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Disorders of polyamine metabolism may contribute to the development of

hepatocellular carcinoma (HCC), but the precise mechanism remains

unknown. This study reports that spermine synthase (SMS), an enzyme

involved in polyamine biosynthesis, is overexpressed in HCC and not

associated with hepatitis virus infection in HCC patients. The results of

analyzing the clinical data of HCC patients showed that SMS level as a

categorical dependent variable was related to clinicopathological features of

poor prognosis. Furthermore, the Kaplan-Meier survival analysis and ROC

curve indicated that increased SMS level is associated with poor survival rate

in HCC and may be a potential biomarker to discriminate HCC tissues.

However, SMS overexpression limited the therapeutic effect of immune

checkpoint blockade (ICB), which seemed to be related to the

immunosuppressive effect of the HCC immune microenvironment formed by

higher mRNA transcript levels of immune checkpoints and higher infiltration

levels of immunosuppressive cells. In samples with high and low SMS

expression, functional enrichment analysis of the differentially expressed

genes (DEGs) showed that SMS may be linked to the occurrence and

development of HCC by affecting a variety of immune-related pathways,

such as Intestinal immune network for IgA production, Fc gamma R-

mediated phagocytosis, Antigen processing and presentation, Th1 and Th2

cell differentiation. Subsequently, analysis of the co-expression network of SMS

in the liver hepatocellular carcinoma (LIHC) cohort revealed that SMS has a

broad impact on multiple important immune- and metabolic-related

processes in HCC. In summary, SMS is a promising biomarker to differentiate

the prognosis, immune characteristics, and holds promise as a potential target

for ICB therapy to improve HCC.

KEYWORDS

hepatocellular carcinoma, spermine synthase, immune checkpoint blockade (ICB),
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Introduction

Liver cancer is a great health problem around the world and

is estimated to affect more than 1 million individuals annually

(1). Hepatocellular carcinoma (HCC), the most prevalent

primary liver cancer, occurs easily in the context of chronic

liver disease due to hepatitis virus infection, heavy alcohol intake

or metabolic syndrome (2). Because of the limitations of early

diagnosis technology, many HCC patients are confirmed as an

advanced period at the initial diagnosis, losing the opportunity

for healing by surgery or ablation (3). Currently, immune

checkpoint blockade (ICB) has been admitted as an

encouraging treatment modality for advanced HCC patients.

Although ICB targeting the PD-1 and CTLA-4 have been

approved for second-line therapy of HCC (4–6), response

rates to ICB therapy only ranged from 15% to 30% (7–9).

Because an immunosuppressive tumor microenvironment is

promoted by the tumor cells, the infiltrating stromal and

immune cells. Moreover, the capability of hepatoma cells to

escape immune surveillance and potentially resist ICB treatment

is likely due to the further enhancement of immunosuppression

by tolerogenic liver environment (10). At present, the lack of

clinically available biomarkers to assess response to ICB limits

the efficacy and narrows the range of patients who could get help

from ICB. Therefore, there is a pressing demand to develop

effective biological targets to enhance the efficacy of ICB in HCC.

Liver has a central position in the metabolism of amino

acids that contributes to biochemical processes indispensable

for cell proliferation (11). There is a significant change of

amino acids concentrations in specific bio-fluids from patients

with liver diseases (12, 13). Recent studies have also shown the

alterations of particular amino acids in diagnosed HCC

patients (14–17).

In this study, we identified an amino acid metabolism-

related hub gene, Spermine Synthase (SMS), an important

regulator of polyamine metabolism, which was related to the

prognosis of HCC patients from TCGA. Moreover, we

investigated the effect of SMS expression on response to

immunotherapy and analyzed its relationship with the

degree of immune infiltration and gene transcription at

immune checkpoints. Furthermore, we assessed SMS

expression in the immune microenvironment in publicly

available single-cell transcriptome sequencing data sets for

HCC. Finally, we analyzed the differentially expressed genes

(DEGs) in the different SMS expression samples and co-

expression gene of SMS to explore the precise mechanisms

of SMS in HCC. Our data implied that SMS is an encouraging

b iomarker to di s t ingu i sh the prognos i s , immune

characteristics, and might act as a potential target for ICB

therapy improvement in HCC.
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Materials and methods

Identification of amino acid-metabolism
related hub genes in TCGA-LIHC

In the GEPIA2 (18) (http://gepia2.cancer-pku.cn/) database,

ANOVA and LIMMAmethods were adopted to study the tumor

and paired normal samples in the TCGA-LIHC dataset,

respectively, to obtain a list of DEGs (with the |Log2FC| > 1

and q-value < 0.01). Intersection DEGs of the two lists above

were screened out by Venn analysis. The comprehensive list of

amino acid and derivative metabolic process was obtained from

the Molecular Signatures Database v7.5.1 (MSigDB) (19–21)

