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Background: Epstein-Barr virus-associated gastric cancer (EBVaGC) exhibits

unique histological characterist ics within the immune-cell-r ich

microenvironment, but the role of tertiary lymphoid structure (TLS) in

EBVaGC is not yet fully understood.

Methods: We retrospectively identified EBVaGC from 8517 consecutive GC

cases from the two top cancer centers in China. Furthermore, we evaluated the

prognostic value of TLS in 148 EBVaGC patients from our institute and then

validated it in an external cohort (76 patients). TLS was quantified and its

relationships with overall survival (OS) and therapeutic response were further

analyzed. Multiplex immunofluorescence staining and targeted sequencing

were used to characterize the composition of TLS and the genomic

landscape, respectively.

Results: In our study, EBVaGC was observed in 4.3% (190/4436) and 2.6% (109/

4081) of GCs in the training and validation cohorts, respectively. TLS was

identified in the intratumor (94.6%) and peritumor (77.0%) tissues with lymphoid

aggregates, primary and secondary (i.e., mature TLSs) follicles in EBVaGC.

Kaplan-Meier analysis showed that mature TLS in intratumoral tissues was

associated with a favorable OS in the training and validation cohorts (p <
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0.0001; p = 0.0108). Multivariate analyses demonstrated that intratumoral TLS

maturation, pTNM, and PD-L1 expression were independent prognostic factors

for OS (p < 0.05). Furthermore, the mature TLS was significantly associated with

a good response to treatment in EBVaGC patients. Interestingly, the mutation

frequency of SMARCA4 was significantly lower in the mature TLS groups.

Conclusions: Intratumoral mature TLS was associated with a favorable

prognosis and good therapeutic response, suggesting that it is a potential

prognostic biomarker and predicts a good therapeutic response in EBVaGC

patients.
KEYWORDS

Epstein-Barr virus-associated gastric cancer, tertiary lymphoid structure, prognosis,
therapeutic response, PD-1
Introduction

Gastric cancer (GC) is the fifth most common cancer and the

third leading cause of cancer-related deaths worldwide (1). Most

GCs are typically diagnosed at an advanced stage with limited

interventions available (1). What’s more, GC is a kind of tumor

with strong spatial-temporal heterogeneity and complex tumor

microenvironment, and advanced GCs present a significant

he t e rogene i t y in re sponse to chemotherapy and

immunotherapy. Thus, parameters that could describe and

discriminate different tumor environments are urgently

needed. Here we focus on the feature and prognostic value of

the tertiary lymphoid structures (TLSs) in Epstein-Barr virus

(EBV)-associated GCs (EBVaGCs) patients.

According to the molecular classifications of The Cancer

Genome Atlas (TCGA), EBVaGC exhibits distinctive molecular

profi l es showing sensi t iv i ty to chemotherapy and

immunotherapy (2–7). Besides, advanced EBVaGC presents a

better response to chemotherapy with platinum and 5-

fluorouracil (6, 8, 9). Furthermore, a considerable range of

objective response rates (25%-100%) to PD-1 inhibitors has

been shown in different studies of EBVaGC patients (10–15).

Admittedly, the tumor microenvironment plays a very

important role in tumors’ response to chemotherapy and

immunotherapy. Thus, deciphering the heterogeneity of the

tumor microenvironment is urgently needed for precise

treatment (16).

TLSs are ectopic lymphoid aggregates that are typically

formed in response to immunological stimuli, including solid

tumors, and potentially act as a functional immune site (17).

Recent studies have confirmed the merits of TLSs in response to

anticancer treatment, such as chemotherapy, targeted therapy,

and immunotherapy (18–23). The clinical implications of TLSs

currently in EBVaGC patients remain to be elusive.
02
In this study, we comprehensively investigated the TLSs,

PD-L1 expression, and the mutation profile in order to assess the

prognostic value and analyze the clinicopathological relevance of

TLSs in EBVaGC patients. We also sought to establish a

promising clinicopathological prognostic model consisting of

tumor microenvironment parameters in EBVaGC patients.
Materials and methods

Patient population

This study included 2 EBVaGC cohorts from 2 independent

institutions in China. The SYSUCC cohort enrolled patients

from Sun Yat-sen University Cancer Center (Guangzhou,

China) from January 2015 to December 2019. The external

validation cohort consisted of patients from the Chinese

Academy of Medical Sciences and Peking Union Medical

College (Beijing, China) from January 2014 to December 2017.

