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Heterogeneity of neutrophils
and inflammatory responses in
patients with COVID-19 and
healthy controls
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1Research Service, LTC Charles S. Kettles Veterans Affairs Medical Center, Department of Veterans
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MI, United States, 3Department of Computational Medicine and Bioinformatics, University of
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Severe respiratory viral infections, including SARS-CoV-2, have resulted in high

mortality rates despite corticosteroids and other immunomodulatory therapies.

Despite recognition of the pathogenic role of neutrophils, in-depth analyses of

this cell population have been limited, due to technical challenges of working

with neutrophils. We undertook an unbiased, detailed analysis of neutrophil

responses in adult patients with COVID-19 and healthy controls, to determine

whether distinct neutrophil phenotypes could be identified during infections

compared to the healthy state. Single-cell RNA sequencing analysis of peripheral

blood neutrophils from hospitalized patients with mild or severe COVID-19

disease and healthy controls revealed distinct mature neutrophil subpopulations,

with relative proportions linked to disease severity. Disruption of predicted cell-

cell interactions, activated oxidative phosphorylation genes, and downregulated

antiviral and host defense pathway genes were observed in neutrophils obtained

during severe compared to mild infections. Our findings suggest that during

severe infections, there is a loss of normal regulatory neutrophil phenotypes seen

in healthy subjects, coupled with the dropout of appropriate cellular interactions.

Given that neutrophils are the most abundant circulating leukocytes with highly

pathogenic potential, current immunotherapies for severe infections may be

optimized by determiningwhether they aid in restoring an appropriate balance of

neutrophil subpopulations.
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Introduction

Severe lung injury and systemic inflammation are the main

hallmarks of severe respiratory viral infections, including SARS-

CoV-2 (1). Neutrophils, or polymorphonuclear leukocytes, are

the most abundant leukocyte population in the blood and found

in high numbers in the lung during severe respiratory viral

infections (2). During viral infections, neutrophils can

contribute to viral clearance through mechanisms such as

phagocytosis, and release of neutrophil extracellular traps,

secretion of cytokines and activation of the adaptive immune

response (2–4). However, the overactivation of neutrophils may

cause bystander damage to host tissues and lead to poor

outcomes (2–4). Although neutrophils are considered as a

primary cellular driver of the pathogenesis of acute respiratory

distress syndrome (ARDS) and have been implicated in the

pathophysiology of severe COVID-19 (5–9), the challenges of

isolating neutrophils for analysis and their inability to survive

cryopreservation have resulted in poor understanding of their

function in disease progression (10). Additionally, neutrophils

are still largely considered to be a homogenous effector cell

population with clearly established roles in combatting bacterial

and fungal infections, but their mechanistic contributions to the

immunopathogenesis or clearance of viral infections remain

unclear. While recent studies have started to recognize the

heterogeneity of neutrophils during cancer and other chronic

diseases (11, 12), whether different neutrophil subtypes exist

beyond “immature,” “mature,” and “senescent” is uncertain

during an acute infection. The goal of our study, therefore,

was to test the hypothesis that different phenotypes of mature

neutrophils exist under basal healthy conditions, with

subsequent changes in relative abundance during acute

respiratory viral infections depending on the severity of

immunopathology of COVID-19 disease.

To investigate this, we employed single-cell RNA sequencing

(scRNA-seq) analysis of the peripheral immune response to

SARS-CoV-2, a technique that has provided novel insights into

immune cell heterogeneity and dysregulation during COVID-19

(7, 10, 13–18). Most of the studies to date have utilized preserved

peripheral blood mononuclear cells (PBMC), which are mainly

comprised of monocyte and lymphocyte populations. As a result,

the literature largely reflects an incomplete and possibly biased

picture of increased immature and dysfunctional neutrophils –

largely reflecting low-density neutrophils that are captured in the

PBMC fraction (15, 19, 20). Given that neutrophils are the most

abundant leukocyte in peripheral blood during both health and

infection, a comprehensive analysis of unpreserved, fresh

neutrophils from human subjects is needed in order to

determine whether mature neutrophils have the ability to adopt

distinct phenotypes, and how these phenotypes change during

clinically significant respiratory infections such as SARS-CoV-2.

In this study, we recruited adult subjects hospitalized with

mild or severe SARS-CoV-2 infections, in order to examine how
Frontiers in Immunology 02
neutrophil phenotypes changed based upon the severity of

infection over time, compared to healthy adults. We took care

only to include adult patients who were without significant co-

morbidities or underlying immunosuppressive conditions that

might confound neutrophil phenotypes. Our analysis resulted in

the identification of 7 mature and 2 immature neutrophil

clusters, which had differential pathway activation patterns.