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Genes

were annotated by the GO term GO:0006519. Intersection

AAMRHGs of two gene lists above were screened out by Venn

analysis. All hub genes made out by multivariate Cox regression

analysis were conducted in TIMER2.0 (22–24) (http://timer.

cistrome.org/).
RNA sequencing data collection
and analysis

RNA-sequencing expression (level 3) profiles and relevant

clinical data for LIHC were obtained from the TCGA dataset

(https://portal.gdc.com). The current-release (V8) GTEx

datasets were downloaded from the GTEx data portal website

(https://www.gtexportal.org/home/datasets). HCCDB database

(25) (http://lifeome.net/database/hccdb) was also used in SMS

expression analysis in HCC. The mRNA and Protein level of

AAMRHBs in HCC and normal tissues were tested at “TCGA

analysis” and “CPTAC analysis (26)” module of UALCAN (27)

(http://ualcan.path.uab.edu/analysis-prot.html), respectively. In

addition, cell line mRNA expression matrix of tumors was from

the Cancer Cell Line Encyclopedia (CCLE) dataset (28) (https://

portals.broadinstitute.org/ccle), which was used to validate

AAMRHGs expression in cancer cell lines.
Evaluation of the AAMRHGs
prognostic signature

The HCC patients in this study were separated to two groups

with high and low gene expression. The basis for the

demarcation is the median value of gene. The clinical data

analized by single-gene binary logistic regression was

performed with AAMRHGs as the independent variable, low

expression as the reference, and clinical characteristics as the

dependent variable. The prognostic data for HCC patients were
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downloaded from the TCGA dataset.

The Kaplan-Meier (KM) survival curve analysis of overall

survival (OS), disease-specific survival (DSS) and progression

free survival (PFS) were executed by R package Survival and

Survminer. timeROC (29) was adopted to analyze time-

dependent receiver operating characteristic (ROC).

Univariate and multivariate cox regression analysis (29)

were applied to determine the proper terms to establish the

nomogram. Statistics of each variable were processed by

“forestplot” R package to form forest map.

A nomogram was developed based on the results of

multivariate cox proportional hazards analysis to predict the

X-year overall recurrence. The nomogram provided a graphical

representation of the factors which can be used to calculate the

risk of recurrence for an individual patient by the points

associated with each risk factor through ‘rms’ R package (30).

ROC curve analysis was executed by GraphPad Prism

Version 9 to assess the discriminatory accuracy of SMS

expression in predicting evaluated the extent to which they

could separate each tumor entity from the normal tissue.
Prediction of the therapeutic effect of
ICB and analysis of immune function

We used TIDE (http://tide.Dfci.harvard.edu/) to evaluate the

potential clinical efficacy of immunotherapy in different SMS

overexpression groups (31, 32). We selected SIGLEC15, TIGIT,

CD274, HAVCR2, PDCD1, CTLA4, LAG3 and PDCD1LG2

(33–36) as immune-checkpoint-relevant transcripts and

extracted expression values of these genes from two groups.

Immune infiltration level results between two groups were

evaluated by immunedeconv (37) which integrates 6 latest

algorithms, including TIMER (24), CIBERSORT (38),

quanTIseq (39), xCell (40), MCP-counter (41) and EPIC (42).

The results were obtained by TIMER2.0 (5). Results (p<0.001)

were visualized by the Pheatmap package. Moreover, we used

“gsva” package of ssGSEA to perform quantitative analysis of the

immune cells and pathways between the high- and low-

expression groups. 28 immune cell subpopulations were

collected from the literature (43).
Immune microenvironment analysis
based on scRNA-seq expression

Single-cell RNA sequencing (scRNA-seq) was adopted to

reveal the distribution and expression of AAMRHGs in the

immune microenvironment of HCC. The data (GSE98638,

GSE125449, GSE140228) was obtained from scTIME Portal

(44) (http://sctime.sklehabc.com/), a database and a portal for

single cell transcriptomes of tumor immune microenvironment.

The portal implemented tumor immune microenvironment
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specific analysis modules to allow the data exploration.

