between two groups were determined

by the Wilcoxon’s test. Differential survival probability was

visualized utilizing KM analysis and log-rank test. Hazard

ratios (HRs) were employed in univariate and multiple Cox

regression analyses. Pearson’s correlation test and Student t test

were employed in correlation analysis of the module gene

significance, clinical traits, immune infiltration and evasion,

and expression of immune checkpoint fators. All experiments

were performed in triplicates and expressed as mean ± SEM

using GraphPad Prism (8.0.2). Statistical significance was

determined by t test (two-tailed) for two groups or one-way

ANOVA for three or more groups. All results were deemed as

statistically significant with two-sided P < 0.05.
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Results

Identification of tumorigenic and
immune infiltration-related
senescence genes

Given that cellular senescence governs key aspects of chronic

diseases and cancer, in our HCC-associated study, we focused

specially on tumor-relevant senescence genes. WCGNA was first

harnessed for sample clustering to identify outlier samples, and no

sample was determined for removal from the study (Figure 2A). A

scale-free network was constructed with soft thresholding power set
Frontiers in Immunology 07
as 6 (scale-free R2 = 0.88), in which scale independence and mean

connectivity presented a relative balance (Figures 2B, C). As shown

in the cluster dendrogram, a total of seven modules (i.e., turquoise,

yellow, blue, black, brown, green, gray) were detected following

similar module integration (Figure 2D). Notably, the gray module

represents taxonomic genes deserting from the other module genes.

On the basis of the correlation results between clinical characteristic

and module, statistically significant positive correlations of module

with tumor and pathological stage characteristics were

distinguished in module turquoise, yellow, blue, and black (all

P < 0.05, Figure 2E), and scatter plots were performed to

delineate the correlation between tumor trait and turquoise genes
A B

D E

F G H

C

FIGURE 2

WGCNA for identification of tumor-related senescence genes. (A) Clustering dendrogram of HCC samples and the clinical traits, covering
sample type (tumor and normal), Edmondson–Steiner grade, pathologic T staging, pathologic TNM staging, alpha fetoprotein (AFP) level, and
vascular invasion (VI) status. Soft threshold selection to determine the WGCNA module depending on scale independence (B) and mean
connectivity (C). (D) Seven colored modules were determined and visualized with a dendrogram, based on a dissimilarity measure (1-TOM).
(E) Heatmap for the correlation between gene modules and clinical characteristics. Scatter plots delineating the correlation between gene
significance (GS) for tumor trait and module membership (MM) in the turquoise (F) and yellow module (G). (H) Venn diagram showing 317
overlapping tumorigenesis- and immune infiltration-associated genes. WGCNA, weighted gene co-expression network analysis; MC, mean
connectivity; NA, not available.
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(Figure 2F, r > 0.5, P < 0.001), as well as yellow genes (Figure 2G, r >

0.5, P < 0.001). Previous studies have denoted the pervasive

regulatory pattern of cellular senescence on immune cell

infiltration across multiple cancers (4, 38, 39). Consequently, we

introduced the “ESTIMATE” algorithm to quantify the immune

cell infiltration landscape for all tumor samples, and 317 immune

infiltration-related senescence genes (Supplementary Table S5) were

ultimately determined through calculating the correlation between

immune score and 1,289WGCNA genes (Supplementary Table S6)

with a P value lower than 0.001 (Figure 2H). In this section,

tumorigenic and immune infiltration-related senescence genes

were addressed and described, and filtered senescence genes were

preliminarily considered for downstream signature identification.
Construction of TIS and signature gene
analyses

In order to construct a high-performance senescence-related

prognostic signature, we first entered all the above 317 genes for

both KM and univariate Cox regression analyses. Subsequently,

127 intersection-prognostic genes (Supplementary Table S7) were

inputted into LASSO–Cox regression analysis for stringent

feature selection, and 10 genes selected at lambda.min were

further streamlined and optimized through forward stepwise

Cox regression (Figures 3A, B). A final five robust genes were

incorporated into TIS construction for predicted HCC prognosis.

The TIS risk score formula was determined as the following: risk

score = (0.5019268 * expression value of NET1) + (0.5922202 *

expression value of ATP6V0B) + (0.1514856 * expression value of

MMP1) + (0.4845483 * expression value of GTDC1) +

(-0.2477429 * expression value of CPEB3). HCC samples from

the training and validation cohorts were dichotomized into TIS-

high and TIS-low groups according to the median value of risk

score in the two datasets, respectively.