Our results also demonstrated that quantitatively and

qualitatively, neutrophils are a potentially more robust cellular

regulator of inflammatory responses than monocytes, further

underscoring the importance of investigating the considerable

heterogeneity of responses in the neutrophil population.
Methods

Patient cohort, biological samples, and
preparation of single-cell suspensions

A total of 11 patients admitted with SARS-CoV-2 infections

and 5 healthy control subjects (all outpatients) were enrolled

from the Veterans Affairs Ann Arbor Healthcare System and

Michigan Medicine University Hospital. Between June, 2020 and

June, 2021, all adult patients admitted with COVID-19 disease

to these two facilities were screened and recruited if they

had no evidence of baseline immunosuppression (e.g.,

chronic prednisone use of 15 mg or more daily, other

immunosuppressive medications, HIV infection, neutropenia),

ac t ive or recent mal ignancy within past 5 years ,

immunomodulatory therapies (e.g., biologics), chronic

infection (e.g., hepatitis viral infection), significant systemic

autoimmune disease, chronic malnutrition or debility,

significant chronic organ dysfunction (e.g., chronic liver

disease, poorly controlled diabetes, severe COPD or lung

disease, heart failure with EF<40%), chronic alcohol

consumption of >5 drinks a day, or active co-infection other

than SARS-CoV-2. 11 patients with COVID-19 were classified

into two groups based upon severity – “mild” (n = 4, hospitalized

but needing <50% O2), or “severe” (n = 7, hospitalized but

needing > 50% O2 or in Intensive Care Unit). Out of seven

patients with severe symptoms, 4 patients deteriorated clinically

and passed away. The demographic and disease characteristics of

the prospectively recruited patients studied by scRNA-seq are

listed in Supplementary Figure 1. All participants had to be

capable of providing written informed consent for sample

collection and subsequent analyses.

Within 72 hours of hospital admission (“T1”) and 5-7 days

later (“T2), blood was collected into lavender top tubes (EDTA)

and processed immediately after collection except that one

patient was sampled day 15 days later. Data from this patient

passed our strict quality control and clustered with the other

patients within the same group. Healthy control subjects and 2

Veterans who were discharged did not get a second sample. For
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PMBC and granulocyte isolation from patient blood, 5ml of

blood was carefully layered on 5ml of Lymphocyte-poly isolation

media (NC9950836, Fisher) in a 15ml conical tube in a biosafety

cabinet. The sample was spun in a sealed bucket at room

temperature, 500g, 35 minutes. After centrifuge, leukocyte

bands containing mononuclear cells and granulocytes were

transferred to another 50 ml conical tube. Cells were diluted

with an equal volume of HBSS without Calcium and Magnesium

and spun at room temperature, 350g for 10min. The supernatant

was removed from each pellet and suspended in 5ml 1x ACK

lysis buffer for 2 minutes. Pellets were suspended with PBS

containing 0.04% BSA and then counted. An aliquot of

mononuclear and granulocyte cells was processed in a

cytospin and stained using Diff Quick (26096-25, Electron

Microscopy Sciences). Cell differentials were counted, and the

mononuclear and granulocyte populations were combined to

achieve a 1:1 ratio. Cells were immediately processed for the

single-cell RNA library. For all samples, cell viability

exceeded 90%.
Single-cell RNA library preparation
and sequencing

The scRNA-seq libraries were constructed using a

Chromium Next GEM Single Cell 3ʹ Reagent Kit v3.1 (10X

Genomics) according to the manufacturer’s introduction. In

brief, the cell suspension (700-1,200 cells per ul) was loaded

onto a Chromium single cell controller to generate single-cell gel

beads in the emulsion (GEMs). Following this, scRNA-seq

libraries were constructed according to the manufacturer’s

instructions. The libraries were sequenced using an Illumina

Novaseq sequencer at Advanced Genomics Core of the

University of Michigan using the suggested cycling from

10X Genomics.
Single-cell RNA-seq data processing

We aligned single-cell RNA sequencing data against the

GRCh38 human reference genome and preprocessed using

cellranger pipeline (version 6.0.0). A preliminary single-cell

gene expression matrix was then exported from cellranger for

further analysis. Quality control was applied to cells based on

three metrics - the total UMI counts, number of detected genes,

and proportion of mitochondrial gene counts per cell.

