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Cancer is a heterogeneous disease characterized by various genetic and

phenotypic aberrations. Cancer cells undergo genetic modifications that

promote their proliferation, survival, and dissemination as the disease

progresses. The unabated proliferation of cancer cells incurs an enormous

energy demand that is supplied by metabolic reprogramming. Cancer cells

undergo metabolic alterations to provide for increased energy and metabolite

requirement; these alterations also help drive the tumor progression.

Dysregulation in glucose uptake and increased lactate production via

“aerobic glycolysis” were described more than 100 years ago, and since then,

the metabolic signature of various cancers has been extensively studied.

However, the extensive research in this field has failed to translate into

significant therapeutic intervention, except for treating childhood-ALL with

amino acid metabolism inhibitor L-asparaginase. Despite the growing

understanding of novel metabolic alterations in tumors, the therapeutic

targeting of these tumor-specific dysregulations has largely been ineffective

in clinical trials. This chapter discusses the major pathways involved in the

metabolism of glucose, amino acids, and lipids and highlights the inter-twined

nature of metabolic aberrations that promote tumorigenesis in different types

of cancer. Finally, we summarise the therapeutic interventions which can be

used as a combinational therapy to target metabolic dysregulations that are

unique or common in blood, breast, colorectal, lung, and prostate cancer.
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Introduction

Cancer is a multifactorial disease and one of the leading causes

of death globally. According to the World Health Organization

(WHO), cancer was responsible for approximately 10 million

deaths in 2020 (1). Disruption in normal cellular functions is a

feature of all cancer cells (2). Dysregulated cellular metabolism is

one of the important hallmarks, and cancer cells alter their

metabolism to overcome the cancer-associated cellular stress,

thereby leading to “metabolic reprogramming” (3, 4). Metabolic

reprogramming refers to the alteration in catabolic, anabolic, and

redox pathways of the cells supported by the tumor

microenvironment. Otto Warburg first described metabolic

alteration in cancer cells; while normal cells convert glucose to

pyruvate in the presence of oxygen (aerobic glycolysis) and redirect

the pyruvate towards the tricarboxylic acid (TCA) cycle (5), cancer

cells abnormally preferred to convert glucose to lactate irrespective

of oxygen availability (6). Under normal circumstances, the

pathway intermediates from glycolysis are used in different

anabolic pathways; glyceraldehyde-3-phosphate is redirected

towards fatty acid synthesis, while glucose-6-phosphate and

fructose-6-phosphate are used for nucleotide biosynthesis through

oxidative Pentose phosphate pathway (PPP) and non-oxidative

PPP, respectively (7). Such anabolic pathways are activated only

in nutrient-rich conditions. However, a metabolic shift occurs in the

nutrient-deprived state, wherein the cells activate different catabolic

pathways that can supply the required glycolytic and TCA cycle

intermediates for energy production (Figure 1) (8).

The amino acid metabolic pathway is the major contributor

to these intermediates. Additionally, cancer cells also show

upregulation of lipogenesis and harness fatty acid oxidation to

meet the energy requirements during nutrient-deprived
Frontiers in Immunology 02
conditions. These metabolic changes vary during different

stages of cancer progression, from tumor initiation to

metastasis. Pavlova et al. have discussed the six hallmarks of

cancer metabolism, typical to all types of cancers (10).

The metabolic shift from TCA cycle mediated energy

generation to glucose fermentation allows cancer cells to

accumulate mutations in the involved enzymes. Some of these

enzymes also function as tumor suppressors and their loss of

function mutations can drive tumor progression as in the case of

Isocitrate dehydrogenase (IDH) 1 and 2 (11), Fumarate

hydratase (FH) (12), and succinate dehydrogenase (SDH) (13).

Due to the high metabolic activity, cancer cells produce

copious amounts of reactive oxygen species (ROS) (14). Low

levels of ROS can promote cellular proliferation, whereas high

ROS levels can damage DNA and activate apoptotic pathways

(15). Cancer cells circumvent these deleterious effects of high

ROS by upregulating the synthesis of various ROS scavenging

proteins and NADPH (7).

Further metabolomic studies in cancer have revealed that

cancer cell metabolism is heterogeneous and may vary

depending on the site and origin of cancer (3). One such

instance is the diverse effect of MYC on glutamine

metabolism, wherein MYC induces glutamine synthesis in

liver cancer but drives glutamine catabolism in lung cancer

(16). The metabolic interactions between the cancer cells and

tumor microenvironment (TME) introduces further intricacies

in the role of these alterations (17). The symbiotic relationship

between the cancer cells and various component of the TME

creates a hospitable niche for tumor progression which

suppresses the immune system and promotes survival and

metastasis of cancer cells. Furthermore, availability of new

positron emission tomography (PET) probes will enable
FIGURE 1

Cancer metabolism during nutrient-rich and stressed conditions. In nutrient-rich conditions, cancer cells use glucose to produce lactate, serine,
and nucleotides, but in nutrient-deprived conditions, they induce FAO and autophagy for energy production (8, 9). Green colour indicates a
nutrient-rich condition, and the red colour indicates a nutrient-deprived condition [FA, ,Fatty acid; Ile, Isoleucine; Val, Valine; Leu, Leucine;
mTOR, Mammalian target of rapamycin].
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characterisation of tumors on the basis of their active metabolic

state, opening new possibilities of precision therapy (3). This

chapter discusses the different metabolic signatures associated

with var ious cancer types and how they may be

targeted therapeutically.
Alterations in glucose metabolism

Glucose is the primary source for ATP production and

synthesis of various macromolecules. Under physiological

conditions, glucose is catabolized into pyruvate via the

Embden-Meyerhof pathway, producing ATP and NADH (18).

The fate of pyruvate is further dependent on oxygen availability,

wherein aerobic (oxygen-rich) conditions facilitate the

conversion of pyruvate into acetyl-CoA by pyruvate

dehydrogenase (PDH). In contrast, anaerobic conditions (lack

of oxygen) facilitate production of lactate from pyruvate by

lactate dehydrogenase (LDH). In normal cells, acetyl-CoA enters

the mitochondria and partakes in the tricarboxylic acid (TCA)

cycle, also known as the citric acid cycle, to generate NADPH,

FADH2, and GTP. These reducing equivalents (NADH and

FADH2) enter the electron transport chain (ETC) to produce

ATP with the help of ATP synthase through oxidative

phosphorylation (OXPHOS). However, this metabolic pathway

is altered in cancer cells to aid in cancer progression. The rapidly

dividing cancer cells circumvent the time-consuming route of

energy generation via the TCA cycle and instead undergo

aerobic glycolysis even under an oxygen-rich state (6). The

increased lactate production even under normoxic conditions,

often dubbed as Warburg effect or aerobic glycolysis, is a

common feature of all types of cancers, including brain, breast,

lung, colorectal, hepatocellular, gastric, bladder, and blood

cancer (19–25), with the exception of prostate cancer, wherein

aerobic glycolysis is observed only in the later stages of tumor

progression (26–28). By limiting energy generation via TCA

cycle, cancer cells control their high ROS levels, thereby limiting

oxidative stress induced apoptosis (29).

NADPH and FADH2 produced in the TCA cycle are used to

produce adenosine triphosphate (ATP) through oxidative

phosphorylation (OXPHOS) in the electron transport chain

under physiological conditions. However, cancer cells exhibit

dysregulation of OXPHOS, perhaps to further reduce the

oxidative stress. In breast cancer (BC), gastric cancer (GC),

hepatocellular carcinoma (HCC), and non-small cell lung

carcinoma (NSCLC), various mutations have been reported in

the mitochondrial DNA, which codes for 13 subunits involved in

the ETC. Furthermore, Hepatitis C virus (HCV) infection and

dysregulation of mitochondrial microRNAs downregulate the

expression of OXPHOS-associated proteins in HCC (30). In the

HCV-induced HCC mice model, upregulation of stem cell

homeobox transcription factor NANOG suppresses OXPHOS

to promote self-renewal and drug resistance (31). Ras-like
Frontiers in Immunology 03
GTPase, Rab3A, and TGF-b have also been reported to

downregulate OXPHOS and induce migration and invasion in

HCC (31–33). However, recent studies have shown that some

cancer cells also rely on mitochondrial respiration. For instance,

high expression of mitochondrial biogenesis gene, Peroxisome

proliferator-activated receptor-gamma coactivator-1a (PGC-

1a), promotes aerobic respiration in invasive circulating breast

cancer cells (34). Intriguingly, differentiating enterocytes also

show increased expression of PGC-1a as they migrate from the

intestinal crypts towards the surface (35). However, unlike other

tissue types wherein increased expression of PGC-1a also

upregulates antioxidant genes like superoxide dismutase 2

(SOD2) and catalase (CAT) to cope with the ROS burden

coupled with mitochondrial respiration, PGC-1a does not

induce the expression of antioxidant genes in intestinal cells

which results in ROS-induced apoptosis, thereby maintains the

intestinal tissue homeostasis (35). Colorectal cancer (CRC) cells

predominantly express PGC-1b, which can induce the

expression of antioxidant genes, thereby maintain low ROS

levels and normal glycolytic pathway, resulting in prolonged

lifespan and accumulation of these cells (36). Similarly, several

other cancer types maintain their dependence on OXPHOS and

show increased mitochondrial content, such as in leukaemia,

and prostate cancer (37, 38).

Lactate dehydrogenase (LDH) is overexpressed in cancer

cells and promotes the conversion of pyruvate into lactate (39).

Overexpression of lactate transporters, monocarboxylate

transporter (MCT) 1 and 4 is a common feature of cancer

cells that allows efflux of high amounts of lactate produced by

oxygen-deprived cells. The normoxic cancer cells uptake this

lactate from the microenvironment owing to their high

expressions of MCT1 and utilise it for energy production via

the TCA cycle (40).