Compared with the low-risk group, NET1, ATP6V0B,MMP1,

and GTDC1 showed elevated expression abundance in the high-

risk group, whereas CPEB3 exhibited the opposite expression

profile (Figure 3C, P < 0.001). Additionally, consistent expression

tendencies were observed in paired tumor and para-cancerous

tissues, which indicated that signature genes might be involved in

HCC progression and metastasis (Figure 3D). Afterward, we

investigated the influence of individual signature genes on OS

possibility and found that elevated expressions of NET1,

ATP6V0B, MMP1 and GTDC1 substantially contributed to

worse OS, whereas CPEB3, contrary to the above genes, might

play a protective role in HCC setting (Figure 3E).
Favorable performance of TIS for
OS prediction

On the basis of TIS, we proceeded with multi-index

annotation to evaluate and validate model performance in
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TCGA and ICGC datasets. As illustrated in Figure 4A, survival

outcomes and pathologic traits exhibited a differential

distribution in the high- and low-risk groups in both datasets,

and high-risk patients presented increased exposure to worse

pathologic stage and death (P < 0.01). Furthermore, plots for the

distribution of TIS risk score, survival status, and TIS gene

expression profiles in low- and high-risk groups were delineated

to capture the influential pattern of TIS (Figure 4B). These

results indicated that a higher risk score contributes to a higher

mortality and a higher expression level of carcinogenic TIS

genes. Patients in the high-risk group had nearly twice the

mortality in the low-risk group (Figure 4C). Survival analysis

revealed that patients in the low-risk group had a significantly

better OS than those in the high-risk group in both training and

validation cohorts (Figure 4D). Afterward, ROC analysis was

employed to assess TIS performance, with AUC values of 0.803,

0.751, and 0.734 at the 1-, 3-, and 5-year censored endpoints in

TCGA dataset and 0.729, 0.712, and 0.727 at the 1-, 3-, and 4-

year censored endpoints in the ICGC dataset, respectively

(Figure 4E). Additionally, a calibration plot also exhibited

favorable predictive performance at different censored

endpoints (Figure 4F). Of note, compared with several

published models (40–45), TIS containing only five signature

genes showed non-inferior performance with 3- and 5-year AUC

values (Figure 4G). These results demonstrated that TIS was a

highly robust and plausible signature for OS prediction of HCC,

and an elevated TIS score was correlated with malignant

phenotypes of tumorigenesis and progression in HCC.
Independent prognostic value of TIS and
construction of a TIS-based nomogram

To figure out the independent predictive potential of TIS for

prognosis in HCC, we carried out univariate and multivariate

analyses with multiple clinical traits covering age, gender, tumor

pathological grading and staging, vascular invasion, residual

tumor status, and Child–Pugh stage. The TIS score, TNM

stage, and vascular invasion were preliminarily identified to be

associated with OS (P < 0.05), and these indicators were

subsequently enrolled in multivariate analysis (Figure 5A).

Both TIS score and TNM stage functioned as independent and

robust prognostic markers, and the TIS score exhibited more

potency than the TNM stage (Figure 5B; HR = 2.223 and

1.549, respectively).

Next, we provided a quantitative TIS-integrated nomogram to

compute individualized risk for HCC patients (Figure 5C). Three

goodness-of-fit indices, namely, ROC, calibration, and DCA, were

applied for model evaluation. The 1-, 3-, and 5-year AUCs for the

TIS-integrated nomogramwere 0.822, 0.775, and 0.745, respectively

(Figure 5D). A calibration plot also presented ideal consistent

prediction at the 1-, 3-, and 5-year censored OS (Figure 5E).

Compared with TIS or TNM stage alone, the nomogram yielded
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a better net benefit, indicating the synergistic predictive power of

TIS with TNM stage (Figure 5F). Beyond the above delineations, we

also discovered the strong prognostic value of the TIS-integrated

nomogram inHCC, when OS, DSS, PFI, and DFI were employed as

the censored endpoints separately (Figure 5G). Hence, consistent

with the previous description, TIS could serve as a core candidate

predictor for HCC phenotypes and survival.
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Potential carcinogenetic mechanisms
and SASP landscapes