Specifically, cells with less than 500 UMI counts and 200

detected genes were filtered out, as well as cells with more

than 20% mitochondrial gene counts. Thereafter, we applied

DoubletFinder, which identifies doublets formed from

transcriptionally distinct cells (21), to remove potential

doublets. The expected doublet rate was set to be 0.075, and

cells predicted to be doublets were filtered out. After
Frontiers in Immunology 03
quality control, a total of 108,597 cells were collected for

further analysis.
Clustering and cell-type annotation

We used Seurat (22) to integrate and cluster the collected single

cells fromCOVID19 patients and healthy controls. The gene counts

for each cell were normalized by LogNormalize method, which

divides gene counts by the total counts for that cell and multiplied

by the scale.factor. The normalized gene counts were then natural-

log transformed using log1p function. The top 2000 most variable

genes were selected using FindVariableFeatures functions for the

clustering of single cells. We used dimensions of reduction 30 and

resolution 0.3 for the cluster analysis. We used SingleR (23) and

human primary cell atlas reference (24) to annotate cell types of

single cells. The cell type of the cluster was determined by the

dominant cell type in each cluster. The proportion of B cells, T cells,

and NK cells in every sample was further calculated to determine

the consistency between our data and observed in other published

data (25, 26) in the cell type composition difference between severe

COVID19 patients and healthy controls.
Cellular crosstalk analysis

We used iTALK (27) to identify and visualize the possible

cellular crosstalk mediated by up-regulated ligand-receptor pairs

between each cell type in COVID19 patients. We used the

cytokine/chemokine category in the ligand-receptor database

for this analysis. We usedWilcoxon rank-sum test to identify the

significantly up-regulated genes (adjusted P-value <0.05 &

average log fold change >0.1) for every cell type in the severe

and mild COVID19 patients, respectively, compared with

healthy controls at day 0. We also identified up-regulated

genes (adjusted P-value <0.05 & average log fold change >0.1)

between day 5 and day 0 in recovered mild COVID19 patients

and deceased severe COVID19 patients, respectively. We then

matched and paired the up-regulated genes against the ligand-

receptor database to construct a putat ive cel l-cel l

communication network using iTALK. The iTALK defines an

interaction score using the log fold change of ligand and receptor

to rank these interactions.
Feature genes and pathways
for neutrophils

We collected neutrophil cells from mild and severe

COVID19 patients within 72 hours of hospital admission

(“T1”), as well as healthy controls to identify significantly up-

regulated feature genes (adjusted P-value <0.05 & average log

fold change >0.1) by comparing neutrophils from one type
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(healthy, mild, or severe) to the rest of neutrophils from other

types, using cells as biological replicates. The overlap among

feature genes identified in healthy, mild, and severe groups was

presented in the Venn plot using the Venn package. The top 10

feature genes for each type of neutrophil were presented in a

bubble plot using the DotPlot function from the Seurat package.

These feature genes were then mapped to human protein-

protein interactions (PPIs) downloaded from the BioGRID

database (version 4.4.197) using R. The KEGG pathways

significantly enriched (adjusted P-value <0.05) in feature genes

that connected by PPIs were identified using enrichKEGG

function from clusterProfiler package (28). The GSEA analysis

was performed using clusterProfiler package (28). The bipartite

plot of significant pathways, genes, and PPIs was presented using

the Cytoscape tool (29).
Neutrophil cluster analysis

We integrated neutrophils from mild and severe COVID19

patients, as well as healthy controls to identify neutrophil clusters

using resolution 0.5 in Seurat. The significantly up-regulated

(adjusted P-value <0.05 & average log fold change >0.1) feature

genes for each neutrophil cluster were identified by comparing one

cluster to all other clusters. The top 5 feature genes for each cluster

were shown in a bubble plot using DotPlot function from the Seurat

package. The KEGG and GO pathways significantly enriched

(adjusted P-value <0.05) in feature genes were identified for each

cluster using clusterProfiler package. The top 3 significant pathways

(KEGG) and all significant pathways (GO) were shown in the

bubble plot using ggplot2 package. The composition changes of

each cluster among healthy control, mild and severe COVID19

were identified using student’s t-test and presented using ggpubr

package.We define the severity of COVID19 from 1 to 4, in which 1

means healthy, 2 means mild, 3 means severe but recovered, and 4

means severe patient that deteriorated clinically and later passed

away. The association between composition changes of each cluster

and severity of COVID19 were identified using spearman’s

correlation and the Hmisc package. The significant associations

were shown using corrplot package. We further identified

differentially expressed genes (DEGs) between severe and mild,

mild and healthy respectively, for each cluster that associated with

the severity of COVID19. The KEGG pathways significantly

enriched (adjusted P-value <0.05) in DEGs were identified using

the gseKEGG function from clusterProfiler package. The

normalized enrichment score (NES) of significant pathways

indicates the activation status of the pathway.
Statistics

Statistical analysis was performed using R with Student’s t

test or analysis of variance (ANOVA). Asterisks on figures
Frontiers in Immunology 04
indicate statistical significance as follows: *P < 0.05, **P < 0.01,