GSE98638 contains data obtained by deep single-cell RNA

sequencing on single T cells isolated from peripheral blood,

tumor and adjacent normal tissues from hepatocellular

carcinoma patients. GSE125449 contains data obtained by

single-cell transcriptome profiling of liver cancer biospecimens

from nine hepatocellular carcinoma and ten intrahepatic

cholangiocarcinoma patients. GSE140228 contains data

obtained by single-cell transcriptome profiling of CD45+

immune cells for HCC patients from five immune-relevant

sites (tumor, adjacent liver, hepatic lymph node (LN), blood,

and ascites).
Functional enrichment analysis

The limma package in the R software was adopted to study

differentially expressed mRNA, threshold for which was set with

reference to adjusted p < 0.05 and |Log2FC| > 1, between high-

and low- expression groups. “ClusterProfiler (45)” package was

adopted to carry out Gene ontology (GO) enrichment and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

of co-expression genes. The GSEA was carried out using

WebGestalt (WEB-based Gene Set Analysis Toolkit is a

functional enrichment analysis web tool) (46). Then GSVA

(47) was performed on Hallmark annotation libraries in

MSigDB respectively to obtain the matrix of samples and

pathways. Limma package was used for difference analysis

between the high- and low- expression group. 19 important

signaling pathways were collected from the literature (48), and

the ssGSEA algorithm was adopted to predict the score of the

corresponding pathway of each sample through the expression

matrix, and then grouped according to the level of

gene expression.
Co-expression networks analysis

To identify gene co-expressed with the AAMRHGs, the

LinkedOmics tool (49) (http://www.linkedomics.org) was

adopted to calculate the Pearson’s correlation coefficient

between AAMRHGs and others. Top 20 positively and

negatively correlated genes were adopted to analyze their effect

on OS of HCC. Top 50 positively and negatively correlated genes

were used for GO and KEGG enrichment analyses.
Statistical analysis

Statistical analyses were carried out using R version 4.0.3 and

GraphPad Prism 9.0. Statistical differences of two groups and

three groups were compared through the Wilcox test and

Kruskal-Wallis test, respectively. Wilcoxon rank-sum test was
frontiersin.org
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adopted to analyze SMS expression in non-paired samples.

Wilcoxon rank signed test was adopted to analyze SMS

expression in paired samples. The log-rank test was adopted to

analyze the differences between survival curves. p < 0.05 was

considered statistically significant.
Results

Identification of amino acid and
derivative metabolic process related
genes from TCGA-LIHC and
GEO databases

This research was carried out in accordance with the flow

chart exhibited by Figure 1. 2207 and 3195 DEGs between the

tumor and normal groups were identified in the TCGA-LIHC

gene expression profiles obtained by ANOVA and LIMMA

algorithms, respectively. Furthermore, 607 genes that overlap

in two algorithm groups were shown by a venn diagram. And

then, intersection of 607 DEGs and AAMGs (GO:0006519)

yielded 3 amino acid and derivative metabolic process related

differentially expressed genes (AAMRHGs), included in the

subsequent functional classification analysis (Figure 1). Single

gene or a gene group suitable for research was determined by

multivariate Cox regression analysis in Tumor Immune

Estimation Resource 2.0 (TIMER2.0) Database. Finally, SMS

was selected (Extended Data Figures S1A, B).
Upregulation of SMS in HCC

We compared SMS expression in 371 HCC tumor tissues

and 276 normal tissues (50 in TCGA-LIHC dataset and 226 in

GTEx dataset) by Wilcoxon rank sum test. The expression levels

of SMS were markedly higher in tumor tissues compared to

unpaired (p < 0.001; Figure 2A) and paired (p < 0.001;

Figure 2B) normal tissues, respectively. To clarify the

transcriptional and translational levels of SMS in HCC tissues,
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we carried out CPTAC analysis of UALCAN and analysis of 11

HCC study cohorts in the HCCDB database, respectively. We

found that both the protein (Figure 2C) and mRNA (Figure 2D)

expressions of SMS were pronouncedly elevated in HCC tissues

relative to normal tissues. There were also consistent trends in

the mRNA and protein levels of SMS in pan-cancer tissues by

analysis of the pan-cancer study cohorts of UALCAN (Extended

Data Figures S2A, B). As revealed by Cancer Cell Line

Encyclopedia (CCLE) analysis, SMS expression in Liver cancer

cell lines were higher than the average level of pan-cancer cell

line (Extended Data Figures S2C, D). These results illustrate a

strong associat ion between SMS upregulat ion and

HCC tumorigenesis.
Evaluation of the prognostic relevance of
SMS in HCC

To make clear the role and prominence of SMS expression,

the clinicopathological features of HCC patients with different

SMS expression were investigated (Table 1). Contrast to the low

expression of SMS group, patients in the high expression of SMS

group had a significantly higher ratio of more severe primary

tumor (T) stage, more severe lymph nodes (N) stage, more

severe metastasis (M) stage, worse Pathologic stage, Tumor

status, and higher Alpha-fetoprotein (AFP), all which with

significant difference.

The univariate analysis with Logistic regression

demonstrated that SMS expression was related to poor

prognostic clinicopathological features (Table 2). Elevated SMS

expression in HCC is positively associated with T stage,

Pathologic stage, Histologic grade, Adjacent hepatic tissue

inflammation, AFP and Fibrosis ishak score, meanwhile

negatively associated with Race, Weight and Height

significantly (all p < 0.05).