Cases were collected retrospectively with the following eligibility

criteria: (1) patients aged between 18 and 80 years; (2)

pathologically confirmed diagnosis of GC; (3) positivity for

EBV-encoded RNAs (EBERs); (4) tumor infiltration beyond

the mucosa; (5) undergoing primary and curative resection;

(6) provision of written informed consent; and (7) having

complete follow-up information. The exclusion criteria were as

follows: (1) a diagnosis or history of any other concurrent

malignancies; (2) patients without available archived tumor

tissues or complete follow-up data. Tumor differentiation was

determined based on the World Health Organization (WHO)

classification of Tumors of the Digestive System (2019 version).

The tumor stage was determined according to the American

Joint Committee on Cancer/International Union against Cancer

TNM (tumor-node-metastasis) classification system (8th
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Edition). Approval for this study was granted by the Institute

Research Medical Ethics Committee of Sun Yat-sen University

Cancer Center and Chinese Academy of Medical Sciences and

Peking Union Medical College.
EBER in situ hybridization

EBER was examined on formalin-fixed paraffin-embedded

specimens using an in situ hybridization (ISH) kit (ISH-7001,

Zhongshan Jinqiao Biotechnology Co., Ltd., Beijing, China/Leica

Biosystems, Newcastle, UK) strictly according to the

manufacturer’s instructions. Positive and negative control

tissues were synchronously included on each slide. The results

were interpreted by senior pathologists to exclude nonspecific

staining and misclassification.
PD-L1 immunohistochemistry
and scoring

The blocks were cut into 5-mm sections and processed for

immunohistochemistry (IHC) using an anti-PD-L1 monoclonal

antibody (22C3, Dako, Glostrup, Denmark) following a

previously described protocol (24). Immunoreactivity for PD-

L1 was scored using the combined positive score (CPS) method

as follows: the number of positive cells (including cancer cells,

lymphocytes, and macrophages)/the total number of surviving

tumor cells, multiplied by 100. The positive expression of PD-L1

was defined as a CPS ≥ 1.
Pathological review

All specimens were processed with hematoxylin and eosin

(H&E) staining. Histopathological slides were assessed by two

experienced pathologists (Y.-H. Ling and M.-Y. Cai), who were

blinded to the patients’ outcomes. Both pathologists re-

examined simultaneously the slides to solve the discrepancies

with a double-headed microscope. TLSs were assessed on H&E

slides, as previously described (25). Aggregates (Agg), primary

follicles (FL-I), and secondary follicles (FL-II) were identified as

the different stages of TLS development. Agg is characterized by

loose, ill-defined clusters of lymphocytes. FL-I is characterized

by oval-shaped clusters of lymphocytes. FL-II is defined by

follicles with the formation of a germinal center and is

considered as mature TLSs.

In the tumor center, tumors without any TLSs were defined

as TLS- and others as TLS+. Cases included in the TLS+ group

were further subdivided according to the maximum degree of

TLS maturation. For example, FL-II: at least 1 FL-II regardless of

the presence of Agg and FL-I (25). TLSs were classified as TLS-,

Agg, FL-I, and FL-II according to this criterion. In the tumor
Frontiers in Immunology 03
margin (TM), TLSs were classified as TLSTM-, TM Agg, TM FL-

I, and TM FL-II as in the tumor center. We also assessed the

density of TM FL-II (i.e., mature TMTLSs) and FL-II (i.e.,

mature TLSs) per mm2. Areas of tumor margins located up to

2 mm from the infiltrative tumor border were scored in the

analysis (25).
Multiplex immunofluorescence staining
and evaluation

Six cases with EBVaGC were subjected to multiplex

immunofluorescence staining. The staining was performed

according to the manufacturer’s protocol with the following

markers: CD20 (Roche, 760-2531), CD21 (ZSGB-BIO, ZA-

0525), CD4 (ZSGB-BIO, ZM-0418), CD8 (ZSGB-BIO, ZM-

0508), and FOXP3 (Abcam, ab20034) using a PANO 7-plex

IHC kit. Cell nuclei were stained with DAPI (1:2000 dilution).

Multiplexed color slides were imaged with a Polaris slide scanner

(AKOYA BIOSCIENCES) and five random areas on each

sample were analyzed blindly at 200× magnification using

HALO analysis software (Indica Labs).
Targeted next-generation sequencing

To elucidate the genomic landscape of EBVaGC, 39 resected

EBVaGC tumors were sequenced on a targeted panel consisting

of 295 cancer-related genes (Burning Rock Biotech Ltd,

Guangzhou, China), as previously described (26). In brief,

DNA extraction and determination concentration were

performed according to the manufacturer’s instructions.