***P < 0.001, and ****P < 0.0001.
Study approval and ethics

This study was approved by the Veterans Affairs Ann Arbor

Institutional Review Board (IRB) and University of Michigan

IRB (IRB-2020-1228 and HUM00181804, respectively). All

participants provided written informed consent for sample

collection and subsequent analyses. Study procedures adhered

to full ethical and safety standards.
Results

Neutrophils are major contributors to
the inflammatory response relative to
other leukocytes during COVID

Activated monocytes and T cells have been portrayed as the

primary cellular drivers of inflammation during severe COVID-

19. Despite being the predominant leukocyte population in

terms of numbers (30), neutrophils have been largely

overlooked in human studies due to the inability of these cells

to survive long-term storage and cryopreservation. Thus, we

performed droplet-based scRNA-seq to examine the

transcriptomic profiles of freshly isolated peripheral

neutrophils and other leukocytes from hospitalized adult

patients with COVID-19 disease and healthy donors (HD)

(Figures S1A,B). To reduce confounding, we excluded subjects

with conditions are known to impact immune responses

(Methods). The 11 patients with COVID-19 who met

our stringent selection criteria were classified into two

groups based upon severity – “mild” (n = 4, hospitalized

but needing ≤50% O2), or “severe” (n = 7, hospitalized but

needing > 50% O2 or in the intensive care unit, or ICU). The

clinical characteristics of enrolled patients are detailed in Figure

S1B. Neutrophils and other leukocytes were isolated from

peripheral blood samples. Since neutrophils are particularly

sensitive to degradation, isolated cells were immediately

processed for scRNA-seq experiments (see Methods). Non-

neutrophil leukocytes from peripheral blood were included at

approximately equal proportions in the scRNA seq analysis to

dissect cell-cell interactions.

A unified single-cell analysis pipeline was employed,

including preprocessing involving batch removal and quality

control steps (see Methods). A total of 108,597 high-quality cells

from all samples proceeded to downstream analysis. Among

these cells, 30,429 cells (28%) were from the healthy donor

group, 22,188 cells (20%) were from the mild group, and 55,980

cells (52%) were from the severe group. Using Seurat (22) and

SingleR (23), we identified 15 major cell types or subtypes
frontiersin.org
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according to the expression of canonical gene transcripts in the

peripheral blood (Figures 1A, B). Among them, 45,463 cells are

classified as mature (CXCR2+ FCGR3B+) or immature

(CD24+PGLYRP1+CEACAM8+) neutrophils (Figures 1A, B)

(7, 31).

Next, we analyzed the transcriptional profiles of the main

myeloid (i.e., monocyte and neutrophil) cell populations to

determine the differential contributions of each cell type

towards the inflammatory landscape during COVID-19. First,
Frontiers in Immunology 05
to validate the compatibility of our approach with previous

studies, we examined transcriptional expression of two

monocyte markers most consistently reported to change with

COVID-19 severity. Monocytes from severe COVID-19 patients

displayed decreased HLA-DRA and increased CD163 expression

compared to healthy donors and mild COVID-19 patients

(Figures S2A, B), consistent with prior reports (10, 15). We

next sought to investigate if neutrophils contribute to cytokine

storm during COVID-19 disease. To capture a global snapshot
A B

D

E

C

FIGURE 1

Neutrophils display marked inflammatory signatures relative to other leukocyte populations. (A) Cellular populations identified by scRNA seq.
The UMAP projection from HD (n = 5), Mild (n = 4), severe (n = 6) samples. (B) Canonical cell-defining transcripts were used to label clusters by
cell identity as represented in the UMAP plot. Data are colored according to expression levels and the legend is labeled in log scale. (C) UMAP
plots of cells colored by cytokine score (left) and inflammatory score (right panel). (D) Violin plots indicate progression of cytokine (left) and
inflammatory scores (right panel) for neutrophils and monocytes with increased severity of infection. (E) Heatmap of selected cytokine genes in
different subsets of cells. ****p < 0.0001.
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of the inflammatory state of different cell populations, we

analyzed the cytokine and inflammatory pathways scores

in different cell types based on the overall expression of

cytokine and inflammatory response genes (Figures 1C, D,

Supplementary Table 1), adapted from (26, 32). Monocytes

and megakaryocytes have previously been shown to be major

sources of systemic cytokine production based upon this scoring

system in COVID-19 patients (26), which we also found in our

results. Additionally, we observed that neutrophils have greater

potential to contribute to the magnitude of the systemic

inflammatory response, indicated by their high cytokine and

inflammatory pathway scores (Figures 1C, D). In addition,

neutrophils outnumber monocytes by 10 to 40-fold in infected

subjects (Figure S2C). Altogether, the substantially higher

numbers and the high inflammatory scores of neutrophils

underscore the importance of regulating neutrophil-mediated

systemic inflammatory responses in COVID-19.