Next, Kaplan-Meier survival analysis illustrated that patients

in the high expression of SMS group had remarkably shorter

overall survival [OS, n=370, HR=2.090(1.477-2.960), log-rank

P<0.001], disease-specific survival [DSS, n=362, HR=1.846
FIGURE 1

Flow chart of identifying target genes for study. GEPIA2 picture is from http://gepia2.cancer-pku.cn/.
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(1.180-2.887), log-rank P=0.0056] and progression free survival

[PFS, n=370, HR=1.436(1.070-1.928), log-rank P=0.0145]

contrast to the low expression of SMS group in HCC

(Figure 3A). To examine the ability of SMS to predict HCC

development, through time-dependent ROC analysis, we found

that SMS could predict the OS, DSS and PFS of HCC patients at

1, 3, and 5 years to a certain extent, whose AUC were mostly

between 0.6-0.8 (Figure 3B). Univariate and multivariate Cox

regression analysis were used to assess the independent

prognostic value of 6 clinicopathological variables, including

SMS, Age, Gender, pT stage, pTNM stage and grade, in terms of

OS of HCC. SMS and pT stage were independent prognostic

markers for OS (Figure 3C). Then we adopted a nomogram

model for estimating these clinicopathological variables. The

concordance index for this nomogram was 0.703 (0.657-0.75)

(Figure 3D). Furthermore, SMS expression indicated

discriminative effect with an AUC value of 0.956 (CI = 0.944-

0.973) to identify tumors from normal tissue (Figure 3E). The
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result showed that SMS could be a heartening biomarker to

discriminate HCC tissues. Those results imply that SMS

expression foresees detrimental outcomes and is related to

disease development in HCC patients.
Correlation of SMS expression with ICB
response and immune infiltration in HCC

Immunotherapy has revolutionized treatment of cancers.

Although a subset of patients with HCC benefit from ICB

therapy, many patients do not achieve significant benefit. We

next examined whether SMS expression could predict ICB

clinical response by Tumor Immune Dysfunction and

Exclusion (TIDE) analysis. The result displayed a higher

median TIDE score in SMS overexpression group, indicating a

weakened ability to respond to ICB (Figure 4A). In addition,

TIDE prediction score is also negatively correlated to anti-PD1
B C

D

A

FIGURE 2

Upregulation of SMS in HCC. (A) SMS mRNA expression in 371 HCC samples (371 in TCGA-LIHC) and 276 normal samples (50 in TCGA-LIHC
dataset and 226 in GTEx dataset). (B) SMS mRNA expression in 50 HCC and paired normal samples. (C) SMS protein expression based on
CPTAC. (D) Comparison of the transcriptional level of SMS between HCC tissues and paired normal tissues in HCCDB. ****p < 0.0001 vs.
indicated control.
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and anti-CTLA4 treatment effects. This prompted us to explore

the relationship among SMS expression, immune checkpoint,

and immune cell infiltration level. The mRNA transcription

levels of immune checkpoints were generally increased in HCC

with the higher SMS expression, suggesting that more intense

immunosuppression was prevalent in HCC with higher SMS

expression (Figure 4B).

The number and proportion of infiltrating immune cells play

a principal role in cancer development and immunotherapy

response, and thus correlate with patient prognosis. The

association between SMS expression and immune infiltration

in HCC was shown in the heatmap, which was analyzed by the R

package immunodeconv (p<0.001, Figure 4C). Comparative

analysis of immune cells affirmed that there were differences in

various immune cells between two groups, such as Immature B

cell, Immature dendritic cell, Macrophage, etc. (Figure 4D).

The results insinuate that strong immunosuppressive effect

in the tumor microenvironment is a prerequisite for poor
Frontiers in Immunology 06
prognosis and tumor development in SMS-overexpressing

HCC patients. In summary, SMS overexpression might affect

immune cell infiltration in HCC patients, resulting in poor ICB

response and efficacy against HCC.
SMS expression in the tumor immune
microenvironment of HCC

To understand the impact of SMS gene expression on the

tumor immune microenvironment, we acquired 3 HCC single-cell

transcriptome datasets in the scTIMEPortal (http://sctime.sklehabc.

com/) and analyzed them in each dataset. Cells expressing SMS

gene were red, while cells lacking SMS gene were gray (Figure 5A).

In dataset GSE98638, compared with immune microenvironments

derived from other tissues, T cell exhaustion and inflammatory

senescence-related cells in tumor tissue had a higher positive rate of

SMS expression (Figure 5B). In dataset GSE125449, malignant
TABLE 1 Clinical characteristics of HCC patients in TCGA database.