In colorectal cancer (CRC) cells, an increase in aerobic

glycolysis and downregulation of the TCA cycle can be

attributed to the reduction in mitochondrial import of

pyruvate due to low expression of mitochondrial pyruvate

carrier 1 (MPC1) (41). Furthermore, in CRC and bladder

cancer, the mitochondrial pyruvate fails to undergo the TCA

cycle due to the inhibition of pyruvate dehydrogenase (PDH) by

the overexpressed pyruvate dehydrogenase kinase 4 (PDK4)

(42–44). On the other hand, energy generation without the

involvement of the TCA cycle allows cancer cells to utilise the

TCA cycle components for proliferation and invasion (45). A

study of human lung biopsies using stable isotope resolved

metabolomics (SIRM) revealed changes in glycolysis and

mitochondrial function in non-small cell lung cancer

(NSCLC), wherein cancer cells showed higher levels of TCA

cycle intermediates than the surrounding normal tissue cells

(46). In HCC, downregulation of PDK4 promotes the

conversion of pyruvate into acetyl-CoA by PDH (47).

Enhanced production of oxaloacetate from pyruvate due to

overexpression of pyruvate carboxylase is reported in LC cells,
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which results in increased production of downstream TCA cycle

intermediates (48). Many of the TCA cycle moonlighting

enzymes, such as Isocitrate dehydrogenase (IDH) 1 and 2,

succinate dehydrogenase (SDH), and fumarate hydratase (FH),

which function as tumor suppressors under physiological

conditions, have a loss of function mutations in cancer cells.

For instance, IDH1 and IDH2 convert isocitrate to a-
ketoglutarate and 2-hydroxyglutarate, an inhibitor of histone

demethylase and ten-eleven translocation (TET) proteins. In

NSCLC, mutations in IDH1 and IDH2 result in various tumor-

promoting epigenetic alterations (11).

Prostate cells pose another intriguing exception, where the

TCA cycle is inhibited under the physiological condition to

produce high amounts of citrate as a component of semen (49).

The accumulation of citrate is attributed to high zinc

concentration in the prostate cells, which inhibits the enzyme

m-Aconitase required to convert citrate to isocitrate in the first

step of the TCA cycle (49). Also, zinc acts as an anti-tumor/pro-

apoptotic regulator by inducing the release of cytochrome-c

from mitochondria (50, 51). This high zinc concentration is

maintained by the upregulation of an ion channel called zinc or

iron-regulated transporter like-protein 1 (ZIP1) in prostate cells

(52). However, prostate cancer (PC) cells have atypical low zinc

and citrate levels. In PC cell lines DU-145 and LNCaP, ZIP 1

channel is downregulated due to hypermethylation of its

promoter at the binding site of transcription factor AP-1 (53).

The resulting low zinc concentration allows completion of the

TCA cycle by oxidising the citrate, increasing the energy output

from 14 ATPs to 24 ATPs per glucose molecule. Therefore,

unlike other cancers, the Warburg effect is not observed in the

initial stages of PC.

Anaerobic glycolysis produces approximately 16-fold less

energy per glucose molecule than its aerobic counterpart. To

make up for this inefficiency, cancer cells have 15 times higher

glycolytic flux than normal cells to meet their energy

requirements (6, 24). The increased glucose demand is met by

the upregulation of glucose transporters, such as GLUT2 in

gastric and hepatocellular cancer and GLUT1 and GLUT3 in

other cancer types (39). Upregulation of GLUT1 activity in CRC

cells is attributed to dysregulation of RAS/MAPK pathway due

to KRAS mutation (54). Similarly, CD147 upregulates GLUT1 in

hepatocellular carcinoma (55). Furthermore, upregulation of

hexokinase (HK) in cancer cells ensures retention of glucose

by converting it into membrane impermeable glucose-6-

phosphate (G6P) (39). Other key regulatory enzymes of the

glycolytic pathway, such as phosphofructokinase (PFK), which

converts G6P to fructose-6-phosphate (F6P), and pyruvate

kinase (PK), which converts phosphoenolpyruvate to pyruvate

are upregulated in cancer cells resulting in high glycolytic

turnover (39, 56). Downregulation/deletion of sirtuin 6

(SIRT6), a known repressor of tumor driver MYC is associated

with adenoma formation and increased glycolysis during all

stages of colorectal adenomas (57, 58).
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The increased glycolytic turnover is coupled with upregulation

of the Pentose phosphate pathway (PPP) in many cancers. PPP

provides pentose phosphate required for nucleic acid synthesis and

NADPH needed for fatty acid synthesis and survival (59). Glucose-

6-phosphate dehydrogenase (G6PD), which converts G6P to 6-

phosphogluconate (6-PG), is the key regulatory enzyme for PPP

and is upregulated in most cancers. Mammalian target of

rapamycin 1 (mTORC1) and p21 activated kinase 4 (PAK4)

modulates transcriptional and post-transcriptional regulation of

G6PD and enhances Mdm2-mediated p53 ubiquitination and

degradation. Furthermore, mutations in P53 and overexpression

of Polo-like kinase 1 (Plk1) promote the dimerization and

activation of G6PD in cancer cells. TP53-inducible glycolysis

and apoptosis (TIGAR), which regulates the flux of glycolysis

intermediates into PPP in normal injured tissue, is upregulated

in CRC cells regardless of their P53 status and associated with

the formation of adenomas (60). Similarly, the downstream

PPP enzyme, 6-phosphogluconate hydrogenase (6-PGD),

which converts 6-PG into ribulose-5-phosphate (Ru5P), is

also upregulated in breast, lung, ovarian and blood cancers.

Accumulation of PPP intermediates ribose-5-phosphate (R5P)

and xylulose-5-phosphate is observed in various cancer types,

particularly in HER2 positive BC. However, HCC is an

exception where low levels of Ru5P and R5P are observed

despite the upregulation of PPP enzymes (61, 62).
Molecular basis of glucose
metabolic reprogramming

The metabolic state of the cell dictates its fate and functions.

Under physiological conditions, the cellular metabolism is tightly

regulated by various growth factors, which signal the cells to

uptake nutrients from the extracellular space. But cancer cells

carry oncogenic mutations that render their signal transduction

independent of growth factor-mediated stimulation.

PI3K/AKT/mTOR pathway is one of the prominent

signaling pathways which contributes to the import of

nutrients to the cell. PI3K/AKT/mTOR pathway is among the

commonly dysregulated pathway and is actively involved in the

regulation of cancer cell survival, proliferation, growth and

metabolism (63). Tumor suppressor PTEN antagonizes this

signaling pathway by dephosphorylating PIP3 which leads to

inhibition of downstream proteins phosphoinositide-dependent

protein kinase (PDK1), AKT1 and mTOR. In normal cells,

activation of PI3K/AKT/mTOR pathway induces glycolytic

flux upon stimulation by growth factors like insulin. This is

frequently altered (mutation in components of PI3K complex or

by hyperactivation of RTKs) in cancer cells leading to a

dysregulation of glucose metabolism (64–66). Loss of PTEN is

observed in glioblastoma, melanoma, endometrial and prostate

cancer. This results in activation of the downstream target

proteins of PI3K signaling pathway inducing expression of
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glycolytic enzymes like HK2, PFK1, and glucose transporter

GLUT1 (67, 68). HK2 prevents release of apoptotic protein,

cytochrome-c, by interacting with the mitochondrial pore to

enable cell survival. Furthermore, AKT itself activates FOXO3a

which promotes mitochondrial biogenesis (69, 70).

Oncogenes involved in these pathways are responsible for

regulating the expression of glycolytic enzymes (71). HIF and c-

Myc particularly, coordinate to promote glycolysis via activation

of several glycolytic enzymes like hexokinase II (HK2),

phosphopfructokinase I (PFK1), glyceraldehyde-3-phosphate

dehydrogenase, enolase 1, pyruvate kinase, and LDH-A, and

are known as master inducers of glycolysis (71–74). In normal

cells, c-Myc is induced by growth factor stimulation, however, in

cancer cells, it is aberrantly activated by gene mutations (single

nucleotide polymorphism, chromosomal translocation) and

induces energy production and anabolic processes even in

absence of growth factor stimulation. To accomplish this, c-

Myc induces expression of key glycolytic enzymes; it also

increases the ratio of pyruvate kinase M2 (PK-M2) to pyruvate

kinase M1 (PK-M1) by indirectly modulating exon splicing,

thereby enforcing a shift toward lactic acid production, a

prominent marker of cancer progression (75). c-Myc also

induces NADPH production which further supports cancer

proliferation (76).

Expression of hypoxia inducing factor-1 a (HIF-1a) is

upregulated by PI3K and RAS/RAF/MEK/ERK kinase cascade

(77–80). HIF-1a is stabilized by CREB binding protein (CBP)/

p300 through ERK-mediated phosphorylation and also by ROS

generated from ETC complex II and III (81–84). It induces the

less efficient mode of glycolysis i.e., aerobic glycolysis, and also

upregulates GLUT1 and GLUT3 expression resulting in uptake

of glucose from the environment thereby increasing the rate of

glycolysis in cancer cells (72, 85). It also upregulates PDK1 and

LDH-A to prevent glucose flux into the TCA cycle thereby

inhibiting OXPHOS and making pyruvate available for

conversion into lactate by LDH-A (86, 87). Wnt signalling also

acts as a driver of cellular proliferation in CRC by modulating

the expression of PDK and inhibiting TCA cycle (88, 89). It is

also a known driver for the upregulation of MCT1 in CRC (90).