We then investigated the main inflammatory gene signatures

for each leukocyte population and found that neutrophils have a

distinct inflammatory cytokine/receptor profile with enrichment

of CXCL1, IL1RN, CXCL8, TNFSF10, TNFSF13B, CXCL16, and

IL8R1 (Figure 1E). Immature neutrophils express markedly

higher levels of lactoferrin (Ltf) and Il18. Furthermore, we

found strong transcriptional upregulation of S100A9 and

S100A8 alarmins in neutrophils from COVID-19 patients

(Figure S2D), previously reported to correlate with disease

severity (16, 33). This increase persists over time for S100A8 in

the severe compared to the mild COVID-19 group (Figure S2E).

Together, our data show that relative to other peripheral

leukocytes, neutrophils are capable of being a major regulatory

cell population that governs the severity and magnitude of the

inflammatory response during COVID.
Identification of dysregulated neutrophil
phenotypes in severe COVID-19 patients

We next analyzed transcriptional changes within the overall

neutrophil population associated with the severity of the disease.

Neutrophils from healthy, mild, and severe patient groups show

distinct gene expression profiles (Figure 2A), reflecting

significant transcriptomic changes during disease progression.

Neutrophil transcripts which are robustly expressed in the

uninfected state, including anti-proliferation and pro-apoptotic

genes (LST1, G0S2, CPPED1, BTG2, PMAIP1) and anti-

inflammatory genes (AMPD2, SEC14L1 , ZFP36), are

significantly downregulated in COVID-19 patients (Figure 2B).

Neutrophils from mild patients have increased expression of

genes associated with anti-viral responses, including Interferon

stimulated genes (ISGs) and TRAIL (TNFSF10) (Figure 2B).

Remarkably, expression of these genes is attenuated in

neutrophils from the severe patients, whose neutrophils

displayed increased activation markers including GBP5
Frontiers in Immunology 06
(activator of NLRP3 inflammasome assembly) (34), FCER1G

(implicated in IL-1b production by neutrophils) (35), and

CD177, previously associated with COVID-19 severity and

death (36), as well as stress-related genes such as IRAK3,

FKBP5, IL1R2 (Figure 2B).

To further investigate how neutrophils may functionally

differ during infection as compared to healthy controls, we

performed pathway analysis of neutrophil transcriptomes. In

hospitalized patients with milder COVID-19 disease, we

observed broad activation of multiple pathways involved with

immune responses to various viral infections, including COVID-

19 related pathways (mostly antiviral genes), NOD-like receptor

signaling, Toll-like receptor (TLR) signaling, and immune

responses to both viral and intracellular pathogens (e.g.,

influenza A, Salmonella, Epstein-Barr) (Figure S3). Thus,

upregulated pathways highlight a pronounced diversity of

antiviral neutrophil response in hospitalized patients with

milder COVID-19. Conversely, in neutrophils from patients

with severe disease, we observed significant activation of NF-

kB signaling, and TNF signaling pathways, as well as oxidative

stress response pathways (e.g., cyclooxygenase genes, glutathione

metabolism, and oxidative phosphorylation), compared to those

from mild COVID-19 patients (Figure 2C). This suggests stress

response phenotype in severe patients, rather than a protective-

antiviral phenotype seen in the mild disease. Notably, unlike

patients with mild disease, severe patients show marked

induction of ribosomal genes, suggesting an increase of cellular

protein production capacity beyond the observed increase in

active gene transcription.
Neutrophil cell-cell interactions become
progressively dysregulated in patients
with severe COVID-19

To provide immunologic context for how neutrophils

interact with other cell types, we conducted an analysis on the

intercellular crosstalk between cytokines and receptors on

immune cells. To identify how cytokine-receptor-mediated

cell-cell interactions (CCI) evolve across disease severity, we

counted the CCIs that represent the active intercellular

communication probabilities between up-regulated cytokines

and receptors on all cell types in mild versus severe COVID-

19 disease. We found that during mild disease, there are overall

more active CCIs among all of the different cell populations than

that in severe disease (Figures 3A, B). Conversely, during severe

disease, the number of unique CCIs drop out, resulting in

potential degradation of cell-cell cross-regulatory mechanisms.