Characteristic Low expression of SMS High expression of SMS P value

n 185 186

T stage, n (%) 0.010

T1 106 (28.8%) 75 (20.4%)

T2 40 (10.9%) 54 (14.7%)

T3 32 (8.7%) 48 (13%)

T4 5 (1.4%) 8 (2.2%)

N stage, n (%) 0.623

N0 123 (48%) 129 (50.4%)

N1 1 (0.4%) 3 (1.2%)

M stage, n (%) 0.627

M0 123 (45.6%) 143 (53%)

M1 1 (0.4%) 3 (1.1%)

Pathologic stage, n (%) 0.013

Stage I 100 (28.8%) 71 (20.5%)

Stage II 39 (11.2%) 47 (13.5%)

Stage III 33 (9.5%) 52 (15%)

Stage IV 2 (0.6%) 3 (0.9%)

Tumor status, n (%) 0.132

Tumor free 108 (30.7%) 93 (26.4%)

With tumor 68 (19.3%) 83 (23.6%)

Gender, n (%) 0.853

Female 59 (15.9%) 62 (16.7%)

Male 126 (34%) 124 (33.4%)

Age, median (IQR) 61 (53, 69) 61 (51, 69) 0.549

Height, median (IQR) 168 (161, 175) 167 (161, 173) 0.141

BMI, median (IQR) 24.84 (21.78, 29.34) 24.19 (21.7, 27.88) 0.257

Weight, median (IQR) 72 (61, 86.5) 68 (59, 78) 0.037

AFP(ng/ml), median (IQR) 7 (3, 48) 30 (8, 1836) < 0.001

Albumin(g/dl), median (IQR) 4 (3.5, 4.38) 4 (3.5, 4.3) 0.629

Prothrombin time, median (IQR) 1.1 (1, 9.78) 1.1 (1, 3.62) 0.106
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tumor cells and TAM tumor-associated macrophages were more

positive than other cells in the immune microenvironment

(Figure 5C). In dataset GSE140228, compared with immune

microenvironments derived from other tissues, there were

differences in SMS-expressing cells in the outer edge of tumor

tissue, especially macrophages. In particularly, there were tumor-

derived macrophages that express SMS in ascites fluid, which may

be partly associated with cancer metastasis (Figure 5D). Overall,

SMS expression is associated with a stronger tumor

immunosuppressive effect in tumor immune microenvironment

of HCC.
Differential gene expression profiles
comparing SMS-low and SMS-high
in HCC

To exclude the effect of hepatitis infection on SMS

expression, we examined the SMS expressions of tumors

among the HCC patients with or without viral hepatitis in the

TCGA-LIHC data set. There was no correlation between SMS

expression and hepatitis B virus or hepatitis C virus

infection (Figure 6A).

To find out the underlying mechanisms of SMS that facilitate

tumor development, we analyzed DEGs in the high- and low-

SMS expression samples. Microarray data was standardized by

limma package. The clustering analysis and expression of DEGs

were shown in a heatmap (Figure 6B) and a Volcano Plot
Frontiers in Immunology 07
(Figure 6C), respectively. According to the results of Gene

ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis, we found that the DEGs

were mostly enriched in chromosome segregation, mitotic

nuclear division, organic and carboxylic acid biosynthetic

process, etc. (Figure 6D).

Further, through GSEA by the WebGestalt, we assessed the

downstream pathways for SMS. We found immune-related

pathway enrichment results through KEGG analysis under the

Functional Database option, such as Intestinal immune network for

IgA production, Fc gamma R-mediated phagocytosis, Antigen

processing and presentation, Th1 and Th2 cell differentiation.

(Figure 6E). The results suggest that the abnormal expression of

SMS may participate in the formation of immunosuppressive

function in the immune microenvironment of HCC through

these immune-related pathways.

In order to determine the relationship between SMS and

cancer-related functional pathways, we calculated the functional

pathway scores of 19 cancer-related functional pathways

between the high and low expression groups of SMS by

ssGSEA algorithm. As the results show, Tumor inflammation

signature was similar between two groups. However, in SMS-

high expression group, there were significant more active in

tumor-related signaling pathways, such as Cellular response to

hypoxia, Tumor proliferation signature, EMT markers, etc.

(Figure 6F). These results suggest that SMS also may affect the

occurrence and progression of HCC by regulating a variety of

important tumor-related signaling pathways.
TABLE 2 Single-gene binary logistic regression.