In tumor cells, elevated levels of c-Myc and HIF-1a, coupled
with loss-of-function mutations in P53 leads to uncontrolled cell

division, inhibition of apoptosis and cancer progression. P53, in

normal cells, suppresses Warburg effect by decreasing glycolysis

through repression of HK2 and glucose transporter (GLUT1,

GLUT3) expression (91, 92). However, in cancer, P53 not only

loses its function but it gains an oncogenic function (mutp53)

which can inhibit AMPK and upregulate glucose transporters,

GLUT1, GLUT3, and GLUT4, to proliferate under energy

deficient conditions (93, 94). HIF-1a and HIF-2a are

overexpressed in many types of cancers. In BC and high-grade

bladder cancer, HIF-1a upregulates the expression of 6-

phosphofructokinase/fructose-2,6-bisphosphatase (PFKB) 3

and 4, and controls the overall glycolysis rate by modulating
Frontiers in Immunology 05
the activity of phosphofructokinase 1 (PFK1) (95). This

highlights the centrality of HIF-1a and c-Myc in the metabolic

landscape of the tumor cells and their progression. c-Myc also

plays a key role in glutamine metabolism and is responsible for

glutamine addiction in cancer cells (Figure 2).
Dysregulations in amino
acid metabolism

Amino acid metabolism is closely intertwined with the

glycolytic pathway, where the amino acid pools can generate

various components of the TCA cycle via anaplerotic pathways,

along with other metabolites such as glucose, lipids, and

precursors of purines and pyrimidines (98). Cancer cells utilize

their amino acid pools during glucose deprivation to meet their

energy requirements. Glutamine is the primary amino acid

crucial for cancer proliferation and provides carbon and

nitrogen that supports biosynthesis and cellular homeostasis in

cancer cells (98). Cancer cells maintain high pools of glutamine

by upregulating the expression of glutamine transporters, such

as Alanine/Serine/Cysteine/Threonine Transporter 2 (ASCT2;

SLC1A5) in PC and SLC7A5 in HC. Furthermore, glutamine

synthetase (GS) that converts glutamate to glutamine is

overexpressed in HCC and acts as a diagnostic biomarker

which is correlated with more aggressive disease (99). Chronic

hepatitis B (CHB) also leads to HCC and high expression of GS

is also observed in CHB stage 1-4 (100). Glutamine synthase

produced by glial cells also converts ammonia to glutamine in

glioblastoma tissues thus providing an alternate source of

glutamine (101). Glutamine depletion via shRNA-mediated

silencing of ASCT2 inhibits tumor formation (102) and is a

candidate for targeting amino acid dependence in cancer cells. In

many cancers, including BC, LC, CRC, PC, GBM, HCC, GC, and

leukaemia, Glutamine is used to produce glutamate by the

process of glutaminolysis, which is later converted into TCA

component a-KG by glutamate dehydrogenase (GDH) (62, 98,

103–107).

The upregulation of glutaminolysis in cancer cells can be

attributed to increased activity of glutaminase 1 (GLS1) enzyme.

Overexpression of TGF-b increases the levels of GLS1 in HCC

(32) and in T-cell acute lymphoblastic leukaemia (T-ALL),

increased glutaminolysis induces NOTCH1 signaling,

promoting growth and survival of cancer cells (6, 107). N-

methyl D-aspartate-associated protein 1a (GRINA), a

glutamate receptor in GC cells, modulates aerobic glycolysis

and is also involved in lipid and sterol synthesis, which

ultimately promotes tumor progression (108, 109). A higher

glutamine level further activates mTORC1, which helps in

protein translation and nucleic acid biosynthesis required for

cell growth and proliferation (110). On the other hand, amino

acid deprivation in tumor cells promotes autophagy and cell

survival via the mTOR pathway (111). In glutamine-deprived
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conditions, upregulation of KRAS and asparagine synthetase

(ASNS) induces asparagine synthesis from aspartate, thereby

increasing the growth and proliferation of CRC (112).

Asparagine can serve as an antiporter for the influx of other

amino acids and induces the mTOR pathway during amino acid

deprivation (113). Leukaemia and HCC have low levels of ASNS

leading to asparagine deficiency, which rationalised the use of L-

asparaginase, which converts asparagine into aspartate as an

adjunct therapy (114, 115). Karpet-Massler et al. identified that

L-asparaginase derived from E. coli decreases the cell growth in

glioblastoma (116). However, as reviewed by Jiang et al.,

asparagine depletion further reduces the transcription of ASNS

in a feedforward manner via p53 activation in tumor cells,

warranting further studies on the role of p53 mutations in

determining the efficacy of L-asparaginase therapy (113).

Serine and glycine are also noteworthy as they provide

essential precursors for synthesising proteins, nucleic acids,

and fats required by the cancer cells (117). In LC, upregulation

of Na+-dependent transporter, ASCT1 leads to increased serine

uptake (98). Serine acts as a precursor for nonessential amino

acids, glycine, and cysteine. It is also involved in the production
Frontiers in Immunology 06
of sphingolipids and supplies carbon to the one-carbon pool

required for folate metabolism. The folate-methionine route is

responsible for a variety of processes involving volatile carbons,

such as the interconversion of serine and glycine and the

creation of thymidine. Tetrahydrofolate, generated from folic

acid, is a flexible carbon donor that can transport a range of one-

carbon functional groups, such as methyl, methylene, and

formyl groups. This property makes it a versatile cofactor in

biosynthetic pathways. S-adenosylmethionine, a derivative of

methionine, serves as another methyl donor. This metabolic

route establishes a strong functional link between cellular

metabolism and epigenetic regulation, which is essential for

DNA methylation. The growth of glioma cells is restricted in

the absence of methionine (118). Methylation by histone

methyltransferase (HMT) and DNA methyltransferase

(DNMT) is associated with poor prognosis in CRC. Puccini

et al. reported overexpression of S-adenosylmethionine in all

stages of CRC, which acts as a co-substrate for HMT and DNMT

(119). Upregulation of the serine-glycine biosynthetic pathway

due to overexpression of phosphoserine aminotransferase 1

(PSAT1) is associated with higher tumor proliferation and
FIGURE 2

Alterations in glucose metabolism during cancer progression. Cancer cells utilize glucose as a primary energy source. GLUT overexpression
helps the cells to uptake more glucose from the microenvironment, which is converted to lactate-by-lactate dehydrogenase. Lactate produced
by the cells is secreted into the microenvironment via the upregulation of MCT1. PPP is also upregulated in cancer cells to produce NADPH and
pentose phosphate for nucleic acid synthesis (18, 96, 97). [GLUT, Glucose transporter; IDH, Isocitrate dehydrogenase; MCT, Monocarboxylate
transporter; OXPHOS, Oxidative phosphorylation].
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poorer prognosis in CRC and BC (120, 121). Furthermore,

downregulation of z isotype of protein kinase C (PKCz)
expression promotes the serine biosynthesis via increased

activity of enzymes phosphoglycerate dehydrogenase

(PHGDH) and PSAT1, leading to higher intestinal

tumorigenesis. In addition, low expression of PKCz in

intestinal tumors correlates with poorer prognosis (122).

Similarly, arginine is a semi-essential amino acid

therapeutically relevant in PC, HCC, and leukaemia, owing to

the arginine auxotrophy of cancer cells. This dependency is due

to the downregulation of key enzymes involved in arginine

synthesis, such as arginosuccinate synthetase 1 (ASS1),

ornithine transcarbamylase (OTC) and carbamoyl-phosphate

synthetase 1 (CPS1) (114, 123, 124), which catalyses the

conversion of citrulline to arginine via the ornithine cycle in

normal cells. Arginine depletion using arginase (125) or

pegylated arginine deiminase (126) induces cytotoxicity in

prostate cancer cell lines. Arginine depletion also increases the

efficacy of drugs such as docetaxel to treat prostate cancer (127).

Moreover, large neutral amino acid transporter 1 (LAT1 or

SLC7A5), the primary transporter of branched-chain amino

acids (BCAAs) that are not synthesised in the body, is also

overexpressed in lung cancer, glioblastoma and the blast phase of

chronic myeloid leukaemia (98), providing the nutrients

necessary for tumor growth (101). Furthermore, the

upregulation of branched-chain aminotransferase 1 (BCAT1)

expression by H3K9 demethylation drives cancer progression by

increasing the synthesis of branched-chain amino acids like

valine, leucine, and isoleucine (128) and increases ROS

scavengers and imparts chemoresistance against tyrosine

kinase inhibitors (129). High cysteine levels increase the

proliferation and chemoresistance in CML cells by

maintaining cellular redox balance (114, 130). In CRC cells,

upregulation of cystathionine-b-synthase (CBS) promotes

proliferation (by upregulating glycolysis, PPP, and lipogenesis),

invasion, and anoikis resistance by catalysing the condensation

of homocysteine and cysteine to produce hydrogen sulphide

(131). The CRC-specific biomarker CD110 also has an essential

role in lysine catabolism and activates the Wnt signaling

pathway by upregulating acetylated low-density lipoprotein

receptor related-protein 6 (LRP6) and glutathione (132, 133).

Tryptophan is an essential amino acid which is used by the

immune cells, and tryptophan level decreased in the TME due to

higher expression of indoleamine 2,3-dioxygenase 1 (IDO1).

Lack of tryptophan leads to T-cell apoptosis or inhibit immune

cell proliferation via downregulating mTOR signaling pathway

and activating nonderepressible 2 (GCN2) (134, 135). GCN2 not

only downregulate protein synthesis and T cell proliferation it

can also induce differentiation of naïve T cells to T regulatory

cells which ultimately create an immunosuppressive

microenvironment (136). BC patients, particularly TNBC,

show upregulation of tryptophan pathway metabolite
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Kynurenine, which promotes cancer progression by creating

an immunosuppressive microenvironment (137, 138) (Figure 3).
Amino acid metabolism
and autophagy

The inhibition of mTORC1 under nutrient-deprived conditions

allows the cells to undergo autophagy, wherein macromolecules are

recycled via autophagosomemediated lysosomal degradation (139).

The Amino acid sensor proteins play a major role in regulation of

mTORC1 activity which further modulates cellular metabolism,

growth and survival (140). Rag GTPase is a regulator of mTOR that

is controlled by different amino acid sensor proteins. Sestrin is the

first identified amino acid sensor (response to cytosolic leucine

levels) that regulates Rag GTPase, hence downregulating mTORC1

activity (141). Since, macropinocytosis is inhibited by mTORC1,

sestrin-mediated inhibition of mTORC1 leads to increased import

of extracellular macromolecules and therefore, increases survival of

cells under low-nutrient conditions (142). Leucyl-tRNA synthetase

(LARS) is an intracellular leucine sensor which interacts with Rag

GTPase and activates mTORC1 activity (143). SLC38A9, a

lysosomal transmembrane protein, which acts as an intra-

lysosomal amino acid sensor for leucine, glutamine, tyrosine, and

phenylalanine, also activates mTOR by Rag-GTPase (144–146).