Regarding the underlying downstream mechanism between

the TIS-high and TIS-low subgroups, we performed GSVA and

GSEA to identify differential cancer hallmark pathways using

TCGA transcriptomic dataset. On the basis of GSVA results
A B

D

E

C

FIGURE 3

Identification, expressed pattern, and survival analysis of TIS genes. (A) LASSO coefficient profiles of 127 genes. (B) Cross-validation for tuning
parameter selection in the LASSO regression. Expressed divergence of TIS genes between high-risk and low-risk groups (C) as well as between
cancer and corresponding para-cancerous tissues (D). (E) KM plots of OS were performed to elaborate the prognostic value of TIS genes. KM
plots, Kaplan–Meier plots; OS, overall survival; *P < 0.05; **P < 0.01; ***P < 0.001.
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(Supplementary Table S8), a total of 42 significantly differential

pathways were sorted out utilizing the limma algorithm, of

which 32 were upregulated and 10 were downregulated in the

high-risk group. As 21 top enriched pathways shown in
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Figure 6A, the high-risk group is predominantly accompanied

by the activation of carcinogenetic pathways compared with the

low-risk group, such as G2M checkpoint, MYC, E2F, mTORC1,

EMT, and PI3K-AKT-mTOR. Interestingly, the high-risk group
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FIGURE 4

Performance evaluation and validation of the TIS in HCC. (A) Differential correlation distribution of clinical traits between high- and low-risk
groups in TCGA database (left) and ICGC database (right). (B) Distribution of risk score, survival status, and expressed profiles of TIS genes in
low- and high-risk groups from TCGA training dataset and ICGC validation dataset. (C) Risk score and mortality rate of patients in high- and
low-risk groups in two datasets. (D) KM plots of OS showing the discriminated survival between high- and low-risk groups in two datasets. ROC
curves with AUC values (E) and calibration plots (F) were employed to elaborate TIS performance in two datasets. (G) Distinct 3- and 5-year
AUC of TIS and several published signatures. TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; ROC, receiver
operating characteristic; AUC, the area under the ROC curve; ****P < 0.0001
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presented evident metabolic dysregulation with upregulated

glycolysis and downregulated oxidative phosphorylation, fatty

acid metabolism, and adipogenesis (Figure 6A). GSEA also

identified 39 significantly altered cancer hallmark pathways, of

which 34 were upregulated and five were downregulated

(Supplementary Table S9). Consistent with the GSVA results,

the high-risk group exhibited primarily enhanced carcinogenetic

pathways and attenuated non-glycolysis metabolic pathways

(Figures 6B-D). In order to discover the prognostic landscape

of upregulated hallmark pathways, we delineated survival plots

for several common significant pathways including MYC, G2M

checkpoint, E2F, and mTORC1. As expected, HCC patients with

these activated pathways were characterized by a worse

prognosis (Figure 6E). Taken together, the TIS-high subtype

exhibited evident activation of multiple oncogenic pathways
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involved in tumorigenesis and metastasis, which resulted in

unsatisfied prognosis.

In consideration of the irreplaceable role of SASP in tumor

recurrence and progression, and TME remodeling (46–49), we

also delineated the altered landscape of SASP, proteins secreted

by senescent cells, between TIS-high and TIS-low groups.

Noticeably, elevated SASP was found to be highly enriched in

the TIS-high group (Figures S1A-E), including interleukins (IL-

1A, IL-1B, IL-15, and IL7), soluble or shed receptors or ligands

(PLAUR, ICAM1, TNFRSF11B, and TNFRSF10C), proteases

and regulators (MMP14, MMP1, MMP12, and MMP10),

chemokines (CXCL3, CXCL8, CXCL5, and VEGF), and

growth factors and regulators (IGFBP3, PIGF, ANG, and

EREG). Of these upregulated SASP, some, such as CXCL8 and

VEGF, were documented to possess immunosuppressive
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FIGURE 5

Construction and evaluation of the TIS-integrated nomogram. Forest plots for univariate (A) and multivariate Cox analyses (B) of TIS and clinical
characteristics. (C) Nomogram incorporating TIS and pathological stage for predicting the 1-, 3-, and 5-year mortality in HCC. ROC curve (D)
and calibration plot (E) for predicting the 1-, 3-, and 5-year performance of the nomogram. (F) Distinct net benefits of decision curves among
nomogram, TIS, and TNM stage. (G) KM survival plots of the integrated nomogram for OS, DSS, PFI, and DFI. DSS, disease-specific survival; PFI,
progression-free interval; DFI, disease-free interval.
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properties (50). Therefore, we speculated that patients in the