Characteristics Total (N) Odds Ratio (OR) P value

T stage (T2&T3&T4 vs. T1) 368 1.846 (1.223-2.799) 0.004

N stage (N1 vs. N0) 256 3.097 (0.391-63.065) 0.330

M stage (M1 vs. M0) 270 66367660.351 (0.000-NA) 0.994

Pathologic stage (Stage II&Stage III&Stage IV vs. Stage I) 347 1.768 (1.157-2.712) 0.009

Tumor status (With tumor vs. Tumor free) 352 1.362 (0.892-2.084) 0.153

Gender (Male vs. Female) 371 1.033 (0.669-1.596) 0.883

Race (Black or African American&White vs. Asian) 359 0.593 (0.389-0.902) 0.015

Age (>60 vs. <=60) 370 1.067 (0.710-1.606) 0.755

Weight (>70 vs. <=70) 344 0.626 (0.408-0.957) 0.031

Height (>=170 vs. < 170) 339 0.638 (0.412-0.984) 0.043

BMI (>25 vs. <=25) 335 0.778 (0.505-1.195) 0.252

Residual tumor (R1&R2 vs. R0) 342 2.208 (0.836-6.473) 0.122

Histologic grade (G3&G4 vs. G1&G2) 366 2.257 (1.464-3.507) <0.001

Adjacent hepatic tissue inflammation (Mild&Severe vs. None) 234 1.829 (1.083-3.111) 0.025

AFP(ng/ml) (>400 vs. <=400) 278 3.309 (1.841-6.142) <0.001

Albumin(g/dl) (>=3.5 vs. <3.5) 297 1.341 (0.780-2.333) 0.292

Prothrombin time (>4 vs. <=4) 294 0.529 (0.314-0.879) 0.015

Child-Pugh grade (B&C vs. A) 239 0.905 (0.368-2.186) 0.825

Fibrosis ishak score (1/2&3/4&5/6 vs. 0) 212 2.154 (1.199-3.953) 0.011

Vascular invasion (Yes vs. No) 315 1.306 (0.821-2.083) 0.261
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FIGURE 3

Differential SMS expression as a prospective biomarker of poor prognosis and to discriminate HCC samples. (A) OS, DSS and PFS of SMS mRNA
in HCC cohort. (B) Time-dependent ROC analysis of SMS expression in HCC. (C) Forrest plot of univariate and multivariate Cox regression
analysis in HCC. (D) Nomogram of SMS and other prognostic factors in HCC. (E) ROC curve assessing the performance of SMS for HCC
diagnosis.
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FIGURE 4

ICB immunotherapy response predict and Immune infiltration analysis. (A) Differences in TIDE prediction score between the indicated groups.
(B) Expression of immune checkpoints between the indicated groups. (C) Heatmap of immune responses between the indicated groups.
(D) ssGSEA immune cells scores between the indicated groups in boxplots. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 vs. indicated control,
ns, no significance.
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Co-expression networks of SMS in HCC

Analyzing the co-expression network of SMS in the LIHC

cohort by Linkedomics, we expected to reveal gene interactions

and thereby mine SMS gene function. There were 12,073 genes

and 7,842 genes that had significant positive and negative

correlations with SMS, respectively (false discovery rate, FDR

< 0.01) (Figure 7A). Then, from the above two correlation

groups, the top 50 genes were selected to make a heat map
Frontiers in Immunology 10
display (Figure 7B). SMS expression was extremely positively

correlated with ACOT9 (positive rank #1, r = 0.568, p = 3.38E-

32), EIF2S3 (r = 0.560, p = 3.65E-31) and TUBA1C (r = 0.512,

p = 1.66E-25).

Next, we assessed high- or low-risk genes by hazard ratios

(HR) in the HCC overall survival analysis. The results showed

that the top 20 positively correlated co-expressed genes and the

top 20 negatively correlated co-expressed genes may be high-risk

genes and low-risk genes of HCC, respectively (p < 0.05,
B
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D

A

FIGURE 5

SMS expression within the tumor immune microenvironment of HCC. (A) UMAP annotated with cell types (Up panel) and colored by SMS
positive cells (red) and none (gray) (Down panel). (B–D) Heatmaps of SMS gene expression positivity rates for each immune cell subset in
GSE98638 (B), GSE125449 (C), and GSE140228 (D).
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FIGURE 6

Functional analysis of DEGs in HCC patients with distinct SMS levels. (A) SMS expression in HCC patients with or without Hepatitis virus infection
and in normal liver tissues. (Left, HBV; Right, HCV) (B) The heatmap of differential gene expression between the indicated groups. (C) Volcano
plots of the gene expression profile data. (D) Up- and down-regulated genes were analyzed for GO terms and KEGG pathway. (E) GSEA of the
high and low SMS expression clusters. (F) ssGSEA scores of 19 functional pathways related to cancer between the indicated groups. *p<0.05,
**p<0.01, ***p<0.001, ****p < 0.0001 vs. indicated control, ns, no significance.
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Table 3). Therefore, SMS is likely to promote HCC progression

by regulating the risk factors of HCC.