CASTOR 1/2, a GATOR2 binding protein, inhibits mTORC1

activity by forming homo- or hetero-dimer upon sensing arginine

(147). s-adenosyl methionine (SAM), upon methionine sensing,

induces S-adenosylmethionine sensor for the mTORC1

(SAMTOR) and GATOR1 dimerizat ion leading to

downregulation of mTORC1 (148). Intracellular amino acid-

activated mTORC1 itself regulates amino acid availability and

also phosphorylates S6 kinase 1 (S6K1) and eukaryotic translation

initiation factor 4E binding protein 1 (4EBP1) which ultimately

increase translation of metabolic enzymes and transcription

factors (149).

Thus, the dysregulated amino acid metabolism and the

amino acid auxotrophy in several cancer cells can be exploited

for therapeutic purpose.
Alterations in lipid metabolism

Lipid metabolism is instrumental for synthesising structural

and functional lipids and generating energy during nutrient

deficiency. Cancer cells generate fatty acids (FA) by lipogenesis

during nutrient-rich conditions and use these stores as an

alternate energy source during nutrient deprivation (150, 151).

Fatty acid, cholesterol and lipids are primarily obtained from

dietary intake, and de-novo synthesis of these molecules are

restricted to the liver and adipocytes. However, the cancer cells

have cholesterol de-novo synthesis, making them independent of
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extrinsic sources. In CRC, the expression of FASN increases in

later stages (stage III, IV> stage I), which upregulates lipogenesis,

mitochondrial respiration, and FA oxidation (152). For this,

high amounts of FA are generated by the upregulation of one

carbon metabolism resulting in increased proliferation of cancer

cells (153).

Lipid metabolism is controlled by different oncogenes and

tumor suppressors such as EGFR, PI3K, MAPK, Myc, and P53

(154, 155). 3-hydroxy-3-methylglutaryl-CoA reductase

(HMGCR), a key regulatory enzyme in cholesterol

biosynthesis (mevalonate pathway), is also upregulated in BC,

GC, and HCC (156, 157). Enzymes involved in mevalonate

pathway are upregulated in BC leading to the malignant

transformation of benign epithelium (158–160). HMGCR is

also responsible for the upregulation of Hedgehog signaling

pathway - which plays a key role in tumor growth and

proliferation - in GC (161). Additionally, HMGCR and not

HIF, was observed to modulate YAP activation leading to

chemoresistance in HCC under hypoxic conditions (158).

Sterol regulatory element binding protein (SREBP) is a

transcription factor which regulates genes involved in lipid

synthesis. It has two variants: sterol regulatory element

binding protein (SREBP1) which helps in lipid and fatty acid
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synthesis and energy generation, and sterol regulatory element

binding protein 2 (SREBP2) which helps in cholesterol

regulation (162). SREBP1 is the master regulator of fatty acid

synthesis and controls the expression of FASN; both are

regulated by PI3K-AKT and MAPK pathway (163, 164).

SREBP1 is upregulated in PC, HCC and glioblastoma.

Normally, SREBP1 activity depends on the intracellular

cholesterol level; under high cholesterol conditions, SREBP1

remains attached to the endoplasmic reticulum (ER), but when

intracellular cholesterol is low, SREBP1 is translocated to the

Golgi apparatus and is activated. Activated SREBP1 upregulates

lipogenic enzymes under the control of PI3K/AKT/mTOR

signaling (156, 157, 165, 166). Brain is a cholesterol rich organ

and consists of 20-25% of total body cholesterol, all of which is

synthesised de novo by the astrocytes (167, 168). This

characteristic is utilised by GBM cells where upregulation of

lipogenesis due to high SREBP1 expression promotes their

survival under hypoxic and lipid-deprived conditions and is

associated with poor prognosis (169). Furthermore, dysregulated

cholesterol synthesis in GBM cells also leads to high cholesterol

availability for the invasive cells (89, 170). This dependence on

lipid synthesis by SREBP1 for cellular growth in GBM is

demonstrated by silencing sterol o-acyltransferase 1 (SOAT1)
FIGURE 3

Alterations in amino acid metabolism during cancer progression. Amino acids are used by cancer cells as a source of carbon and nitrogen. The
expression of ASCT2 increases glutamine uptake, and it is converted to glutamate via glutaminase and provides a TCA-cycle intermediate for
energy production. Intake of BCAAs is also upregulated by the expression of LAT1. The folate methionine cycle is fuelled by serine, which helps
maintain redox balance in the microenvironment. These alterations aid the growth and proliferation of cancer cells via upregulation of the
mTOR signaling pathway (98). [LAT1, Large amino acid transporter 1; ASCT2, Alanine serine cysteine transporter 2; BCAA, Branch chain amino
acids; BCAT1, Branch chain aminotransferase 1; ASNS, Asparagine synthetase; ETC, Electron transport chain; GSH, Glutathione; Met, Methionine;
3PG, Glyceraldehyde 3 phosphate].
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which converts ER cholesterol to cholesterol esters leading to

inhibition of SREBP1 activation and therefore suppressed

growth (166).

Fatty acids are the primary source of energy production for

glioblastoma cells, and their ability to cross the blood-brain

barrier is an advantage for invasive cancer cells (171). In hypoxic

conditions, glioblastoma cancer stem cells increase their FA

uptake via upregulation of fatty acid transporter CD36 (172).

Grube et al. and Lancaster et al. identified that inhibition of FA

synthesis or b-oxidation decreases glioblastoma and neural stem

cell proliferation and can be a target for treatment (173, 174).

Fatty acid synthase (FASN), the key regulatory enzyme of

lipogenesis, and acetyl-CoA carboxylase (ACC), are upregulated

in many cancer types. Expression of FASN is also controlled by

Sp/KLF family transcription factor (in prostate cancer), p53 and

lipogenesis related nuclear protein SPOT14 (175–177). Post-

translational regulation of FASN is observed in prostate cancer

by the isopeptidase, ubiquitin-specific protease-2a (USP2a),

which removes ubiquitin from FASN preventing its

degradation (178). FASN and ACCa expression are regulated

at the translational level by PI3K-mTOR signaling pathway in

HER2 overexpressing breast cancer cells (BT-474, SK-BR-3)

(179). In lung adenocarcinoma, it was observed that ACC

expression is regulated by LKB1-AMPK pathway (140). ACCa
expression is induced by IGF-1 in colon cancer cells, but it is

suppressed by ERK1/2 dependent signalling pathway (180).

Stearoyl-CoA-desaturase (SCD) is another factor that is

upregulated in PC and GC, which helps convert saturated fatty

acids to unsaturated fatty acids (165, 181).

In nutrient-deprived conditions, cancer cells use free fatty

acids for energy generation via fatty acid oxidation (FAO).

Carnitine palmitoyl transferase (CPT) helps transport these

free fatty acids to the mitochondria and undergo FAO.

Peroxisome proliferator activator g (PPARg) is upregulated

during cancer progression, which induces fatty acid trafficking

and energy generation. In low-nutrient conditions, CRC cells

upregulate the AMPK pathway to promote autophagy and

mitochondrial FA oxidation (FAO). AMPK pathway activation

inhibits lipogenesis via downregulation of acetyl CoA-

carboxylase (ACC) and upregulates carnitine palmitoyl

transferase 1 (CPT1) (182). Carnitine palmitoyl transferase 2

(CPT2), an isoform of CPT1, is also upregulated in leukaemia,

PC, CRC, and HCC. Upregulation of FAO in CRC via

overexpression of carnitine palmitoyl transferase 1A (CPT1A)

decreases the ROS level and provides anoikis resistance (183)

[Cell death due to loss of adhesion, called anoikis, is a major

hurdle for cancer cells during metastasis]. ATP-citrate lyase

(ACLY), which converts citrate to acetyl-CoA, is overexpressed

in LC and HCC cells and acts as a bridge between glycolysis and

fatty acid metabolism (184).

Dietary consumption of fats can also affect CRC

tumorigenesis. A high-fat diet (HFD) induces PPAR-d
mediated activation of b-catenin target genes, which results in
Frontiers in Immunology 09
increased proliferation of intestinal stem cells (ISC) and

expansion of TIC (tumor-initiating cells) (185). HCC caused

by hepatitis-B virus (HBV) infection has higher levels of HBV

protein HBx, which induces lipid accumulation in both mouse

model and liver cell lines due to the increased expression of

SREBP1 and PPARg (186, 187). Breast cancer shows alterations
in lipid metabolism depending on the type of BC. BC cells have

increased catabolism of triglycerides and anabolism of linoleate,

palmitate, and oleate. In the basal subtype BC, increased

accumulation of monoacylglycerols via upregulation of

monoacylglycerol lipase (MGAL) is crucial for epithelial to

mesenchymal transition (EMT) and cancer progression (188,

189). Whereas, in the case of HER2, basal and luminal B

subtypes, there is an accumulation of free fatty acids, palmitoyl

carnitine, stearolycarnitine, and oleoyl carnitine. Additionally,

accumulation of fatty acid oxidation product 3-hydroxybutyrate

(3-HBA) is also reported in BC. The overall increase in FA

anabolism promotes BC progression and cell survival. A high

level of FA alters phospholipid biosynthesis and metabolism,

which helps in the progression of HER2 and triple-negative

breast cancer (TNBC) subtypes. Phosphatidylinositol 4-

phosphate 5-kinase (PIPKIN) and phosphatidylcholine-specific

phospholipase-C (PC-PLC) regulate FA metabolism and are

overexpressed in all types of breast cancer, prominently in the

TNBC (190–192). In GC, lysophosphatidic acid is converted to

phosphatidic acid with the help of lysophosphatidylcholine

acyltransferase 1 (LPCAT1) which correlates with tumor depth

and lymph node metastasis (193). Nuclease receptor subfamily 1

group D member 1 protein (Rev-erba) regulates lipid

metabolism and decreases GC progression by augmenting

glycolysis in GC (194) (Figure 4).
Alterations in nucleotide metabolism

Purine and pyrimidine metabolism are also altered in cancer

cells. There are mainly two pathways by which purines and

pyrimidines are synthesized – de novo synthesis which is the

main source of nucleotides in vivo, and the salvage pathway

which is a shortcut used by those cells which do not possess all of

the enzyme machinery necessary for purine nucleotide synthesis

from scratch (brain and bone marrow). Salvage pathway is

primarily regulated via negative feedback (197–202). Key

regulatory enzymes which control purine nucleotide

metabolism are 5’-phosphoribosyl-1’-phosphate synthetase

(PRS), glutamine phosphoribosyl pyrophosphate amido-

transferase (GPRATase), IMP hypoxanthine dehydrogenase

(IMPDH), adenyl succinate synthetase (ADSS) and key

enzymes for pyrimidine nucleotide metabolism are carbamoyl

phosphate synthetase II (CPSII) and dihydroorotate

dehydrogenase (DHODH) (203–208). Pavlova et al. reported

that increased nitrogen demand is one of the hallmarks of cancer

cell proliferation which is fulfilled by synthesizing essential
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nitrogen-containing molecules like nucleotides (4, 10). Purine

and pyrimidine nucleotides are raw materials that support

cellular proliferation which is dysregulated in cancer cells to

enhance the proliferation and progression of cancer cells (209).