Hybridization, hybrid selection, and polymerase chain reaction

amplification were then carried out, and the indexed samples

were sequenced on a Nextseq 500 sequencer with paired-end

reads. DNA translocation analysis was performed using both

Tophat2 and Factera 1.4.3.

For TCGA (5), we extracted EBVaGC patients with

pathological images (25 of 26 patients) and downloaded

somatic mutation data (25 of 26 patients) and RNA-seq data

(24 of 26 patients) from University of California Santa Cruz

(UCSC) Xena database exploration program (https://

xenabrowser.net/datapages/) for the comparative analysis.
Immune infiltration analysis based on
single-sample gene set enrichment
analysis scores

The immune infiltration landscape of the TCGAGC samples

was analyzed by single-sample gene set enrichment analysis

(ssGSEA) according to the expression levels of immune cell-

specific genes from the RNA-seq data. Marker genes
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representing 24 types of immune cells were defined with the

recognized published article (27).
Statistical analysis

Statistical analysis was computed using the SPSS 25.0

software package (Chicago, IL, USA) and R version 3.6.1.

Categorical variables were analyzed by the chi-square test or

Fisher’s exact test and continuous variables were analyzed with

the t-test or Mann-Whitney test. For the univariate analysis,

survival curves were obtained by the Kaplan-Meier method, and

the differences between subgroups were analyzed by the log-rank

test. Multivariate survival analyses were conducted using the

Cox proportional hazard regression model. The curve was used

to evaluate the accuracy of clinical risk factors in predicting

overall survival (OS). Nomogram and calibration plots were

constructed using the RMS package of R version 3.6.1. Mutation

profiles and ssGSEA scores were performed using the maftools

packages and gsva package. Two-sided p values of < 0.05 were

considered statistically significant.
Results

Clinical characteristics

From January 2015 to December 2019, there were 4,436

patients diagnosed with GC, 190 (4.3%) of whom were identified

as EBER-positive using ISH detection (Figures S1 and S2) in Sun

Yat-sen University Cancer Center (Guangzhou). A total of 148

cases (SYSUCC cohort) with curative resection and complete

clinicopathological data were included in the present study

(Figure S1). Adjuvant chemotherapies with XELOX

(oxaliplatin and capecitabine), SOX (oxaliplatin and S-1), or S-

1 regimens were administered to 93 EBVaGC patients. In

addition, eight patients received neoadjuvant chemotherapy

with a XELOX or SOX regimen. In the external validation

cohort, EBVaGC accounted for 2.6% (109/4081) of GCs, and

76 cases were included from January 2014 to December 2017.

The baseline clinicopathological features are shown in Table 1

and S1.

In the SYSUCC cohort, there were 131 (88.5%) males, with a

median age of 57 years and a median tumor size of 4.75 cm.

Most of the patients were diagnosed at stage III or IV (n = 98,

66.2%), and exhibited poor differentiation (n=83, 59.3%),

vascular invasion (n=74, 52.1%), neural invasion (n=95,

66.9%), no recurrence (n=94, 75.8%), and positive PD-L1

expression (n=78, 52.7%). In the external validation cohort,

there were 67 (88.2%) males, with a median age of 57 years

and median tumor size of 4 cm. Most of the patients were

diagnosed at stage I or II (n = 50, 65.8%), with poor
Frontiers in Immunology 04
differentiation (n=73, 96.1%), vascular invasion (n=49, 64.5%)

and positive PD-L1 expression (n=63, 82.9%).
Correlations between TLSs and
clinicopathological characteristics

In the SYSUCC cohort, 8 (5.4%) patients were TLS-, whereas

140 cases were TLS+. Among the TLS+ cases, the maximum

degree of TLS maturation was Agg, FL-I, and FL-II in 15

(10.1%), 30 (20.3%), and 95 (64.2%) cases, respectively.

Representative images depicting the degree of TLS maturation

are shown in Figure 1. We further defined Agg, and FL-I as non-

mature TLSs and FL-II as mature TLSs. Mature TLSs were

negatively associated with tumor size (p < 0.001), lymphatic

metastasis (p = 0.030), distant metastasis (p < 0.001), pTNM

classification (p < 0.001), vascular invasion (p < 0.001), neural

invasion (p = 0.013), and tumor recurrence (P < 0.001; Table 1

and Figure S3). In the external validation cohort, 40 (52.6%)

patients were non-mature TLSs, whereas 36 (47.4%) cases were

mature TLSs. Mature TLSs patients were associated with earlier

T category (p < 0.001), fewer lymphatic metastasis (p < 0.001),

and earlier pTNM classification (p < 0.001; Table S1).