Cell-cell interactions become concentrated and are dominated

by interactions between 4 major cell types - neutrophils,

monocytes, gamma-delta T cells, and hematopoietic stem cells

(HSC), which accounts for more than 60% of the cell-cell

interactions in severe disease (Figure 3C). As the illness
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proceeds, we found that in mild patients who recovered from the

disease, diverse cell-cell interactions remain preserved at later

timepoints, while severe patients who eventually succumb have

progressive loss of cell-cell interaction diversity compared to

earlier timepoints (Figure 3D). These data support a framework

where neutrophil cell-cell interactions become progressively

dysregulated in patients with severe COVID-19. Additionally,

a potential mechanism by which neutrophils contribute to severe

inflammation may be reinforcement of activation pathways for

specific cell populations such as monocytes and gamma-delta T

cells, which have been reported to be robustly pro-inflammatory

cell populations during viral infections.
Frontiers in Immunology 07
COVID-19 resulted in alterations of
neutrophil subset compositions and their
transcription profiles across the levels of
the disease severity

We next examined whether different phenotypes of

neutrophil populations could be identified by scRNA-Seq. We

performed cluster analysis of neutrophil scRNA data using the

SNN modularity optimization-based clustering algorithm. In

total, 9 distinct clusters of neutrophils could be identified

based on specific patterns of gene expression. Cluster 9

represents pro-neutrophils (DEFA3+DEFA44+MPO+ELANE+
A

B

C

FIGURE 2

Identification of dysregulated neutrophil phenotypes in severe COVID-19 patients. (A) Venn plot of significantly up-regulated genes (adjusted P-
value <0.05) in neutrophils from healthy controls, mild and severe COVID19 patients. (B) Top 10 differentially expressed upregulated genes in
neutrophils from healthy controls, mild and severe COVID19 patients, respectively. (C) Predicted cell-cell interaction networks of significantly
up-regulated pathways (adjusted P-value <0.05) in neutrophils from severe COVID19 patients compared with that from the mild group.
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A

B

D

C

FIGURE 3

Neutrophil cell-cell interactions become progressively dysregulated in patients with severe COVID-19. (A) Circos plot showing the up-regulated
cellular crosstalk mediated by significantly (adjusted P-value <0.05) up-regulated ligand-receptor pairs between inflammation-related cell types
from mild or severe COVID19 patients compared with that from healthy controls. (B) Count of the up-regulated cellular crosstalk for every cell
type in mild and severe COVID19 patients, respectively. (C) Composition of the up-regulated cellular crosstalk in mild and severe COVID19
patients, respectively. (D) Circos plot showing the cellular crosstalk mediated by up-regulated (2nd timepoint versus 1st timepoint, or T2 vs T1)
ligand-receptor pairs between inflammation-related cell types from recovered mild (left) and deceased severe (right) COVID19 patients,
respectively.
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AZU+; azurophilic granule content genes), cluster 7 represents

pre-neutrophils (LTG+LCN2+CAMP+MMP8+; specific and

gelatinase granule content genes), and the remaining 7 clusters

represent mature neutrophils (all CXCR2+) (Figures 4A, B). The

two immature neutrophil clusters (clusters 7 and 9) exhibit

robust gene expression of their respective granule content

proteins but relative suppression of all of the other genes

(Figure 4C). Conversely, the mature neutrophil clusters had

suppression of granule content genes, but distinct patterns of

gene activation that were relatively low in the immature

populations (Figure 4C). Clusters 2 and 8 displayed

upregulation of MMP9, several S100A genes including

S100A12, and MME (i.e., Neprilysin), which have been

implicated in the pathogenesis of COVID-19 (37, 38). Clusters

3, 5, and 6 had high levels of expression of regulatory genes for

transcription and apoptosis (Figure 4C). Notably, cluster 4 was

significantly enriched in interferon (IFN) stimulated genes
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(ISGs, e.g., ISG15, IFIT genes, MX1, GBP, GBP5, HERC5, and

RSAD2). Thus, contrary to the assumption that they are a

homogenous and transcriptionally quiescent cell population,

mature neutrophils display transcriptional diversity with the

ability to activate gene expression programs, ranging from

immuno-regulatory types to a preferentially antiviral subtype

with induction of IFN-stimulated genes.

Subsequent pathway analysis provided insights about

possible biological functions of each neutrophil subset

(Figure 4D and Figure S4). Pathway analysis using KEGG and

GO of cluster 4 revealed significant activation of viral response

pathways as well as NOD-like receptor signaling pathway,

supporting its distinct role in anti-viral responses. Other

clusters also show specific pathway enrichment; for example,

cluster 1 exhibited pathways involved in ferroptosis, cluster 3

and 5 in NF-kappa B signaling, and cluster 7 with activated

Ribosome and Coronavirus disease-COVID-19, which is
A B

DC

FIGURE 4

Neutrophil heterogeneity in COVID-19 patients. (A) UMAP plot of neutrophil clusters. (B) Nomenclature and marker genes for each neutrophil
cluster. (C) Top5 up-regulated genes in every neutrophil cluster. (D) Top3 KEGG pathways significantly enriched in up-regulated genes in every
neutrophil cluster.
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consistent with the concept of “pre-neutrophils” being robustly

activated during acute infection with SARS-CoV-2.