c-Myc induces increased expression of nucleotide synthesis

pathway genes like carbamoyl phosphate synthetase/aspartyl

transcarbamylase/dihydroorotase (CAD), thymidylate synthase

(TS), inosine-5’-monophosphate dehydrogenase (IMPDH)

expression (210–212). p53 mutation and pTEN loss result in

mTORC1 activation which induces one-carbon metabolism and

purine and pyrimidine synthesis via phosphorylation of S6K and

transcription factor E2F1 (213, 214). S6K can activate CAD via

phosphorylation on ser1859, and E2F1 can induce the expression

of TYSM which codes for TS (Pyrimidine anabolic), TK, and

DPYD (Pyrimidine catabolic) (215, 216). Santana-Codina et al.

identified that in pancreatic cancer KRAS drives tumor growth

by activating pyrimidine nucleotide synthesis (217).

Overexpression of CAD leads to poor clinical outcomes in BC,

liver cancer, and CRC (218). Yu et al. identified higher

expression of DHODH in Myc-amplified neuroblastoma and

its inhibition led to suppressed neuroblastoma growth in animal

models (219). Kollareddy et al. reported that mutant p53

(mutP53) can promote nucleotide metabolism genes, IMPDH

and GMPS (220). mutP53 is stabilized by ubiquitin-specific

protease 7 (USP7) which is regulated by nucleotide

biosynthetic enzyme, guanosine 5’-monophosphate synthase

thereby forming a feedback loop (GMPS) (220). Therefore,
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nucleotide synthesis could be an effective strategy to increase

the efficacy of cancer treatment.
Crosstalk between metabolic
pathways in cancer cells

Glucose, amino acid, lipid, and nucleotide metabolism are

linked to each other which is utilized by the cancer cells to

support unlimited growth and progression. During initiation

phase cancer cells mainly use glucose as a primary source of

energy and produce high amount of lactate. Anaerobic

glycolysis produces less amount of energy instead of aerobic

respiration but cancer cells increase the rate of anaerobic

glycolysis by upregulating glycolytic enzymes HK, PFK, LDH

and inhibit aerobic glycolysis by upregulating PDK4 which

inhibits the conversion of pyruvate to acetyl-CoA and push the

pyruvate to produce more lactate. This transition from

OXPHOS to aerobic glycolysis happens mainly due to

hypoxic conditions resulting from less vascularization (221).

Altered expression of P53, Myc, HIF-1 and activation of PI3K/

AKT/mTOR in cancer are the key drivers of aerobic glycolysis

(222). Here, HIF-1 act as a master regulator which can sense

the oxygen concentration in the microenvironment and

crosstalk with other signaling pathways (223, 224). During

cancer progression when glucose is deficient in the
FIGURE 4

Alterations in lipid metabolism during cancer progression. In cancer cells, lipogenesis and lipolysis is controlled by the pool of ADP and ATP. In
nutrient-rich conditions (ADP, ATP ratio is low); acetyl, CoA is converted to free fatty acids with the help of acetyl, CoA carboxylase and FASN. In
nutrient-deprived conditions (ADP, ATP ratio is high), free fatty acids enter the mitochondria with the help of CPT1 and CPT1A and help in
energy generation (195, 196). [FASN, Fatty acid synthase; CPT1, Carnitine palmitoyl transferase 1; CPT1A, Carnitine palmitoyl transferase 1A;
GLUT, Glucose transporter; PPARg, peroxisome proliferator activator receptor g].
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environment, cancer cells use other sources of carbon and

nitrogen (amino acid, lipid, nucleotides) to produce TCA cycle

intermediates and use OXPHOS for energy production.

Therefore, metabolic plasticity of cancer cells allows them to

switch or simultaneously use OXPHOS and glycolysis as per

the need (223, 225, 226). OXPHOS is also observed in

normoxic cancer cells which use lactate produced by the

oxygen deprived cells, also known as reverse Warburg effect

(23, 24).

Amino acids and lipids are the secondary source of energy

which is used by the cancer cells in nutrient deprived condition.

Glutamine, serine, and branch chain amino acids (leucine,

valine, and isoleucine) produce TCA cycle intermediates a-
ketoglutarate and pyruvate respectively, which produce NADH

and FADH2 and undergo OXPHOS to produce ATP. In nutrient

deprived condition, Myc binds to promoter of glutamine

transporter SLC1A5 to increase glutamine uptake from the

microenvironment, and increases GLS1 expression by

suppressing the expression of microRNA miR-23a/b, leading

to increased glutaminolysis (227, 228).

Flux of glucose to PPP pathway depends on glucose-6-

phosphtae dehydrogenase (G6PD) which converts glucose-6-

phospgate (a glycolytic intermediate) to 6-phosphogluconate

(229). Expression of G6PD depends on the expression of
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PTEN, P53, AMPK which are mutated in most of the cancer

types and increase flux of glucoe-6-phosphate to PPP and

production of ribose-5-phosphate (substrate for purine

metabolism) (59, 230). Nucleotide metabolism is also linked

to PPP (ribose-5-phosphate) and amino acid metabolism

(glutamine) which is required by the cancer cells to support

DNA synthesis required proliferation and survival (231).

In nutrient replete conditions cancer cells undergo

lipogenesis to produce lipid molecules from acetyl-CoA

generated from acetate, glucose and glutamine, but during

nutrient deprived condition lipolysis occurs to produce free

fatty acids by breaking down lipid droplets which then

undergo b-oxidation to produce energy for cancer cell survival

and proliferation (232–234).

Due to these interlinking nodes between glucose, amino acid,

lipid, and nucleotide metabolism, when one metabolic pathway

is interrupted due to nutrient deficiency or other external stress,

cancer cells compensate by upregulating other metabolic

pathways to support their growth and proliferation. Therefore,

targeting single metabolic pathway cannot be an effective

therapeutic option for cancer treatment and focus should be

shifted on combination therapy wherein multiple metabolic

pathways which are upregulated in cancer cells are targeted

simultaneously (Figure 5).
FIGURE 5

Interaction between the metabolic pathways and the dysregulated metabolic intermediates in cancer cells (24, 235–241). [HK: Hexokinase, PFK:
Phosphofructokinase, PKM2: Pyruvate kinase M2, LDH: Lactate dehydrogenase, PDK1:Pyruvate dehydrogenase kinase 1, PDH: Pyruvate
dehydrogenase, GLUT1: Glucossetransporter1, MCT1: Monocarboxylate transporter 1, ASCT: Alanine/Serine/Cysteine/Threonine transporter,
LAT1: Large neutral amino acid transporter 1, GLS: Glutaminase, ASNS: Asparagine synthase, BCAT1: Branch chain aminotransferase 1, a-KG: a-
ketoglutarate, BCAA: Branch chain amino acids, FASN: Fatty acid synthase, ACYL: ATP citrate lyase, SREBP: Sterol regulatory element binding
protein, PKA: Protein kinase A, ACC: Acetyl-CoA carboxylase, TAG: Triacylglycerol, DAG: Diacylglycerol, Mag: Monoacylglycerol, PPAR-g:
Peroxisome proliferator activator receptor gamma, ASNS: Asparagine synthetase, CAD- Carbamoyl phosphate synthetase/aspartyl
transcarbamylase/dihydroorotase, DHODH- Dihydroorotate dehydrogenase, PRPP- Phosphoribosyl diphosphate, IMPDH- IMP hypoxanthine
dehydrogenase, GMPS- GMP synthetase, IMP- Inosine monophosphate, XMP-Xanthopsin monophosphate, GMP-Guanosine monophosphate,
AMP-Adenosine monophosphate, UMP-uracil monophosphate, TMP-Thymine monophosphate].
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Metabolic reprogramming in
tumor-microenvironment

Stromal cells

The tumor microenvironment plays a critical role in tumor

progression as the cancer cells evolve beyond the initial proliferative

stage into metastatic stages. The bidirectional crosstalk modulates

the metabolic reprogramming of cancer cells and various stromal

and immune cells present in their microenvironment. Cancer-

associated fibroblasts (CAFs), adipocytes, and immune cells in the

CRC microenvironment are involved in tumorigenesis (242).

Cancer cells are known to induce an “activated” state in

fibroblasts, either by secretion of various growth factors and

cytokines or via direct cell-cell contact mediated by Notch1. This

transformation of fibroblasts into cancer associated fibroblasts

(CAFs) is akin to activation of quiescent fibroblasts into

proliferative myofibroblasts in the advent of tissue injury (243).

CAFs can constitute a major fraction of the tumor population,

however their origin and role can vary vastly at different stages of

cancer progression (244). Quiescent fibroblasts are reported to have

anti-tumorigenic properties, however, it is believed that CAFs are

the central architecture of tumorigenesis and are responsible for

metabolic reprogramming via secretion of growth factors such as

EGF, transforming growth factor 1 (TGF1), PGE2 and exosomes

(242, 245). CAFs create a catabolic microenvironment that

promotes tumor-initiating cells (CD133+/CXCR4+/EpCAM+) and

induces stemness in cancer cells by activating sonic hedgehog and

GLI signaling (246, 247). Gorchs et al. found that CAFs isolated

from NSCLC tissue maintain their immunosuppressive effects via

secretion of various immunomodulatory cytokines such as TGF-b,
IL-6, and PGE2, even after high dose irradiation (248).