TIS-high group might be accompanied by detrimental

oversecreted SASP and thereby might exhibit a SASP-mediated

immunosuppressive phenotype.
Immunological characterization of TIS on
TME of HCC

Previously published studies have corroborated that cellular

senescence governs an irreplaceable role in the cancer immune-

oncology context. Consequently, to dive deeper into the complex

cross talk between TIS and tumor immunity, we first conducted

ssGSEA to delineate the distinct landscape of infiltrated immune

cells among TIS-high and TIS-low groups. An integrated boxplot
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of 28 immune cells showed a significant alteration in 10 cell

proportions (Figure 7A). The TIS-high group exhibited a higher

degree of immunosuppressive cells, including myeloid-derived

suppressor cells (MDSC) and regulatory T cells, and decreased

effector killing cells, including activated CD8 T cells and CD56

bright natural killer cells (Figure 7A). Interestingly, TIS-high also

presented an increased distribution of activated CD4 T cells,

including type 2 T helper cells and effector memory CD8 T cells.

Additionally, a greater leukocyte fraction was observed in the high-

risk group (Figure 7B). In parallel, the high levels of MDSC and

CTL exclusion scores were captured in the high-risk group

through the TIDE analysis platform (Figures 7C, D).

Subsequently, we focused on the analysis of differential

expression of immune checkpoint genes and immunomodulator

genes between high-risk and low-risk groups. Our results
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FIGURE 6

Distinct carcinogenetic mechanisms between TIS-high and TIS-low groups. (A) Bar graph for the differential enrichment in carcinogenetic
pathways, determined by GSVA, between the TIS-high and TIS-low groups. Bubble plot (B) and ridge plot (C) for the differential enrichment in
carcinogenetic pathways, determined by GSEA, between the TIS-high and TIS-low groups. (D) GSEA enrichment plots showing significantly
enriched pathways including six upregulated and three downregulated pathways. (E) KM plots of OS delineating the prognostic landscapes of
the four typical oncogenic pathways. GSVA, gene set variation analysis; GSEA, gene set enrichment analysis.
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emphasized that the TIS score as well as MMP, GTDC1, and

ATP6V0B was statistically positively associated with PD1, CTLA4,

PD-L1, and PD-L2, whereas CPEB3 was in negative concert with

such immune checkpoint genes (Figures 7E, F). Beyond this, a
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significantly elevated expression of co-inhibitory immune

checkpoint genes, including PDCD1, CTLA4, LAG3, TIGIT, and

HAVCR2, which drive functional exhaustion of T cells, was

captured in the TIS-high group (Figure 7G). An extended
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FIGURE 7

Correlation of TIS with immune infiltration, immune checkpoint genes, and immunomodulatory genes. (A) The boxplot for the alteration of 28
immune cells between the TIS-high and TIS-low groups. Differential leukocyte fraction (B), MDSC (C), and CTL exclusion score (D) between the
TIS-high and TIS-low groups. Heatmap (E) and chordal graph (F) for the correlation of the common immune checkpoint genes, including PD1,
CTLA4, PD-L1, and PD-L2, with TIS and TIS genes. The correlation of TIS with 25 immune checkpoint genes (G) and 50 immunomodulatory
genes (H); *P < 0.05; **P < 0.01; ***P < 0.001;****P < 0.0001; ns, no significance.
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correlation analysis with regard to 50 immunomodulators

deciphered that the vast majority of genes were remarkably

corelated with TIS score (Figure 7H). Therefore, we speculated

that the TIS-high subtype might present a tendency toward

immuno-oncological inertia in HCC and might yield an

unsatisfied response to immunotherapy.
Predictive potential of TIS in
immunotherapy response

Increasingly identified superior predictors, including IPS and

ITH, were suggested to well predict and evaluate immunotherapy

response (32, 51). Our results showed that all four types of IPS
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were primarily enriched in the TIS-low group, indicating a

superior response to ICB in the TIS-low group (Figure 8A).

Beyond this, TIS-high samples were featured with high ITH,

indicating a poor immunotherapy response in the TIS-high

group (Figure 8B). Considering that LOH of the HLA molecule

was involved in immune escape, a scatter diagram of the TIS score

and LOH was delineated. It was revealed that LOH was

statistically positive correlated with TIS score (Figure 8C).