In the tumor margin, TLSTM-, TLSTM Agg, TLSTM FL-I,

and TLSTM FL-II (Figure 1) were observed in 34 (23.0%), 11

(7.4%), 24 (16.2%), and 79 cases (53.4%), respectively.

Consistent with the definitions at the tumor center, we

determined TLSTM-, TM Agg, and TM FL-I as non-mature

TMTLSs, and TM FL-II as the mature TMTLSs. In the external

validation cohort, non-mature TMTLSs and mature TMTLSs

were observed in 13 (17.1%) and 63 (82.9%) cases, respectively.

Similar to the observations at the tumor center, further

correlation analysis indicated that the mature TMTLSs were

negatively associated with certain clinic-pathological features,

including tumor size (p = 0.005), T category (p = 0.003), distant

metastasis (p < 0.001), pTNM stage (p = 0.001), vascular

invasion (p = 0.006), and tumor recurrence (p < 0.001, Table 1

and Figure S3). Similarly, the association between TLSs and

clinicopathological characteristics in the validation cohort was

shown in Table S1.
Multiplex immunofluorescence revealed
the TLS structure

To further characterize the immune cell subsets of the TLSs

in our cohort, CD20+, CD4+, CD8+, CD21+, and FOXP3+ cells

were detected in the non-mature or mature TLSs tumor samples

using multiplex immunofluorescence methods (Figure 2) (28).

Tumor-infiltrating CD4+, CD8+, FOXP3+ T cells, CD20+ B cells,

and CD21+ follicular dendritic cells (FDCs), are indispensable

for forming the immune microenvironment (29–31). Of note,

the percentage of infiltrating immune cells was significantly
frontiersin.org
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TABLE 1 Correlation between the maturation of TLS and clinico-pathological features in EBV-positive gastric cancer in the SYSUCC cohort.

Characteristics Available
number

Tumor center Tumor margin

Non-mature
TLSs

Mature
TLSs

P
valuea

Non-mature
TMTLSs

Mature
TMTLSs

P
valuea

Gender 148 0.624 0.969

Male 131 (88.5%) 46 (35.1%) 85 (64.9%) 61 (46.6%) 70 (53.4%)

Female 17 (11.5%) 7 (41.2%) 10 (58.8%) 8 (47.1%) 9 (52.9%)

Age (years) 148 0.607 0.869

≤ 57.0b 74 (50.0%) 28 (37.8%) 46 (62.2%) 34 (45.9%) 40 (54.1%)

> 57.0 74 (50.0%) 25 (33.8%) 49 (66.2%) 35 (47.3%) 39 (52.7%)

Tumor size(cm) 148 < 0.001 0.005

≤ 4.75c 74 (50.0%) 14 (18.9%) 60 (81.1%) 26 (35.1%) 48 (64.9%)

>4.75 74 (50.0%) 39 (52.7%) 35 (47.3%) 43 (58.1%) 31 (41.9%)

Lauren type 145 0.302 0.643

Intestinal 43 (29.7%) 11 (25.6%) 32 (74.4%) 17 (39.5%) 26 (60.5%)

Diffuse 21 (14.5%) 9 (42.9%) 12 (57.1%) 10 (47.6%) 11 (52.4%)

Mixed 81 (55.8%) 30 (37.0%) 51 (63.0%) 39 (48.1%) 42 (51.9%)

T stage 143 < 0.001 0.003

T1+T2 40 (28.0%) 2 (5.0%) 38 (95.0%) 10 (25.0%) 30 (75.0%)

T3+T4 103 (72.0%) 46 (44.7%) 57 (55.3%) 54 (52.4%) 49 (47.6%)

N stage 141 0.030 0.207

N0 37 (26.2%) 7 (18.9%) 30 (81.1%) 13(35.1%) 24 (64.9%)

N+ 104 (73.8%) 40 (38.5%) 64 (61.5%) 49 (47.1%) 55 (52.9%)

M stage 148 < 0.001 < 0.001

M0 125 (84.5%) 33 (26.4%) 92 (73.6%) 48 (38.4%) 77 (61.6%)

M1 23 (15.5%) 20 (87.0%) 3 (13.0%) 21 (91.3%) 2 (8.7%)

pTNM 148 < 0.001 0.001

I-II 50 (33.8%) 6 (12.0%) 44 (88.0%) 14 4 (28.0%) 36 (72.0%)

III-IV 98 (66.2%) 47 (48.0%) 51 (52.0%) 55 (56.1%) 43 (43.9%)