Furthermore, CAFs can support the metabolic requirements of

the tumor cells by providing various metabolites like lactate, amino

acids and fatty acids (249, 250). Pavlides et al. proposed the reverse

Warburg effect, where they observed that lactate produced by CAFs,

due to upregulation of glycolytic enzymes, can be used by the cancer

cells for respiratory metabolism (251). ROS generated by CRC cells

stimulates lactate secretion by CAFs, and this lactate is utilized by

CRC cells, which have high expression of lactate transporter MCT1

(252). Adipocytes in the cancer microenvironment regulate the

switching between glucose and FA metabolism in cancer cells. Wen

et al. reported that adipocytes transfer free fatty acids to the CRC

cells and promote their survival by upregulating the AMPK

pathway (250). Such metabolic coupling with the tumor-

associated stroma promotes ATP generation and survival of

cancer cells and can serve as a novel biomarker of cancer

progression (253). In BC and GBM, a metabolic symbiosis also

exists between tumor subpopulations in the oxygenated and

hypoxic regions of the tumor, wherein hypoxic cells metabolise

glucose to secrete lactate (through lactate transporter MCT4) which

in turn is internalized by the oxygenated cells viaMCT1 to produce
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energy through OXPHOS (254–259). This symbiosis permits the

survival of heterogenic populations within a tumor while

circumventing any competition over resources. Cancer

progression of solid tumors requires the formation of new blood

vessels to meet the oxygen and nutrient requirements of the tumor

mass. Stromal cells secrete and induce the expression of

proangiogenic factors VEGF and PGE2 in CRC cells (260).

Additionally, CAFs can also modulate the extracellular matrix

composition at tumor site to promote cancer cell motility (261).

The human gut microbiome also plays a significant role in

reprogramming CRC metabolism. The gut microbiome

expresses approximately 9.9 million genes, which is 150 times

greater than the human transcriptome (262). CRC patients show

alterations in the diversity of gut flora as harmful microbiome

populations like- Fusobacterium and Prevotella increase, and

populations of good bacteria like- butyrate-producing bacteria

plummet (263).
Immune cells

Along with CAFs and adipocytes, the metabolic signature of

cancer cells is also influenced by surrounding immune cells,

which include tumor-associated macrophages (TAM), tumor-

infiltrating lymphocytes (TIL), and myeloid-derived suppressor

cells (MDSC) (264). Macrophage infiltration is associated with

poor prognosis in BC. Metabolic reprogramming in BC cells

influences TAM differentiation, and increases glycolysis

mediated by upregulation of hexokinase-2, PFK2 (ATP-

dependent-6-phosphofructokinase), and enolase-1. These

observations indicate that metabolically altered cancer cells

can also reprogram the metabolism of associated macrophages

to favour cancer progression (265).

Moreover, the accumulated lactate stabilizes the oxygen-

regulated protein NDGR3, which can bind to c-Raf and

promotes angiogenesis via the Raf-ERK signaling cascade (266).

Lactate also activates breast cancer-associated macrophages and

upregulates CCL5 and CCR5 expression by activating the

NOTCH, TGFb, and AMPK pathways, promoting EMT,

migration, and aerobic glycolysis in BC cells through a positive

feedback loop (267). BC cells induce the expression of hypoxia

and stress response protein REDD1 in TAMs, which inhibits

glycolysis via mTOR inhibition (268). Inhibition of glycolysis

hinders the secretion of angiogenic factors by TAMs, leading to

leaky, abnormal blood vessels that allow tumor metastasis (269).

Coculture with TNBC cells induces the differentiation of

monocytes into M2-like macrophages (M2-TAMs) and

downregulates citrulline metabolism, nitric oxide synthase

(iNOS), and nitric oxide (NO) (270, 271). The anti-

inflammatory nature of M2-TAMs enables the cancer cells to

evade immune recognition and promotes their survival. Increased

glucose uptake and subsequent lactate accumulation by BC cells
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acidify the tumor microenvironment and impair the cytolytic

activity of T-lymphocytes, thereby promoting tumorigenesis. The

NK cell function is also hampered under high lactate conditions

enabling cancer cells to evade immune surveillance (272, 273).

MDSCs in the BC microenvironment promote immune evasion

and upregulate glycolysis and phosphoenolpyruvate (PEP)

accumulation, protecting BC cells from ROS-induced apoptosis

(274). Furthermore, a higher number of MDSCs in the BC

microenvironment is associated with increased metastasis (275).

Similarly, lung cancer progression is modulated by stromal

and immune cells found in the lung microenvironment (276).

Tumor-associated macrophages (TAMs) crosstalk with LC cells

via the C-C chemokine receptor type-2 (CCR2) and CX3C

chemokine receptor 1 (CX3CR1). LC cells also promote the

conversion of TAMs into anti-inflammatory, tumor-supporting

M2 phenotype, promoting cancer cell migration and survival

(277). TAMs exhibit a glycolytic phenotype in the early stages

of lung cancer, and tumor extract stimulates the expression of

aerobic glycolysis and glycolytic enzymes HK2 and ENO1 in

macrophages (265). The pro-tumoral TAMs secrete arginase II

(ARG 2), which converts arginine to ornithine and urea and

impairs T-cell response (278). TAMs also degrade tryptophan in

the tumor microenvironment in lung cancer by upregulating

indoleamine 2,3-dioxygenase (IDO) (279). Lack of arginine and

tryptophan in the TME impairs T-cell response, whereas, the

downstream metabolic product, Kynurenine, produced by tryptophan

degradation increases the number of immunosuppressive

regulatory T cells (Tregs) (280). Similarly, glutamine addiction of

tumor cells deprives T cells of the glutamine supply, which is

necessary for T-cell activation (281).

M2 polarization of TAMs is also observed in HCC, inducing

an immunosuppressive microenvironment (282). M2

macrophages secrete IL-1b, which induces FAO and increases

the proliferation and metastatic potential of HCC cells. M2-like

TAMs in HCC-TME also show a reduction in glycolysis and PPP

with enhanced OXPHOS and FAO (283). Metabolic

modifications in tumor-associated neutrophils (TANs) also

play a key role in tumor growth, invasion, and metastasis.

Neutrophils derive energy from glycolysis to maintain their

function at low oxygen levels (284, 285). However, lack of

glucose in the TME obligates neutrophils to utilize

mitochondrial FAO and produce NOX-2-dependent ROS,

which further increases immune tolerance in the TME (286).

Like TANs, the dependence of regulatory T cells on FAO for

their survival in TME also plays an immunosuppressive role

(287, 288). Of note, the glycolytic nature of the TME inhibits the

functions of effector T-cells, but maintains the proliferation and

function of regulatory T cells (289, 290). Thus, tumor-associated

stromal cells and immune cells play a crucial role in tumor

progression in several cancers, and effective strategies should be

derived to inhibit the metabolic crosstalk between the tumor

cells and microenvironment cells (Figure 6).
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Metabolic targets for
cancer therapy

Metabolic targeting of cancer is a new era of precision

therapy that aims to exploit the dependence of malignancies

on specific metabolic alterations. The excess glycolysis, the first

described metabolic dysregulation in cancers, has been targeted

in multiple ways to induce growth arrest and apoptosis in tumor

cells. Using 2-deoxyglucose (2-DG) was one of the earliest

attempts to inhibit glycolysis in cancer cells. 2-DG is

transported by hexose transporters and converted to 2-DG-6-

phosphate by hexokinase, which cannot be metabolised further,

and its accumulation impedes glycolysis by inhibiting

hexokinase and phospho-glucose isomerase. However, 2-DG

did not show clinical benefits due to its low therapeutic index

(302–304), and 2-DG inhibits the necessary high glucose

metabolism in the brain (305). However, studies have shown

that the biological effects of 2-DG are not solely due to its

metabolic block; therefore, targeting glucose metabolism via

other means might still have therapeutic benefits (306). For

instance, other glycolysis inhibitors such as 3-bromopyruvate (3-

BP) (307) and lonidamine (308) are being explored to treat

cancers with minimal side-effects like alopecia and bone-marrow

suppression observed with conventional chemotherapies (302,

309, 310). Phosphofructokinases and their regulatory gene

PFKFB are also dysregulated in transformed cells and primary

cancers (311). Upregulation of PFKFB3 promotes glycolysis,

helps in cell cycle transition by phosphorylating p27, and is

associated with poor overall survival in BC patients making it a

potential target for treatment (312, 313). 3-(3-pyridinyl)-1-(4-

pyridinyl)-2-propen-1-one (3-PO) is a PFKFB3 inhibitor that

interacts with its functional subunit and depletes fructose-2,6-

bisphosphate, but has limited application due to its water

insolubility. However, PFK15 and PFH158, the functional

derivatives of 3-PO, are tested in the clinical trial as PFKFB

inhibitors (314, 315). Furthermore, inhibition of glucose uptake

by targeting upregulated GLUTs using WZB117, silibinin or

cytochalasin B induces metabolic crisis in breast, lung, and

colorectal cancer cells (238, 316, 317). Similarly, AR-C155858

and AZD3965, inhibitors of lactate transporters MCT1 and 2,

normalise the TME pH and inhibit tumor proliferation (318,

319). LDH upregulation has also been targeted with quinoline-3-

sulfonamide, Oxamate and GNE-140 to inhibit conversion of

pyruvate into lactate. Specific targeting of mutant enzymes such

as IDH1 and IDH2, using enasidenib (AG-221) or ivosidenib

(AG-88), is another approach to target glucose metabolism

without affecting the function of normal cells. However, the

relevance of such mutations to tumor survival and proliferation

largely depends on the cancer stage and might not be an effective

strategy during later stages.

OXPHOS is generally downregulated in cancer cells (breast

cancer, gastric cancer), but due to mutations in mitochondrial
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DNA, OXPHOS is upregulated in some cancer types (leukaemia,

endometrial carcinoma) (38). Targeting OXPHOS requires

inhibition of the ETC complexes. Metformin inhibits ETC

complex I and reduces tumor growth by reducing NADH

oxidation, resulting in ATP depletion and loss of proton gradient

across the inner mitochondrial membrane (320, 321). In addition to

metformin, drugs such as tamoxifen, Vitamin E derivative a-
tocopheryl succinate, and 3-BP target ETC complexes (322). On

the other hand, the independence of cancer cells from

mitochondrial respiration mediates their resistance to the

mitochondria-controlled apoptotic pathway. PDK regulates the

activity of PDH to limit the production of acetyl-CoA from

pyruvate and is a potential target for cancer therapy.