Interestingly, elevated HRD, partially determined by LOH,

was accompanied by increased TIS score, with higher HRD

indicating a much improved immunotherapy response

(Figure 8D). This finding was inconsistent with our hypothesis

that TIS-high patients suffered an unsatisfied immunotherapy

response. It was speculated that a set complex set of interaction
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FIGURE 8

Predictive potential of TIS for immunotherapy response. Violin plots for the correlation of TIS with the four IPS (A) and ITH (B). Scatterplots for
the correlation of TIS with LOH (C) and HRD (D). (E) The distinct prognostic pattern of TIS in immunotherapy data. Boxplot (F) and bar plot (G)
for the differential immunotherapy response between the TIS-high and TIS-low groups. IPS, immunophenoscore; ITH, intratumor heterogeneity;
LOH, loss of heterozygosity; HRD, homologous recombination deficiency.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974377
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2022.974377
mechanisms took responsibility for immunotherapy response,

and a single biomarker was not sufficient for response

prediction accuracy.

To convert theoretical prediction of TIS to real-world

evidence, we extracted publicly available ICB cohorts of SKCM,

KIRC, BLCA, STAD, HNSC, and GBM to further validate the

practicability of TIS for predicting immunotherapy response. We

discovered that patients in the TIS-low group distinctly yielded a

prolonged OS compared with those assigned in the TIS-high

group (Figure 8E, P < 0.0001). The enrolled patients treated with

ICB exhibited differential response degrees defined as PD, SD, PR,

and CR. As shown in the Figure 8F, patients’ evaluated CR

presented the lowest TIS score, and patients’ evaluated PD

exhibited the highest TIS score. Compared with the PD

subgroup, patients in CR, PR, and SD were prone to a lower

TIS score, with all P < 0.05. In other words, the patients with a

low-TIS score exhibited increased susceptibility toward PR or CR,

whereas patients with a high-TIS score were skewed toward PD or

SD (Figure 8G, P < 0.001). These results evidenced that TIS could

serve as a favorable predictor for immunotherapy and a lower TIS

score might be in accordance with a better response to

ICB therapy.
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Potential therapeutic value and
candidate compound

To further determine the potential therapeutic value of the TIS

classifier, we demonstrated the feasibility of identifying sensitive

drug and candidate compounds through CGP and CMap

databases (35, 36). We found that the high-risk group showed

differential susceptibility to the majority of 212 drugs. Of these

drugs, five conventional chemotherapeutic agents, namely, 5-

fluorouracil, docetaxel, doxorubicin, gemcitabine, and etoposide,

exhibited a lower normalized IC50 in the high-risk group,

indicating a higher efficacy to high-risk patients (P < 0.001,

Figure 9A). Additionally, small molecular inhibitors of several

pathway targets involved in cellular senescence were permuted,

covering cell-cycle inhibitors, bromodomain and extraterminal

domain family (BET) inhibitors, PI3K-AKT pathway inhibitors,

and multikinase inhibitors (4, 52–55). Patients in the TIS-high

group presented higher susceptibility to these inhibitors, revealing

the enriched cellular senescence in the TIS-high group (P < 0.001,

Figures S2A–D). Additionally, we screened out and permuted the

top four putative drugs (palbociclib, JAK3 inhibitor VI, floxuridine,

and lestaurtinib) for TIS-high patients from 2,429 compounds, and
A
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FIGURE 9

Application of TIS for drug sensitivity and putative compound. (A) The correlation between TIS and drug sensitivity. The 2D and 3D structures of
the top four potential compounds including palbociclib (B), JAK3 inhibitor VI (C), floxuridine (D), and lestaurtinib (E).
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the 2D and 3D structures of such four potential compounds are

shown in Figures 9B–E. We also provided the information of 25

permuted compounds (Supplementary Table S10), and 32% (8/25)

belong to cell-cycle inhibitors, indicating the favorable efficacy of

cell-cycle inhibitors for TIS-high patients. These results suggested

that TIS might provide a novel perspective for drug development

and treatment selection.
CPEB3 suppresses cell proliferation and
invasion in HCC

To convert theoretical tumor biological behaviors of TIS

genes to experimental evidence, we carried out experiments to
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reinforce our results. As aforementioned, CPEB3 was the only

downregulated gene among TIS genes; in addition, CPEB3 has

been documented to exhibit a striking downregulation across

digestive tumor and function as a translational repressor and

tumor suppressor according to the limited published studies

(56–59). Therefore, CPEB3 was selected as the candidate gene

for further validation. We first proceeded to validate the

expression of CPEB3 in HCC cells and normal liver cells at

protein and mRNA levels, and results demonstrated that CPEB3

was ubiquitously downregulated in HCC cells compared with

L02 cells (Figure 10A). To characterize the effects of CPEB3 on

the malignant phenotypes of HCC cells, we constructed stable

CPEB3 knockdown- and overexpression-Hep3B cell lines

(Figures 10B, C). It was revealed that CPEB3 knockdown
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FIGURE 10