Vascular invasion 142 < 0.001 0.006

Absent 68 (47.9%) 11 (16.2%) 57 (83.8%) 22 (32.4%) 46 (67.6%)

Present 74 (52.1%) 36 (48.6%) 38 (51.4%) 41 (55.4%) 33 (44.6%)

Neural invasion 142 0.013 0.306

Absent 47 (33.1%) 9 (19.1%) 38 (80.9%) 18 (38.3%) 29 (61.7%)

Present 95 (66.9%) 38 (40.0%) 57 (60.0%) 45 (47.4%) 50 (52.6%)

Differentiation 140 0.068 0.078

Poorly 83 (59.3%) 35 (42.2%) 48 (57.8%) 44 (53.0%) 39 (47.0%)

Moderately 65 (46.4%) 18 (27.7%) 47 (72.3%) 25 (38.5%) 40 (61.5%)

PD-L1 expression 148 0.090 0.435

CPS < 1 70 (47.3%) 30 (42.9%) 40 (57.1%) 35 (50.0%) 35 (50.0%)

CPS ≥ 1 78 (52.7%)) 23 (29.5%) 55 (70.5%) 34 (43.6%) 55 (56.4%)

Recurrence 124 < 0.001 < 0.001

Yes 30 (24.2%) 21 (70.0%) 9 (30.0%) 20 (66.7%) 10 (33.3%)

No 94 (75.8%) 14 (14.9%) 80 (85.1%) 29 (30.9%) 65 (69.1%)

EBV-DNA 64 0.557 0.420

Pos 13 (21.5%) 6 (46.2%) 7 (53.8%) 5 (38.5%) 8 (61.5%)

Neg 51 (78.5%) 19 (37.3%) 32 (62.7%) 26 (51.0%) 25 (49.0%)
Frontiers in Immun
ology
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higher in the mature TLS than in non-mature TLSs (89.9% vs.

58.1%, p = 0.010; Figure S4A). In the mature TLSs samples,

CD20+ B cells were the most frequent immune cells, followed by

CD4+ T cells, CD8+ T cells, CD21+ FDCs, and FOXP3+ T cells at

34.37%, 27.90%, 25.27%, 9.27%, and 3.19%, respectively (Figure

S4B), while their proportions in non-mature TLSs were 25.11%,

36.81%, 25.27%, 0.37%, and 12.44%, respectively (Figure S4B).

Compared with non-mature TLSs, the proportion of CD21+
Frontiers in Immunology 06
FDCs in the mature TLSs was significantly increased, while there

were no significant differences in CD20+ B cells, CD4+ T cells, or

CD8+ T cells. However, there was a higher infiltration of CD4+ T

cells, CD8+ T cells, CD20+ B cells, and CD21+ FDCs in mature

TLSs patients than in non-mature TLSs patients (p = 0.0001;

p = 0.0004; p < 0.0001; p < 0.0001, respectively; Figure S4C).

Moreover, the number of FOXP3+ T cells was lower in the

mature TLSs than in the non-mature TLSs (p = 0.049, Figure
B

C D

A

FIGURE 2

The composition of immune cells in TLSs and PD-L1 expression in EBVaGC tissues. (A-C) Representative images from multiplex
immunofluorescence staining of EBVaGC tumor tissues showing TLSs (FL-II, FL-I, Agg) with the following markers: CD4, CD8, CD20, CD21,
FOXP3, and DAPI. Magnification, x200. (D) PD-L1 expression by immunohistochemistry. EBVaGC, Epstein-Barr virus associated gastric cancer;
TLSs, tertiary lymphoid structures; Agg, aggregates; FL-I, primary follicles; FL-II, secondary follicles.
FIGURE 1

Histopathological classification of tertiary lymphoid structures. TLS-, without any TLSs (red arrow); Agg, Aggregates, loose, ill-defined clusters of
lymphocytes (red arrow); FL-I, primary follicle, oval-shaped clusters of lymphocytes (red arrow); FL-II, secondary follicles, germinal center
formation (red arrow).
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S4C). Taken together, these results suggested that the increased

infiltration of immune cells in mature TLSs may induce an

immune-responsive microenvironment.
Prognostic value of TLSs in EBVaGC

In the univariate analysis, tumor size (p < 0.001), vascular

invasion (p < 0.001), neural invasion (p = 0.005), PD-L1

expression (p < 0.001), T category (p =0.007), lymph node

status (p = 0.029), distant metastasis (p < 0.001), pTNM stage

(p = 0.002), peritumoral TLSs maturation (p < 0.001), and
Frontiers in Immunology 07
intratumoral TLSs maturation (p < 0.001) were significantly

associated with the overall survival of EBVaGC patients (Table

S2; Figures 3 and S5).