Dichloroacetate inhibits PDK, upregulates the activity of PDH,

and restores the mitochondrial dependence of cancer cells (323).

Downregulation of PPP to inhibit nucleotide biosynthesis is

another therapeutic approach to limit the proliferation of cancer

cells. Dehydroepiandrosterone, an endogenous precursor for

steroid hormones, can inhibit G6PD, the key regulator of PPP,

but has limited therapeutic application due to its immediate

conversion into steroid hormones in vivo (324). 6-

aminonicotinamide is reported to inhibit G6PD and showed
Frontiers in Immunology 14
promising results in inhibiting tumor growth in vitro (325–327),

but its inclusion within tolerable doses in subsequent clinical

trials showed no significant benefit (328).

Glutamine addiction is another prominent characteristic of

cancer cells that can be targeted therapeutically. Glutaminase1

(GLS1) inhibitor, Bis-2-(5-phenylacetamido-1,3,4-thiadazol-2-yl)

ethyl sulphide reduces cancer cell proliferation in vivo (329–331).

Several other molecules, such as acivicin, azaserine, 6-diazo-5-oxo-

I-norleucine (DON), which can inhibit glutaminolysis, can be used

for cancer treatment (329, 332). L-asparaginase, which depletes

asparagine and glutamine in the microenvironment of ALL cells to

inhibit their growth, have been found to be effective in several

patients (333). Serine, a precursor for nonessential amino acids

glycine and cysteine, is synthesised from glucose or imported from

the extracellular environment by the cancer cells to promote their

survival (334–336). Upregulation of phosphoglycerate

dehydrogenase (PHGD), which converts 3-phosphoglycerate to

serine, can be targeted using PHGD inhibitors CBR-588 and

NCT-503 in BC and LC (305).

Many cancer types, such as glioblastoma, are dependent on

lipid metabolism. In nutrient-deprived conditions, cancer cells

use FAO to produce NADH and FADH2 via OXPHOS (337).
FIGURE 6

Cancer microenvironment in metabolic reprogramming. Several cell types such as macrophages, neutrophils, MDSCs, Treg, DC, T-cell, NK-cell,
adipocytes, and CAFs present in the tumor microenvironment alter the metabolic reprogramming of cancer cells. Immune cells present in the
TME have both pro and anti-tumor effects; however, the cancer cells induce the pro-tumorigenic phenotype (M2-TAM and M2-TAN). Cancer
cells induce CAFs to secrete lactate in the TME leading to an acidic environment that suppresses the immune cells (242, 250, 252, 291–301).
[MCT1: Monocarboxylate transporter 1, MCT4, Monocarboxylate transporter 4; CAF, Cancer-associated fibroblast; M2-TAM, M2 Type Tumor-
associated macrophages; NK cell, Natural killer cell; MCP1/CCL2, Monocyte chemoattractant protein-1/Chemokine (C-C motif) ligand 2; IDO,
Indoleamine-pyrrole 2,3-dioxygenase; MDSC, Myeloid-derived suppressor cells; Treg, T regulatory cells; IGF, Insulin-like Growth Factor; EGF,
Epidermal growth factor; VEGF, Vascular endothelial growth factor; IL-Interleukin, PGE2-Prostaglandin E2; TGF-b, Transforming growth factor
beta, MMP: Matrix metalloproteases, CRC, Colorectal cancer; GC, Gastric cancer].
frontiersin.org

https://doi.org/10.3389/fimmu.2022.955476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pal et al. 10.3389/fimmu.2022.955476
During cancer progression, upregulation of CPT1 increases the

transport of fatty acids into the mitochondria. CPT1A inhibitor,

etomoxir (ETO), induces growth arrest in bladder cancer cells

(338) and increases the effectiveness of hormonal therapeutic

drugs like enzalutamide in prostate cancer (339). Further studies

identified that etomoxir has off target effects which leads to

oxidative stress, therefore, using other CPT1A inhibitor (S1326)

might yield better therapeutic results (340, 341). Furthermore,

FAO is upregulated due to the increased activity of enzymes like

ACLY, ACC1 and ACC2 that are crucial for cancer cell growth

and proliferation, making them a potential target for GC, LC,

and BC treatment (342). Drugs like SB-204990 and simvastatin

inhibit ACLY and decrease acetyl-CoA availability for FAO (82,

343–345). FASN is overexpressed in most cancer types to

promote lipogenesis (154, 346).

Like other metabolic pathways nucleotide metabolism is also

dysregulated in cancer. Targeting nucleotide metabolic enzymes

or using purine and pyrimidine analogs has been long sought

therapeutic approach for cancer treatment. Thiopurines (6-

mercaptopurine, thioguanine), deoxy-purines (cladribine,

Clofarabine), arabinose purine analogs (nelarabine, fludarabine)

and base modified purine nucleotides (8-chloro-adenosine,

tocladesine and forodesine) are purine analog antimetabolites

which are used for cancer treatment (347). 6-mercaptopurine

was approved by FDA for the treatment of childhood leukaemia in

early 1953 and thioguanine in 1996 for the treatment of non-

lymphocytic leukaemia (347–350). Cladribine is approved for the

treatment of hairy cell leukaemia and its improved version is

clofarabine a second-generation deoxyadenosine analog (351–

354). Arabinose purine analogs are used for the treatment of

acute and chronic lymphocytic leukaemia and in relapsed T cell

lymphoblastic leukaemia, and base modified purine nucleotides

have not yet approved by FDA (351–357). Fluorinated

pyrimidines (5-Fluro uracil, capecitabine, floxuridine),

azanucleosides (decitabine, azacytidine), ribose sugar modified

cytidine analogs (gemcitabine), cytarabine are used as a

pyrimidine analogue for treatment of cancer (347). 5-FU was

approved by FDA in 1960 for hepatic carcinogenesis and is

currently under study for gastrointestinal, breast and renal

cancer (358–360). Gemcitabine, a ribose sugar modified cytidine

analog, disrupts DNA biosynthesis through cell cycle arrest and is

currently approved by FDA for the treatment of breast, ovarian,

lung and pancreatic cancer (361–363). Azanucleosides induce

epigenetic modification (inhibit DNA methylation) to achieve

antitumor effects (364–366). Along with the purine and

pyrimidine nucleotide analogs there are enzymatic blockers

which can disrupt nucleotide metabolism in cancer cells.

Mizoribine, merimepodib and mycophenolic mofetil (phase I

trial in pancreatic cancer) are inhibitors of IMDPH an enzyme

involved in purine metabolism (367–370). Thymidylate synthase

(TS) and glycinamide ribonucleotide transformylase (GART)

which are involved in thymidine and purine nucleotide
Frontiers in Immunology 15
synthesis is inhibited by an anti-folate drug called pemetrexed.

MLN4924 can be used in melanoma, acute myeloid leukemia and

lymphoma, as it inhibits carcinogenesis by inhibiting proteasomal

degradation (371, 372). Teriflunomide and leflunomide, inhibitor

of DHODH a key enzyme in nucleotide synthesis, have

antiproliferative effects in NSCLC, myeloma and neuroblastoma

but has not yet been approved by FDA for clinical use (373, 374).

TVB-3166, TVB-2640, and omeprazole inhibit the FASN to

inhibit cancer proliferation. Several signaling pathways (PI3K/

AKT/mTORC, MAPK, PI3K/AKT/FOXO) are also involved in

the metabolic alteration of cancer cells, which can be targeted to

downregulate the metabolic pathways and ultimately inhibit

cancer growth and proliferation.

Dysregulation of GLUT-1/3, HK II, PFK-1 CPT1/2, FASN

and GLS1 is common in most cancer types, and the interlinked

metabolic pathways compensate for the deprivation of nutrients

to maintain cancer growth, proliferation, and metastasis.

Therefore, combination therapies targeting more than one

metabolic pathway will be more effective with a better

therapeutic index to treat cancer. Kalyanaraman et al. reported

that targeting both glycolysis and OXPHOS is a promising

therapeutic approach and observed good outcomes with a

combination of Metformin and 2-DG treatment in pancreatic

cancer which depleted the ATP pool and cancer proliferation

(375). L-asparaginase can be combined with other glutamine

metabolism inhibitors, which can increase the effectiveness of

the treatment. Tanaka et al. observed that a combination

treatment of mTOR and GLS inhibitors induced tumor cell

death in a mice model (376).

Along with metabolic and signaling pathways, targeting TME

cells can be a potential therapeutic option by which we can

produce a synergistic effect against the cancer cells. CAF present

in the microenvironment undergo aerobic glycolysis and produce

lactate which is released into the microenvironment byMCT4 and

imported by the cancer cells via MCT1 to fuel up the OXPHOS

during nutrient deprived conditions (377, 378). Syrosingopine,

which can inhibit both MCT1 and MCT4 and LDH has been

shown to induce higher cytotoxicity than AZD3965 which can

only inhibit MCT-1 in liver cancer cells (377). CAFs are also a

source of glutamine in the TME so targeting glutamine synthetase

(GLUL) in CAFs along with GS in cancer cells leads to synergistic

effect which reduces metastatic potential of ovarian cancer (379).

Endothelial cells are reprogrammed to undergo excessive

glycolysis in the TME leading to their impaired function, so

targeting glycolytic activator PFKFB3 with 3-PO, can be a

multimodal therapeutic option for cancer treatment (380, 381).

However, caution needs to be exercised as inhibiting certain

metabolic pathways can severely impair the immune cell

function, which in turn might promote tumor progression.

Furthermore, tumor microenvironment components are also

being explored as a viable target to disrupt the metabolic

cooperation that promotes tumor progression (17) (Table 1).
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TABLE 1 List of metabolic pathway drugs which were evaluated clinically.

Drug Target molecule Mode of action in different cancer types

AZD3965
AR-C155858

MCT1 Inhibition of lactate transporter and glycolysis in CRC (235) and LC (236).