Finally, the top 50 positively correlated genes and the top 50

negative correlated genes were used for GO and KEGG
Frontiers in Immunology 12
enrichment analysis respectively. The result indicated that

SMS co-expressed genes were chiefly related to neutrophil

immune response pathway and organic matter catabolism

process (Figure 7C). KEGG pathway analysis indicated that
frontiersin.org
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FIGURE 7

Genes co-expressed with SMS in HCC. (A) Co-expressed genes with SMS in HCC. (B) Indicated co-expressed genes co-transcript with SMS in
HCC. (C) Indicated co-expressed genes with SMS were analyzed for GO terms and KEGG pathway.
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co-expressed genes were chiefly enriched in the Salmonella

infection and Valine,leucine and isoleucine degradation

(Figure 7C). These results suggest that SMS may be involved

in immune-related processes in HCC.
Discussion

Liver is the principal organ of amino acid metabolism.

Alterations in amino acid metabolism are characteristics of

HCC (50). In the present study, we screened an amino acid

metabolism-related SMS gene in TCGA-LIHC dataset. SMS

catalyzes the final step in the production of spermine from

arginine and plays a key role in maintaining normal spermine

levels (51, 52). Disordered expression of SMS has been found in

colorectal cancer and breast cancer (53, 54). Analysis of multiple

cancer clinical research datasets showed that aberrant SMS

expression is a common phenomenon in most cancers. In this

research we focused on liver cancer. Based on in-depth mining of

RNA-seq data combined with relevant clinical information of

HCC, we observed that the elevated SMS expression was related

to poor prognosis of HCC patients. Moreover, this effect of SMS

was independent of other factors through Single-gene binary

logistic regression analysis and COX regression analysis.

According to the timeROC curve analysis, we believed that
Frontiers in Immunology 13
SMS expression could help to infer the survival rate of HCC

patients. Meanwhile, SMS expression raised with HCC tumor

stage development, implying that SMS is related to HCC

development. Furthermore, when assessing the sensitivity and

specificity of SMS expression in predicting HCC tissue from

normal tissue by ROC curve, it was found that the predictive

capability of variable SMS was accurate in predicting tumor and

normal prognosis (AUC = 0.959, CI = 0.944-0.973). Taken

together, we speculate that the high expression of SMS in

HCC patients would cause spermine accumulation, which is

confirmed in the urine and plasma of cancer patients (55).

Therefore, SMS might be employed as prospective biomarkers

for diagnosis and prognostication of clinical consequences

for HCC.

Owing to the limitations of HCC diagnostic techniques,

patients often lose the opportunity for thoroughgoing

treatment such as surgery or liver transplantation (3).

Therefore, ICB therapy gives hope of cure for patients with

advanced HCC (10). To evaluate the effect of SMS expression on

the efficacy of ICB, we used the TIDE algorithm and discovered

that TIDE score increased in the high-expressing SMS group.

TIDE score is positively correlated with the incidence of immune

escape, which may account for the poor response to ICB therapy

(32). Through public data mining, we found that mRNA

transcription level of immune checkpoints was generally

increased in HCC with the higher SMS expression. Moreover,
frontiersin.org
TABLE 3 Overall survival analysis of the top 20 genes positively and negatively correlated with SMS in HCC.