The OS improved to a statistically significant degree in the

groups with mature TLSs or mature TMTLSs, compared with

those without mature TLSs or mature TMTLSs (both p < 0.0001;

Figures 3A, B and S5A, B). Among patients not receiving

neoadjuvant chemotherapy, there was still a correlation between

mature TLSs or TMTLSs and better prognosis (both p < 0.0001;

Figures 3C and S5C).

In the validation cohort, the mature TLSs were also

associated with longer OS (p = 0.0108; Figure 3D). However,
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FIGURE 3

Kaplan-Meier estimates of overall survival according to the maturation of intratumoral TLSs (log-rank test). (A) Probability of survival of patients
in TLS-, Agg, FL-I, and FL-II groups in the SYSUCC cohort. (B) Probability of survival of patients in mature TLSs and non-mature TLSs groups in
the SYSUCC cohort. (C) Probability of survival of patients in mature TLSs and non-mature TLSs groups in the SYSUCC cohort, except the
patients receiving neoadjuvant chemotherapy patients. (D) Probability of survival of patients in mature TLSs and non-mature TLSs groups in the
validation cohort. (E) Probability of survival of patients in mature TLSshigh and mature TLSslow groups in the SYSUCC cohort. EBVaGC, Epstein-
Barr virus associated gastric cancer; TLSs, tertiary lymphoid structures; Agg, Aggregates; FL-I, primary follicles; FL-II, secondary follicles.
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there was no difference between the mature TMTLSs and OS

(Figure S5D).

To determine the prognostic significance of TLS density in

our cohort, we defined a threshold for separating patients with

high and low TLS densities using R software. Our results showed

that OS improved in patients with higher mature TLS density in

the tumor center (mature TLShigh, > 1.848 TLSs/mm2)

(p = 0.051; Figure 3E). In the tumor margin, high mature

TLSTM density (mature TMTLShigh, > 0.362 TLSs/mm2) was

significantly correlated with improved OS (p < 0.0001;

Figure S5E).

After adjustment for confounding factors, patients with

mature TLSs had better OS in the multivariate analysis (HR

0.155, 95% CI 0.063 to 0.379; p < 0.001; Table S2). PD-L1

expression and pTNM were retained as independent

prognostic factors in EBVaGC (HR 0.194, 95% CI 0.074 to

0.512; p = 0.001; HR 8.491, 95% CI 1.113 to 64.8; p = 0.039;

Table S2). Collectively, our data suggested that mature TLS

could serve as a precise prognostic biomarker for OS in

EBVaGC patients.

Furthermore, the TLSs maturation affecting the OS of

EBVaGC patients was stratified according to PD-L1 expression

and pTNM. As shown in Figure 4, the mature TLSs were
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associated with better survival in patients in the subgroup of

pTNM: III-IV, CPS < 1 as well as ≥1 (all p < 0.0001).
TLSs as a potential biomarker for therapy
responsiveness in EBVaGC

Adjuvant chemotherapy is a standard treatment for patients

with advanced gastrointestinal cancer (32). In this study, we noted

that the mature TLSs group could have a better OS than the non-

mature TLSs group after adjuvant chemotherapy (p < 0.001,

Figure 5A). Among the four patients treated with anti-PD1,

partial response (PR), stable disease (SD), and progressive

disease (PD) were observed in 1, 1, and 2 cases, respectively.

Interestingly, the 2 PR/SD patients were in mature TLS group,

while the other 2 PD patients were in the non-mature TLS group.
Survival risk and prognostic accuracy
according to different risk factors

To accurately evaluate the survival risk for EBVaGC,

according to the results of the univariate and multivariate
B
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FIGURE 4

Overall survival stratified by clinicopathological risk factors. (A, B) PD-L1 expression (CPS). (C, D) pTNM. EBVaGC, Epstein-Barr virus associated
gastric cancer; PD-L1, programmed death-ligand 1; CPS, the combined positive score; pTNM, pathologic tumor-node-metastasis.
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analyses, we classified the patients into three subtypes based on

three prognostic factors namely intratumoral TLSs maturation,

pTNM, and PD-L1 expression. Risk 1 was defined as the

presence of any risk factor, risk 2 as the presence of any two

risk factors, and risk 3 as the presence of all three risk factors.

This could significantly stratify risk (low, intermediate, and

high) for OS (p < 0.0001; Figure 5B) in the current study.