CPEB3 inhibits cell proliferation, colony formation, and invasion in HCC cells. (A) The CPEB3 abundance in normal liver cells and HCC cells at
protein and mRNA levels. (B) Hep3B cell was stably transfected with LV-shNC and LV-shCPEB3. The expression of CPEB3 was detected using
qRT-PCR and Western blot. (C) Hep3B cells were stably transfected with LV-ctrl and LV-CPEB3. The expression of CPEB3 in stably
overexpressed and control Hep3B cells was detected using qRT-PCR and Western blot. (D) Cell Counting Kit-8 was used to quantify the
proliferation of Hep3B-Ctrl, Hep3B-shCPEB3, and Hep3B-CPEB3. (E) Colonies of Hep3B-Ctrl, Hep3B-shCPEB3, and Hep3B-CPEB3 were
quantified following continuous incubation for 14 days. (F) Transwell assays were carried out to determine the effect of CPEB3 on the cell
invasion. *P < 0.05; **P < 0.01; ***P < 0.001.
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enhanced Hep3B cell proliferation and CPEB3 overexpression

attenuated Hep3B cell proliferation (Figure 10D). In addition,

CPEB3 downregulation substantially boosted the clonogenicity

ability and invasive capacity of Hep3B cells (Figures 10E, F). In

contrast, Hep3B cells with overexpressed CPEB3 formed

relatively less clones and inhibited cell-invasive ability

(Figures 10E, F). These results indicated that CPEB3 serves as

a negative regulator in the HCC setting and thereby attenuates

malignant progression and metastasis.
Discussion

Immunotherapy, especially ICB, is revolutionizing the

therapeutic paradigm of HCC (3). Nevertheless, due to the inter-

and intra-tumor heterogeneity, identification of a benefit

subpopulation from immunotherapy remains a non-negligible

barrier. Therefore, predictive biomarkers on immunotherapy

response and prognosis are eagerly and urgently awaited to

determine HCC subtypes and improve the personalized

immunotherapy. To date, accumulating evidence has demonstrated

that cellular senescence is involved in tumorigenesis and cancer

progression and governs an indispensable role in TME through

both cell autonomous and paracrine effects (4, 9, 60). However, how

SASP-characterized cellular senescence interacts with tumor immune

landscape and its potential in evaluating HCC prognosis, ICB

response, and drug intervention are less well-established.

Consequently, modeling HCC will pave a way for exploring the

interaction of cellular senescence with the TME and deciphering the

influential pattern of cellular senescence on HCC prognosis and

immunotherapy response. Here, we attempted to screen out theHCC

tumorigenic and immune infiltration-associated cellular senescence

genes through multiple algorithms and thereby constructed an

independent prognostic and immune-related signature named TIS

incorporating five cellular senescence genes. Then, TIS was

subsequently employed to dichotomize HCC patients into high-

and low-risk subgroups in both the training and validation cohorts.

As expected, TIS-high patients turned out to have a higher mortality

exposure and were accompanied by immunosuppressive cell

infiltration and effector killing cell exclusion. Markedly, a

ubiquitously elevated expression of co-inhibitory immune

checkpoint genes was identified in the TIS-high patients, who

exhibited a worse response to ICB immunotherapy. Compared

with the TIS-low group, the TIS-high group was characterized by

the activation of carcinogenetic pathways, such as G2M checkpoint,

MYC, EMT, and PI3K-AKT-mTOR pathway, and subsequently,

potential compounds targeting TIS were ultimately determined via

the CMap database. The present study engaged an integrative analysis

to achieve a deeper and comprehensive understanding of cellular

senescence and represented innovative exploration and application

for signature construction with tumorigenic and immune infiltration-

associated senescence genes, whose superior predictive performance

was identified in terms of HCC prognosis, immune infiltration and
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evasion, immunotherapy response, and even putative

drug identification.