Neg Genes HR Log-rank P Pos Genes HR Log-rank P

SORBS2 0.50 (0.35-0.71) 0.000 ACOT9 1.29 (0.91−1.82) 0.150

ALAD 0.72 (0.51-1.02) 0.064 EIF2S3 1.67 (1.18−2.36) 0.004

IVD 0.59 (0.42−0.84) 0.003 TUBA1C 1.99 (1.40−2.81) 0.000

STARD5 0.57 (0.40−0.80) 0.001 RBBP7 1.56 (1.10−2.20) 0.011

BTNL9 0.53 (0.38−0.76) 0.000 CMTM7 1.80 (1.27−2.54) 0.001

CYP4V2 0.61 (0.43−0.86) 0.004 MAGED2 1.44 (1.02−2.04) 0.036

SLC6A1 0.67 (0.47−0.94) 0.020 NAP1L1 1.70 (1.21−2.41) 0.002

SELENBP1 0.78 (0.55−1.11) 0.161 DYNC1LI1 2.15 (1.52−3.04) 0.000

CRY2 0.69 (0.49−0.97) 0.032 ARPC3 1.50 (1.06−2.12) 0.021

RORC 0.64 (0.45−0.90) 0.011 TMSB10 1.65 (1.17−2.33) 0.005

CLMN 0.85 (0.60−1.20) 0.352 TREM2 1.44 (1.02−2.03) 0.038

DCAF8 1.00 (0.71−1.41) 0.998 PFDN4 1.78 (1.26−2.51) 0.001

NDRG2 0.69 (0.49−0.98) 0.033 BCAS4 1.62 (1.15−2.29) 0.006

DCAF11 0.85 (0.60−1.20) 0.361 TUBA1B 1.56 (1.10−2.21) 0.011

ABAT 0.56 (0.40−0.79) 0.001 IMPDH1 2.15 (1.52−3.04) 0.000

ACOX1 0.79 (0.56−1.12) 0.180 GYG1 1.80 (1.27−2.54) 0.001

ACBD4 0.82 (0.58−1.16) 0.254 RGS10 1.56 (1.10−2.19) 0.013

PPARA 1.02 (0.72−1.44) 0.919 RHOG 1.54 (1.09−2.17) 0.016

CRAT 0.88 (0.62−1.24) 0.469 CCT5 1.61 (1.13−2.27) 0.007

SEPSECS 0.71 (0.50−1.00) 0.049 PLAUR 1.55 (1.10−2.18) 0.013
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SMS expression was shown to be associated with HCC immune

infiltration. Evidence suggests that SMS can be a potential

biomarker for predicting response to ICB therapy.

Various stromal cells, cytokines, chemokines, etc. in the tumor

microenvironment can regulate tumor development and have

become potential therapeutic targets. Using publicly available

hepatocellular carcinoma single-cell transcriptomic data analysis,

we assessed the distribution of SMS expression in the immune

microenvironment of HCC. We discovered that immune cells with

immunosuppressive effects in the immune microenvironment of

HCC have a higher proportion of SMS-positive cells. Especially,

liver promotes immune tolerance, preventing antigenic overload of

certain substances absorbed from the gut (56). This study shows

that a higher proportion of SMS-positive immune cells with

immunosuppressive effects may promote the formation of

stronger immunosuppressive environment in HCC, which is

defined as “cold tumor” (57). Some SMS inhibitors could

significantly enhance the therapeutic efficacy of polyamine

depletion approaches, particularly in spermine-rich tumors (58–

60). Tumor cells can consume a large amount of arginine in the

tumor microenvironment, resulting in the lack of arginine in the

tumor microenvironment, and the activation of anti-tumor

immune cells will inevitably be inhibited (61). Therefore,

inhibition of SMS to prevent arginine degradation in the tumor

microenvironment is an attractive strategy to reactivate immune

responses. Above findings indicate that inhibit the expression of

SMS could result to the advancement of therapeutic strategies to

weaken immunotherapy resistance in HCC and enhance

checkpoint blockade therapy efficacy.

To get a full understanding about activity of SMS in HCC,

we used TCGA-LIHC data to obtain DEGs by comparing the

expression profiles of two groups (high and low expression of

SMS). Interestingly, hepatitis virus infection, as a potential factor

in the development of HCC, did not affect SMS expression.

Furthermore, as indicated by GO and KEGG analysis, we

discovered the SMS was correlated with chromosome

segregation, mitotic nuclear division, organic and carboxylic

acid biosynthetic process, etc.

Moreover, those important immune-related pathway, such

as Intestinal immune network for IgA production, Fc gamma R-

mediated phagocytosis, Antigen processing and presentation,

Th1 and Th2 cell differentiation (Figure 6E), and cancer-related

signaling pathways, such as MYC targets, G2 M checkpoint,

activated E2F targets and PI3K-AKT-mTOR signaling

(Figure 6F and Extended Data Figure S3), are closely related to

the expression level of SMS in HCC when tested using GSEA,

GSVA and ssGSEA. These results suggest that SMS

overexpression is not only related to the immunosuppressive

effect of tumor immune microenvironment, but also may be

involved in the regulation of multiple tumor-related

signaling pathways.
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On the other hand, we analyzed genes significantly associated

with SMS expression in HCC. We found some genes that were

aberrantly expressed and associated with the overall survival of

HCC, and these genes might constitute a network regulating the

course of HCC with SMS. Pathway enrichment analysis of these

genes showed that the regulatory network chiefly facilitated

immune cell activity, which may further participate in the

formation of immunosuppressive function in the immune

microenvironment of HCC.

All data illustrates that SMS expression is widely drawn into

the occurrence and development of cancer. In-depth study of the

regulation mechanism of SMS expression and its regulatory

network will contribute to clarify the pathogenic mechanism

and the mechanism of immune escape in HCC.

Although this study expanded our knowledge of the

connection between SMS and HCC, there were still some areas

for improvement. Above all, the expression of SMS needs to be

further verified in clinical samples. Next, the mechanistic details

of the involvement of SMS in HCC development remain to be

experimentally explored.

In conclusion, this study is the first to find that SMS expression

is upregulated in HCC.We believe that SMS could be considered as

a potential biomarker of poor prognosis and its expression level

could provide a therapeutic reference for related HCC patients.

Besides, the role of SMS in the tumor immune microenvironment

makes it a potential target for immunotherapy in HCC.
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