Furthermore, the combined three clinicopathological risk

factors also showed significantly higher prognostic accuracy
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than any independent clinical risk factor (AUC = 0.845, 95%

CI: 0.799 to 0.915; Figure 5C).
Nomogram predicts the OS probability
for EBVaGC patients

To predict the absolute OS probability for each individual, we

then constructed a nomogram based on the multivariate Cox
B
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FIGURE 5

Intratumoral TLSs are associated with therapeutic response, survival risk, prognostic accuracy, and probability of overall survival in EBVaGC
patients. (A) Kaplan-Meier curves showed different responses to adjuvant chemotherapy in different subgroups of patients in the SYSUCC cohort
(log-rank test). (B) Kaplan-Meier curves showed that the three risk factors successfully stratified risk for the predicted survival of patients with
EBVaGC in the SYSUCC cohort (log-rank test). (C) ROC curves compare the prognostic accuracy of the combined risk factors and any single
independent risk factor in EBVaGC patients. Risk1: presence of at most one risk factors; Risk2: presence of two risk factors; Risk3: presence of
three risk factors. (D) Nomogram for predicting the overall survival of EBVaGC patients with the independent factors. (E, F) The calibration curve
for predicting patient overall survival at 2 years and 4 years in the SYSUCC cohort. (G) The calibration curve for predicting patient overall survival
at 4 years of the validation cohort. EBVaGC, Epstein-Barr virus associated gastric cancer; ROC, receiver operator characteristic.
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model. The C-index in the SYSUCC cohort was 0.862 (95% CI:

0.816 to 0.907), which was superior to that of the C-index of the

pTNM stage (0.792, 95% CI: 0.734 to 0.850; Figure 5D). The

nomogram C-index in the validation cohort was 0.682 (95% CI:

0.553 to 0.812), superior to the C-index of the pTNM stage (0.583,

95% CI: 0.44 to 0.726). The nomogram calibration curve of OS at

2 and 4 years showed optimal agreement between the predicted

and actual observations (Figures 5E-G). We also provide a web-

based tool to predict the survival time for each patient (https://

linwp.shinyapps.io/DynamicNomogramPredictingOS/).
The profiles of somatic aberrations and
immune infiltration in EBVaGC patients

To further investigate the genomic alterations in EBVaGC,

targeting NGS was performed in 29 mature TLSs cases and 10

non-mature TLSs cases in the SYSUCC cohort. Our data showed

that PIK3A and ARID1A were most frequently mutated,

consistent with the molecular profile described in the TCGA

database (Figures 6A, B) (5). The most differentially mutated

genes between non-mature TLSs and mature TLSs groups were

SMAD4 (50% v 17%), LRP1B (40% v 14%), PIK3R1 (0% v 21%),

and SMARCA4 (30% v 3%; p < 0.05; Table S3). Notably, PIK3R1,

TP53, SMARCA4, and EGFR were identified as newly mutated

genes, as these genes were among the top 10 mutated genes in

EBVaGC from the SYSUCC cohort, and they were not mutated

in EBVaGC from the TCGA database (Table S4).
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To characterize the immune microenvironment of EBVaGC

tumors, we also analyzed the expression of TLS markers and PD-

L1 in the TCGA EBVaGC database (Figures 6C and S6).

Consistent with our multiplex immunofluorescence data, the

expression of CD20 and CD21 markers in the mature TLSs

group was significantly higher than that in the non-mature TLSs

(Figure 6C). To decipher the immune landscape of the two

groups, the immune cell-specific marker genes were evaluated

and are displayed in the corresponding heatmap in Figure S6C.

Additionally, plasmacytoid dendritic cells and gamma delta T

cells were significantly enriched in the mature TLS groups

(Figure S6C).
Discussion

In the two-center study, we investigated the spatial

distribution, density, and TLS maturation, as well as its

clinicopathological feature in EBVaGC patients. Our results

showed that mature TLS was associated with a favorable

outcome and response to chemotherapy in EBVaGC patients.

Furthermore, the model combining three independent risk

factors (intratumoral TLS maturation, pTNM, and PD-L1

expression) could significantly stratify the survival risk, and

the corresponding nomogram could predict the probability of

OS efficiently. Moreover, our study presented the molecular

characteristics and immune landscape of EBVaGC patients.

Our study revealed important information on adaptive
B

C

A

FIGURE 6

Mutation spectrum and the expression of TLS markers and PD-L1. (A, B) Waterfall plots show the mutation distribution of the top 50 most
frequently mutated genes in the SYSUCC and TCGA cohorts. (C) The expression of TLS marker and PD-L1 between mature TLS and non-mature
TLS groups among TCGA patients. p < 0.01**. TLS, tertiary lymphoid structures.
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immunity and suggested that TLSs maturation may serve as an

ideal biomarker for tumor response to chemotherapy.