WZB117
Silibinin
Cytochalasin B
Fasentin, phloretin, STF-
3, Dapagliflozin

GLUT
SGLT

Downregulates GLUT1 expression in CRC (235), Inhibits glucose uptake in cells
preferentially expressing GLUT1 or GLUT4 and inhibits active transport of glucose into
cells by SGLT1 and SGLT2 in LC (382–385), Inhibit glucose reabsorption in the kidney in
BC (386)

2-DG
Lonidamine
Bromopyruvate

HK Sensitizes CRC cells to TRAIL-induced apoptosis (310).
Inhibits glycolysis in hypoxic cancer cells and inhibits mitochondrial pyruvate
oxidation in BC (302) and LC (302, 309, 387).

Metformin,
Mito-Metformin

Mitochondrial electron transporter complex 1 AMPK activation, PKM2 inhibition, and ATP depletion in CRC (388, 389)
Inactivates phosphorylation of the E1 alpha-subunit of PDC and inhibits alpha-
ketoglutarate dehydrogenase in BC (390).

Dichloroacetate
AZD7545

PDK Fostering oxidative phosphorylation in BC (391).
Increases oxidative phosphorylation, thereby increasing Krebs cycle intermediate
concentration in LC (392, 393)

CPI-613
ME-344

PDH Inactivate phosphorylation of the E1 alpha-subunit of PDC; and inhibits alpha-
ketoglutarate dehydrogenase and decreases mitochondrial ATP production in BC (394,
395).

Indoximod,
Epacadostat,
BMS-986205,
KHK2455,
Epacadostat,
INCB001158

Indoleamine 2,3
dioxygenase (IDO1)

Increases tryptophan concentration and activates T cell-mediated immunity In BC (106,
396).
Induces host immune system mainly T-cell mediated response in BLC (397, 398).

3PO
PFK3
PFK158

PFKFB3 Reduces glucose uptake and ATP production in LC (399, 400).

Bromop-yruvate GAPDH Inhibit glycolysis, thereby suppressing the production of ATP and inducing cell death in
LC (401, 402).

Shikonin PKM2 Inhibits cell aerobic glycolysis in LC (403).

FX11
Quinoline-3-sulfonamide
Oxamate
GNE-140
PSTMB

LDH Inhibits the ability of LDH to convert pyruvate into lactate in LC (237, 404–407).

Enasidenib
Ivosedinib
GSK864
GSK321

IDH Potent IDH1 inhibitor used in LC and approved in relapsed/refractory IDH2 mutant
AML (408, 409).

Lonidamine
SiRNA

VDAC1 Induces apoptosis by rewiring tumor cell metabolism, reduces cancer stem cells, and
induces differentiation in LC (410, 411).

Simvastatin 3-hydroxy-3-methylglutaryl coenzyme A
reductase

Inhibit conversion of HMG-CoA to mevalonate, the rate
limiting step of steroidogenesis in PC (412).

INCB001158 Arginase Induces proliferation of cytotoxic T-cells and natural killer (NK) cells that kill the tumor
cells In BLC (413).

L-NMMA Nitric oxide synthase Inhibits NOS in BLC (397).

ADI-PEG20 Arginine deiminase Starves tumor cells by arginine depletion in BC (414).

CB-839 Glutaminase Inhibits hydrolysis of glutamine in BC (415)

DON, BPTES, Acivicin,
Azaserine

GLS1 Inhibits Gln metabolism in CRC (416, 417) and
reduces glucose uptake in PC (418).

L-aspartate + Rapamycin ASNs, mTOR Inhibits asparagine biosynthesis in CRC (112)

TVB-3166,
TVB-2640,
Omeprazole,
Conjugated Linoleic
Acid (CLA), Orlistat,

FASN Inhibits de novo palmitate synthesis in CRC (343).
Supresses denovo lipogenesis in BC (82, 344, 345).
Form a covalent bond with the enzyme FASN and inhibits its function, thereby inhibiting
lipogenesis in PC (419–421).

(Continued)
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Conclusion

Metabolic dysregulations in cancer cells were first described

by Otto Warburg, who identified and hypothesised that

excessive glucose uptake and lactate formation is the root

cause of tumorigenesis (6). Since then, numerous studies have

identified alterations in all major metabolic pathways, including

glucose, amino acids, lipid, and nucleotide metabolism.

The current understanding of tumor progression suggests that

while metabolic reprogramming does not lead to tumor initiation, it

is the most critical driver of tumor progression in later stages. But in

some cases, mutation in metabolic enzymes leads to tumorigenesis.

Oncometabolites (succinate, fumarate, D-2-hydroxyglutarate)

produced from mutations in TCA cycle enzymes succinate

dehydrogenase (SDH), fumarate hydratase (FH) and IDH1/2 lead

to epigenetic alterations and affect gene expression by inhibition of

Jumanji-C-domain containing histone lysine demethylase (KDMs)

and ten-eleven translocation (TET) family of 5-methylcytosine

(5mC) hydroxylase (428–430). These oncometabolites are

observed across different cancer types such as renal cancer,

gastrointestinal cancers, leukaemia gliomas and glioblastomas
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(430). In some cases, risk factors like obesity, may also lead to

tumorigenesis, mediated by increased leptin and decreased

adiponectin. Leptin leads to the activation of PI3K-AKT-mTOR

pathway, whereas downregulation of adiponectin reduces AMPK

levels, thereby increasing mTORC1 activity, which induces cell

proliferation (431, 432).

Induced glucose fermentation, also referred to as “aerobic

glycolysis” or the Warburg effect, provides for the high energy

requirements of the cancer cells. The upregulation of glucose

consumption forms the basis of tumor screening by

fluorodeoxyglucose positron emission tomography (FDG-PET)

(433). This increase in glycolytic flux is due to the upregulation

of various glucose importers (GLUTs) and downstream

metabolising enzymes like HK, PFK, PKM2, and LDH,

observed in many cancer types (39, 55, 433, 434).

Furthermore, high glycolytic flux is coupled with upregulation

of PPP, increasing nucleic acid biosynthesis required for

unabated proliferation of cancer cells (59). Cancer cells derive

energy via oxidative phosphorylation of TCA cycle

intermediates produced by amino acid metabolism or via beta-

oxidation of fatty acids (98, 150, 151). Increased metabolism of
TABLE 1 Continued

Drug Target molecule Mode of action in different cancer types

C75, cerulenin, and C93,
3-aryl-4
hydroxyquinoline-2
(1H)-one derivatives,
GlaxoSmithKline
produced GSK837149

SB-204990 and
simvastatin

ATP citrate
lyase

RNA interference and inhibits proliferation and survival of tumor cells in PC (422).

Ficlatuzumab FGF Inhibits glucose uptake and blocks HGF activity in CRC (106).

RO5126766 RAF/MEK Downregulates GLUT1 expression in CRC (133).

Metformin,
5-aminoimidazole-4-
carboxamide-1-b-
ribofuranoside
(AICAR),
A-769662, PT1, and
OSU-53

AMPK Reduces the expression of gluconeogenic enzymes, decreases AMP/ATP ratio, and
activates AMPK in PC (421, 423–425).

Mercaptopurine Hypoxanthine–guanine
phosphoribosyltransferase,
amidophosphoribosyltransferase, Inosine-5'-
monophosphate dehydrogenase

Acute lymphatic leukemia (347, 348)

Fluorouracil Thymidylate synthase Colon, esophageal, gastric, rectum, breast, biliary tract, stomach, head and neck, cervical,
pancreas and renal cell cancer (302, 359)

Thioguanine
Carboplatin
Oxaliplatin

DNA Acute non-lymphocytic leukemias (347, 350)
Testicular tumors, ovarian tumors, and bladder cancer
CRC (426)

Gemcitabine Ribonucleoside-diphosphate reductase,
thymidylate synthase, UMP-CMP kinase

Ovarian, lung, breast, and pancreas cancer (361, 362)

Pemetrexed Thymidylate synthase, Bifunctional purine
biosynthesis protein PURH, Dihydrofolate
reductase, Trifunctional purine biosynthetic
protein adenosine 3

Mesothelioma, NSCLC (427)
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glutamine and auxotrophic dependence on other amino acids is

a prominent characteristic of cancer cells. The exclusive

sensitivity of ALL cells towards L-asparaginase treatment was

the first therapeutic intervention that targeted metabolic

dysregulation in tumor cells. Since then, various other

approaches that limit the availability of amino acids, such as

treatment with arginase, inhibition of AA metabolism, such as

glutaminase1 inhibitors and inhibition of amino acid

transporters like ASCT, have shown promising results in

inhibiting tumor growth. Glutaminase inhibitors, IPN60090, a

small molecule, and Telaglenastat are in phase 1 clinical trial for

CRC, NSCLC and PC (435, 436). There are also other drugs

available which are in clinical trial for targeting different cancer

types such as- sirpiglenastat an antagonist of glutamine (phase I/

II for solid tumors and NSCLC), AZD5965 inhibitor of MCT1

(phase II for solid tumors and lymphoma), IACS-010759

inhibitor of mitochondrial respiratory complex 1 (phase I for

AML) (436). Similarly, various aspects of fatty acid metabolism

and lipogenesis upregulated in cancer cells are targeted by

inhibiting the regulatory enzymes such as FASN. In

glioblastoma, cancer cells do not depend on extrinsic sources

of fatty acid and instead upregulate de novo synthesis of

cholesterol. Under such circumstances targeting specific

regulators of lipogenesis such as SREBP1 shows high

therapeutic specificity and efficacy (167, 169).

Furthermore, the tumormicroenvironment comprises various

immune cells and tumor-associated stromal cells, which

extensively modulate the metabolic state of the cancer cells. The

symbiotic relationship between cancer and TME cells supports the

metabolic dysregulations resulting in a tumorigenic and

metastasis-promoting niche. Various metabolites secreted by

cancer cells induce tumor suppressive phenotype in the

macrophages and regulatory T-cells. Furthermore, cooperative

metabolic coupling within different subpopulations of tumor cells

are also observed. Secretion of various metabolites by the TME

cells induces signaling pathways such as AMPK/mTORC1, PI3K/

AKT and Raf-ERK, which promote the survival of cancer cells.
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Therefore, further studies aimed at a better sub-classification

of cancers depending on the type of interactions that exist

between the cancer cells and its TME might allow targeting of

TME-induced metabolic alterations.
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