Chronic liver diseases, such as non-alcoholic fatty liver, non-

alcoholic steatohepatitis, and cirrhosis, are recognized

prodromes of HCC and are accompanied by a process of

hepatocellular senescence (5). Additionally, there is no definite

tumorigenic and immune infiltration-associated senescence

gene set available. Consequently, we performed WGCNA and

ESTIMATE algorithms, for the first time, to determine the

specific tumor- and immune infiltration-associated senescence

genes. Subsequently, a novel prognostic signature (TIS)

consisting of five senescence genes, namely, NET1, ATP6V0B,

MMP1, GTDC1, and CPEB3, was constructed through LASSO,

KM, and Cox regression algorithms. Of these TIS genes, only

CPEB3 exhibited a decreased expression in both the TIS-high

group and paired tumor samples, and an abnormally decreased

CPEB3 expression conferred a comparatively worse prognosis,

indicating the protective role of CPEB3. In contrast to CPEB3,

the remaining TIS genes, including NET1, ATP6V0B, MMP1,

and GTDC1, govern a detrimental role in HCC. For instance,

neuroepithelial cell transforming gene 1 (NET1) is documented

to promote hepatocarcinogenesis and metastasis through the

PI3K/AKT pathway (61). To date, increasing HCC signatures

have been documented to classify clusters and predict prognosis,

such as the TP-53-associated four-gene signature by Long (45),

ferroptosis-associated 10-gene signature by Liang (43), immune-

associated nine-gene signature by Wang (42), and hypoxia-

associated four-gene signature by Zeng (41). Markedly, our

five-gene TIS model yielded favorable prognostic performance

with a higher AUC than most previous signatures (40–45).

Moreover, unlike the previously mentioned literatures only

limitedly delineating prognostic signature characterization, our

study integratively displayed the landscape of HCC prognosis,

TME, and potential targeting drugs, which was infrequently

reported. To sum up, TIS exhibited the potential to mirror HCC

prognosis and could serve as an effective classifier for HCC.

Subsequently, through uncovering the differential underlying

mechanisms between TIS-high and TIS-low groups, we found that

the most carcinogenetic pathways were overactivated in the TIS-

high group, covering GLYCOLYSIS, DNA repair, G2M checkpoint,

MYC, and EMT signaling pathways. Notably, all of the mentioned

pathways were documented to give rise to immunosuppression or

weak immunotherapy response according to the public literatures

(62–65). Additionally, abnormal metabolic reprograming in TIS-

high was characterized by activated glycolysis and suppressed

oxidative phosphorylation, which aggravate acidosis, hypoxia,

angiogenesis, EMT, and immunosuppression, thereby promoting

the malignant phenotypes of invasion and metastasis (66, 67). We

also delineated the SASP landscape between the TIS-high and TIS-

low groups. Our analyzed results revealed that the TIS-high group

exhibited a significant elevated expression of multiple SASP,

including interleukin: IL-1A and IL-1B; proteases: MMP4,

MMP1, MMP 12, and MMP14; growth factors: IGFBP, VEGF
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and ANG; receptors: ICAMs; and chemokine: CXCL3, CXCL8, and

CXCL5. These altered SASP might contribute to a malignant

phenotype and govern a vital role in TME reshaping, which

ultimately leads to immune evasion and tumor development (9,

68–70).

Currently, no definite conclusion has been drawn on

whether and how cellular senescence modulates immune

infiltration and immunomodulators and thereby affects the

therapeutic response to ICB. On the basis of our results, the

TIS score exhibited an inverse association with effector killing

cells, such as activated CD8 T cells and CD56 bright natural

killer cells, whereas it was positively implicated with

immunosuppressive cells, such as MDSC and regulatory T

cells, indicating that patients with a higher TIS score are

vulnerable to immunosuppression and attenuated tumor

clearance. Indeed, MDSC could release SASP-MMPs to

facilitate tumor cell invasion through directly augmenting

angiogenesis and lymphangiogenesis (71, 72). Interestingly,

upregulated abundance of activated CD4 T cells, which was

commonly considered as an antitumor effector (73, 74), was

detected in our results. We speculated that the antitumor

capacity of activated CD4 T cells may be cloaked and limited

by senescence phenotype and immunosuppressed molecules on

tumor cells (such as PD-L1). We also uncovered the ubiquitous

correlation of the TIS score with the majority of 50 common

immune checkpoint genes, containing PD-1, CTLA4, PDL1, and

the biomarkers of T-cell exhaustion, which are associated with

T-cell-mediated immunotherapy (3, 34). As aforementioned,

IPS and ITH were documented as superior indictors for

immunotherapeutic response, with a higher IPS or lower ITH

score representing a favorable response to ICB (32, 51). In our

results, the TIS-high group was accompanied by a higher score

of IPS and a lower score of ITH, indicating a theoretically less

response to ICB. Such predictive performance of TIS was

subsequently proved in real-world ICB data of solid tumors.