According to the distinctive molecular profiles, EBVaGC is a

potential responder to chemotherapy and immunotherapy.

Intratumoral TLSs were correlated with favorable clinical

outcomes because the TLS-existing microenvironments are

associated with an efficient adaptive immune response (33).

Our study highlights that intratumoral mature TLS was a

favorable prognostic factor for OS in two cohorts of EBVaGC

patients. Besides, peritumoral mature TLSs were also associated

with favorable OS in the SYSUCC cohort. Moreover, our study

showed that mature TLSs were significantly associated with a

good response to adjuvant chemotherapy in EBVaGC patients.

More interestingly, EBVaGC patients with mature TLSs may be

more sensitive to PD-1 inhibitors, suggesting that the mature

TLSs may represent an effective antitumor environment.

B cells in mature TLSs can undergo somatic hypermutation

and class switch recombination to generate effector and memory

B cells (34). Activated B cells can ‘educate’ T cells by presenting

tumor antigens, enabling the T cells to target tumor cells

effectively, whereas T cells in non-mature TLSs tumors may

have a dysfunctional molecular phenotype (34–36). Our

multiplex immunofluorescence results also showed that the

adaptive immune system (CD4+ T cells, CD8+ T cells, CD20+

B cells, and CD21+ FDCs) were more common in mature TLSs

compared with non-mature TLSs. CD20+ B cells and CD21+

FDCs were also enriched in the RNA-seq data from the TCGA.

The analysis of immune infiltration further showed that

plasmacytoid dendritic cells (pDCs) were enriched in the

mature TLS group, which specifically produce type 1

interferon (IFN) to elicit anti-viral programs and modulate

immunity through effects on antigen-presenting cells and T

cells (37, 38). We also found that the expression of MAF and

CD200 (markers for follicular helper T [Tfh] cells) in the TGCA

RNA-seq data were significantly higher in mature TLSs

compared to those of non-mature TLSs. Tfh cells, an essential

constituent of TLSs, promote the germinal center formation and

regulate germinal center B cell differentiation to shape the anti-

tumor environment (39, 40). In summary, the mature TLSs

could exert an anti-tumor immune response by coordinating

both cellular and humoral responses, thus serving as a potential

biomarker of chemotherapy and immunotherapy response in

EBVaGC patients.

Comprehensive molecular alterations hold the promise to

develop novel avenues for precision diagnostics and

therapeutics. In EBVaGCs, PIK3A and ARID1A have been

reported as frequently mutated genes in both previous studies

and TCGA data (5). Interestingly, we found that mutation of

SMARCA4 was less frequent in EBVaGC with mature TLSs.

SMARCA4-altered GC had intratumoral heterogeneity and

histomorphological diversity (41). SMARCA4 can also
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modulate the MYC-related enhancer and promoter in EBV-

infected B cells, indicating that SMARCA4 alterations may be

associated with aggressive EBVaGC (42). We also aim to

investigate the differences in intratumoral B cells between

SMARCA4 mutant and non-mutant EBVaGC patients in our

future work. By characterizing the mutational landscape of

EBVaGC with mature TLSs and non-mature TLSs, we believe

that our work may provide supporting evidence for elucidating

the relevant molecular mechanisms of EBVaGC.

The retrospective nature of this research could be its main

limitation. In addition, the different timeline nature of the two

cohorts may be considered as a limitation of this study.

However, the study was strengthened by the fact that the

cohorts from different timelines had yielded similar results.

Furthermore, NGS analyses revealed four newly mutated genes

in EBVaGC from the SYSUCC cohort. Further molecular

biology experiments are needed to gain important insights into

their functions and underlying machinery. Nevertheless, our

results provide the most compelling and comprehensive

evidence to date for the role of TLSs in the prognosis and

treatment of EBVaGC.

In summary, our findings revealed that mature TLS was a

powerful and favorable prognostic factor for the survival of

EBVaGC patients and could potentially identify patients who

could benefit from adjuvant chemotherapy and immunotherapy.

Furthermore, the three independent risk factors (intratumoral

TLSs maturation, pTNM, and PD-L1 expression) provided the

highest accuracy in predicting the risk and possibility of survival.

The mutation profile also provides significant value for

elucidating the relevant molecular mechanisms of EBVaGC.

The findings from this study yielded new insights into

identifying potential markers for cancer therapy and evidence

for improving the survival of EBVaGC patients.
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