Next, we determined whether all of these clusters exist at

baseline and whether specific neutrophil subsets were

augmented depending on the presence or severity of infection.

We found higher proportions of clusters 1 and 6 in healthy

compared to infected subjects, while clusters 4, 7, and 9 were

increased in COVID-19 patients, especially in the severe group

(Figure 5A, Figures S5A, B). Since clusters 7 and 9 are immature

neutrophils, their increase provides evidence of emergency

myelopoiesis in severe COVID-19 patients, also supported by

previous reports (15, 33). Overall, cluster 4 was significantly

associated with disease severity, while cluster 6 was negatively

associated with the severity of the disease (Figure 5B). Within

each cluster, we also observed the neutrophils up-or down-

regulating gene groups and pathways based upon disease state

(Figure 5C, Figures S6, S7). For example, compared to healthy

controls, cluster 7 neutrophils (immature neutrophils) from

infected subjects upregulated genes involved in multiple

pathways associated with host defense, including neutrophil

extracellular trap formation, cytokine signaling, and NF-kB

signaling (Figure 5C, Figure S6). Cluster 4 neutrophils, which

are enriched with anti-viral responses, displayed activation of the

ribosome and COVID-19 pathways in patients with mild

disease, as compared to healthy controls, with further

activation in subjects with severe disease (Figure 5D, Figure

S7). Some pathways involved in anti-viral responses are down-

regulated in cluster 4 from severe patients compared with mild

patients, consistent with what we discovered in Figure 2B.

Oxidative phosphorylation pathways were activated in

multiple neutrophil clusters in subjects with severe infection

compared to those with mild disease (Figure 5D). Cluster 6

displayed striking downregulation of multiple pathways during

severe disease, including those related to IL-17 signaling, NF-kB,

and cAMP signaling (Figure 5D). Strikingly, neutrophils

displayed progressively decreased activation of hepatitis,

influenza, and other viral pathways with increasing COVID-19

disease severity (Figures 5C, D). Together, neutrophils

heterogeneity and their changes in proportion or transcription

are strongly related to the severity of the COVID-19 disease.
Discussion

Since the start of the SARS-CoV-2 pandemic, a variety of

“omic”-based analyses have been utilized to understand the

pathogenesis of severe COVID-19 associated infection (7, 31,

39). Notably underrepresented in these studies is a

comprehensive analysis of neutrophils, which despite being

abundant and widely considered as integral cellular

contributors to immune dysregulation, have been largely

overlooked for a variety of reasons, including the technical

difficulty of isolating neutrophils and preserving them for
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downstream studies such as single-cell sequencing analyses.

Only recently have two groups put forth papers that have

explicitly used neutrophil-preserving methods in studying

human samples - one using scRNA sequencing-based

phenotyping of healthy human subjects, and another

examining neutrophil phenotypes from patients with acute

respiratory distress syndrome (ARDS) from severe COVID-19

disease or bacterial pneumonia (40, 41). Our work builds upon

their findings in that we examined how neutrophil phenotypes

differ in relative abundance and pathway activation in patients

with mild versus severe COVID-19 disease. We also determined

whether all phenotypes exist at baseline, or if new

subpopulations of neutrophils emerge during infections, based

upon the severity of the infectious insult. Our results suggest that

discrete clusters of mature neutrophils exist even under basal

uninfected conditions, as reflected by distinct transcriptional

profiles and activated pathways. We furthermore observed that

the relative proportions of each cluster change during infection

and with increasing severity.

Additionally, most scRNA seq studies of patients with

COVID have utilized samples collected from subjects that

span a large age range (children to elderly) and the full

spectrum of co-morbid conditions, which may introduce bias

and confounding factors when identifying what mechanisms

underlie severe SARS-CoV-2 infections, particularly given the

small sample sizes. Our study focused exclusively on human

adult patients hospitalized with respiratory manifestations of

COVID-19 disease, taking care to exclude subjects with chronic

immunosuppression, active malignancy, autoimmune

conditions, poorly controlled diabetes, chronic infections, and

other advanced co-morbidities that could influence immune

responses at baseline. Due to our cohort being mainly

Veterans, all of our subjects were males and mostly White.

Although the total number of subjects was small, our study was

actually one of the largest studies to examine neutrophil

responses by scRNA seq. Thus, by controlling for the

variability in neutrophil responses that might be introduced by

severe chronic comorbidities, sex, age, or race, our results can be

considered to reflect the intrinsic heterogeneity of neutrophil

responses during health and SARS-CoV-2 infections.