The TIS-high group exhibited a higher proportion of PD and

SD, suggesting the unsatisfied response to ICB. Collectively, TIS

showed great potential to serve as a substantial integrative

predictor for immune infi l tration and evasion and

immunotherapeutic response to ICB.

As another application of our TIS classifier, we demonstrated

the feasibility of identifying sensitive drug and candidate

compounds through CGP and CMap databases (35, 36). Through

matching the up- and downregulated genes with the drug-treated

RNA-sequencing data, we detected that the TIS-high group showed

susceptibility to several conventional chemotherapeutic agents,

including 5-fluorouracil, docetaxel, doxorubicin, gemcitabine, and

etoposide, uncovering the specific therapeutic potential of such

conventional agents for cellular senescence. Beyond this, we also

identified the four candidate compounds with the most potential

from a total of 2,429 compounds. Among them, palbociclib, the

most pro-senescence relevant CDK4/6 inhibitor, has been

documented with superior antitumor capability across HCC,
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melanoma, and breast cancer, through inducing a senescence

phenotype (75, 76). However, in the late stage of palbociclib

treatment, enhanced HCC progression was observed in an

experimental Fah-/- mouse model of HCC (5). It was speculated

that early hepatocellular senescence could provoke immune

activation to eliminate tumor cells and senescent cells. With the

accumulation of senescent hepatocellular and SASP secretion, the

tumor microenvironmental context was reshaped and thereby

contributed to HCC progression, which might partially describe

the drug resistance mechanism of senescence-targeting drugs.

Consequently, elimination of accumulated detrimental senescence

and induction of acute cellular senescence might be an important

direction, and more studies on the interaction between cellular

senescence and antitumor microenvironment are warranted.

Noticeably, the remaining three compounds have also been

reported to have antitumor capability, although their correlation

with cellular senescence has not been characterized (77–79). In

consideration of the complicated involved pathways in cellular

senescence (4, 52–55), we permuted additional candidate

compounds, including cell-cycle inhibitors, bromodomain and

BET inhibitors, PI3K-AKT pathway inhibitors, and multikinase

inhibitors, and the TIS-high group exhibited a higher susceptibility

to these drugs. These candidate compounds shed light on the HCC

therapeutic strategy especially for the patients in the high-risk

subgroup, and more in-depth explorations are warranted to

provide insight into the interaction mechanisms of these small

compounds with cellular senescence.

To further definite the outsized oncological role of TIS genes,

we conducted in vitro experimental validation and delineated the

association between CPEB3 and HCC phenotypes. In

accordance with our anticipation, CPEB3 knockdown

promoted Hep3B proliferation, clonogenicity, and invasion,

whereas CPEB3 overexpression attenuated such phenotypes,

indicating the definite role of CPEB3 in tumorigenesis and

development. Further, more research is required to determine

the senescence oncology role of TIS genes and to delineate the

interaction of TIS genes with the underlying pathways, such as

G2M checkpoint, MYC, EMT, and PI3K-AKT-mTOR pathways.
Conclusion

All the analyses taken together, we established a tumorigenic

and immune infiltration-associated TISmodel for the predictions of

HCC prognosis and immunotherapy efficacy based on a senescence

gene-guided strategy, and its performance was well-verified by

external transcriptome data and immunotherapy data. Through

characterizing the complex linkage of TIS with oncogenic pathways

and SASP, our results provided insight into the underlying

mechanisms of TIS on tumorigenesis and progression as well as

TME reshaping. Combining these results and the interplay between

TIS and immune infiltration, immune checkpoint factors, and other

biomarkers, we demonstrated that TIS could effectively discriminate
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responders and non-responders to enable a more precise benefit

stratification of ICB therapy. Additionally, we identified several

potentially senescence-related candidate compounds as an

alternative strategy for HCC treatment especially for the patients

in the high-risk subgroup. Therefore, this work might facilitate

prognostic biomarker identification and provide certain guiding

significance for personalized immunotherapy.
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