Upon SARS-CoV-2 infection, altered neutrophil abundance

and functionality have been linked with the pathophysiology of

severe COVID-19 disease (5, 7, 42, 43). We show that

neutrophils are a potentially important cellular source of

cytokines and can be major contributors to the inflammatory

response upon SARS-CoV-2 infection. Importantly, neutrophils

display dynamic responses, with evidence of increased oxidative

stress and ribosomal pathway activation and suppression of

multiple viral pathways (e.g., influenza and measles response

pathways) during severe infections. Our results further

contribute to our understanding of neutrophil biology,

revealing vast heterogeneity and breadth of inflammatory

responses in neutrophil subsets in COVID-19 patients (12), in
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contrast to the prevailing view that neutrophils are a

homogeneous antimicrobial cell population.

Our computational clustering revealed extensive heterogeneity

in neutrophils with the identification of seven transcriptionally

distinctive mature and two immature neutrophil clusters. In

particular, the identification of distinct mature neutrophil clusters
Frontiers in Immunology 11
is an important finding to our understanding of how neutrophils

contribute to the pathogenesis of severe infections, as it underscores

the importance of recognizing a broader spectrum of neutrophil

functional phenotypes. We found those neutrophil subsets display

the ability to activate differential gene expression programs, ranging

from inhibitory/regulatory subsets to a preferentially antiviral subset
A B

DC

FIGURE 5

COVID-19 resulted in alterations of neutrophil subset compositions and their transcription profiles. (A) Neutrophil clusters that differed in
proportions (% of neutrophils) between healthy controls and hospitalized patients with mild or severe COVID19. (B) Neutrophil clusters that
significantly (adjusted P-value <0.05) associated with the severity of COVID19. Spearman’s’ correlations were used to determine the association
between cluster proportion and the severity of COVID19 (healthy 1, mild 2, severe 3, decreased 4). Red: positive correlation; Blue: negative
correlation. Depth of color increase with the absolute value of the association. Only significant associations (adjusted P-value <0.05) are shown
in this graph. (C) GSEA analysis of significantly different KEGG pathway gene sets in selected neutrophil clusters from COVID19 patients
compared with that from healthy controls. (D) GSEA analysis of significantly different KEGG gene sets in selected neutrophil clusters from severe
COVID19 patients compared with that from mild COVID19 patients. *p < 0.05, **p < 0.01. NES, Normalized enrichment score.
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with activated IFN-regulated gene expression profile. The

proportion of each phenotype correlated with severe disease

course. For example, cluster 4 neutrophils showed significantly

activated viral response pathways, suggesting a distinct subset of

neutrophils in anti-viral responses. However, they also display

progressively decreased activation of the viral pathways and

increased stress response-related pathways with worsening

COVID-19 disease severity. Our findings indicate that neutrophils

are capable of mounting effective antiviral defenses but with disease

progression, adopt a form of immune dysregulation characterized

by excess cellular stress, thereby contributing to the

immunopathology of severe SARS-CoV-2 infections.

The progression of ARDS during severe COVID-19 disease, as

well as other severe respiratory viral infections, continues despite

patients already having cleared the viral infection in the majority

of cases, especially in immunocompetent hosts (44). It is during

this period when the host is transitioning either to recovery or

persistent inflammation that the outcome of infection is

determined. The immune mechanisms governing resolution

versus persistent inflammation are complex, with evidence of

aberrant intercellular regulatory mechanisms that perpetuate

inflammation (45). Our work builds upon this concept by

examining how systemic neutrophil responses differ in COVID-

19 patients, all of whom are sick enough to be hospitalized, but

whose respiratory manifestations are milder versus severe. In

patients with severe COVID-19, we find evidence of neutrophils

no longer acting in concert with other cell types, as reflected by

their loss of intensity and diversity of cell-cell interaction with

other immune cell populations. To understand how neutrophils

might impact systemic inflammatory responses, we found that

neutrophils have higher inflammatory scores compared to

monocytes, suggesting that they could be a key source of a

diverse set of cytokines that are highly elevated in COVID-19

patients with severe disease progression. These findings

complement prior reported findings that megakaryocytes and

specific monocyte subsets were the primary producers of

cytokines (26). Our results indicate that future investigations

should identify ways to harness the regulatory capacities of

neutrophils in a therapeutic manner, including how to promote

antiviral functions early during infection, and perhaps more

importantly, how to shift the balance towards a more restorative

neutrophil profile as the human host attempts to recover after the

infection has been cleared.

Altogether, our report presents details that help us better

understand the vast heterogeneity and breadth of inflammatory

responses in neutrophil subsets in COVID-19 patients.
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