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Jordi Villà-Freixa,
Universitat de Vic - Universitat Central
de Catalunya, Spain

*CORRESPONDENCE

Serghei Mangul
serghei.mangul@gmail.com

SPECIALTY SECTION

This article was submitted to
Systems Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 26 May 2022

ACCEPTED 05 October 2022
PUBLISHED 27 October 2022

CITATION

Peng K, Moore J, Vahed M, Brito J,
Kao G, Burkhardt AM, Alachkar H and
Mangul S (2022) pyTCR: A
comprehensive and scalable solution
for TCR-Seq data analysis to facilitate
reproducibility and rigor of
immunogenomics research.
Front. Immunol. 13:954078.
doi: 10.3389/fimmu.2022.954078

COPYRIGHT

© 2022 Peng, Moore, Vahed, Brito, Kao,
Burkhardt, Alachkar and Mangul. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Methods
PUBLISHED 27 October 2022

DOI 10.3389/fimmu.2022.954078
pyTCR: A comprehensive and
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data analysis to facilitate
reproducibility and rigor of
immunogenomics research
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T cell receptor (TCR) studies have grown substantially with the advancement in

the sequencing techniques of T cell receptor repertoire sequencing (TCR-Seq).

The analysis of the TCR-Seq data requires computational skills to run the

computational analysis of TCR repertoire tools. However biomedical

researchers with limited computational backgrounds face numerous

obstacles to properly and efficiently utilizing bioinformatics tools for

analyzing TCR-Seq data. Here we report pyTCR, a computational notebook-

based solution for comprehensive and scalable TCR-Seq data analysis.

Computational notebooks, which combine code, calculations, and

visualization, are able to provide users with a high level of flexibility and

transparency for the analysis. Additionally, computational notebooks are

demonstrated to be user-friendly and suitable for researchers with limited

computational skills. Our tool has a rich set of functionalities including various

TCR metrics, statistical analysis, and customizable visualizations. The

application of pyTCR on large and diverse TCR-Seq datasets will enable the

effective analysis of large-scale TCR-Seq data with flexibility, and eventually

facilitate new discoveries.

KEYWORDS

TCR - T cell receptor, TCR-seq, immunogenomics, computational notebooks, TCR
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.954078/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954078/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954078/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954078/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.954078/full
https://orcid.org/0000-0002-9362-4618
http://orcid.org/0000-0001-7795-402X
https://orcid.org/0000-0002-4721-2356
https://orcid.org/0000-0002-7158-3253
https://orcid.org/0000-0003-0399-1041
https://orcid.org/0000-0002-7326-474X
https://orcid.org/0000-0003-4770-3443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.954078&domain=pdf&date_stamp=2022-10-27
mailto:serghei.mangul@gmail.com
https://doi.org/10.3389/fimmu.2022.954078
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.954078
https://www.frontiersin.org/journals/immunology


Peng et al. 10.3389/fimmu.2022.954078
Introduction

T cell receptor (TCR) repertoire is a collection of all unique

TCRs in an individual, which is formed through the process of V

(D)J recombination after exposure to antigens and the activation

of the adaptive immune response. With the growing

understanding of TCR repertoire, researchers are able to

leverage detailed TCR-Seq datasets to reveal the changes of

TCR repertoires in a variety of human disease states such as

cancer (1, 2), autoimmune diseases (3, 4), infectious diseases

(5, 6), and neurodegenerative diseases (7, 8). Thus, these have

helped the biomedical community to deepen the understanding

of the roles of the adaptive immune system and adaptive

immune responses. For example, studies have shown the usage

and diversity of TCR repertoires could be utilized to help select

the most suitable immunotherapy for cancer patients (9, 10).

Thus, effective TCR profiling and analysis are informative to

guide certain cancer treatments, which ultimately enables

precision and personalized medicine.

With the rapid development of high-throughput sequencing

techniques in the past decades, TCR-Seq has enabled researchers

to effectively characterize TCR repertoires across various tissue

types and diseases with high specificity and sensitivity by

targeting TCR loci. Even with the available TCR profiling

methods, TCR repertoire metrics such as diversity, gene usage,

and motif enrichment cannot be easily interpreted directly from

TCR-Seq data after initial TCR profiling. Post-analysis is

required to calculate, visualize, and compare the sample level

or population level TCR repertoire characteristics.

Existing bioinformatics tools for TCR repertoire post-

analysis are available as R packages such as VDJTools (11),

Immunarch (12), and HTML programs such as VisTCR (13)

and Vidjil (14). These tools enable biomedical researchers to

analyze TCR-Seq data, however, multiple barriers and

limitations exist. First, as in any R package, users follow the

instructions to enter commands in the command-line interface

and the output will be presented in the summarized tables or

figures. The analytical methods used for the particular step of the

analysis are isolated, which can result in a limited understanding

of the details of the analysis. This also increases the probability of

human errors. Relying on the documentation of the tool is often

not a reliable solution as it typically lacks details, has unclear and

ambiguous wording, and can be outdated for future users.

Second, the existing TCR-Seq analysis tools need to be

installed and utilized with the command-line interface which

can be a challenge for biomedical researchers who lack the

required computational skill sets (15). Third, the output files

are generated as individual files. Biomedical researchers need to

work between different files and tools to finish the post-analysis,

which leads to high chances of creating manual mistakes. Last,

none of the existing tools cover all aspects of the TCR-Seq

analysis. For example, researchers need to use multiple packages
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or additional tools for statistical analysis, which adds an

additional burden for biomedical researchers.

Here, we present pyTCR (python TCR analysis), an easy-

to-use, interactive, and scalable solution with a wider range

of functionalities compared to existing tools. pyTCR utilizes

interactive computational notebooks to facilitate reproducibility

and rigor of performed TCR-Seq analysis. The availability of

well-documented code, visualization, and results of the analysis

in a single notebook will facilitate transparency and

reproducibility of performed analysis, make the users more

aware of the details of the metrics and thresholds being used

in the analysis, as well as minimize the possibility of manual

mistakes and misinterpretation of the TCR-Seq data analysis

results. Notably, pyTCR provides statistical analysis for the first

time in a TCR-Seq analysis tool, which is not available in the

existing tools. We have demonstrated the utility of pyTCR by

applying it to the COVID19-BWNW dataset containing 46

TCR-Seq samples. Additionally, we have compared the

scalability of our tool with the existing tools and have

demonstrated substantial improvement in running time.
Results

pyTCR: a comprehensive and scalable
solution for TCR-seq data analysis

pyTCR, an open-source, user-friendly tool that addresses the

issues mentioned above, offers broader and more comprehensive

TCR repertoire analysis with an increased number of types of

analyses compared to the existing tools. Six types of analysis are

contained in the pyTCR, which include basic analysis, clonality

analysis, diversity analysis, overlap analysis, gene usage analysis,

and motif analysis (Table 1). TCR repertoire metrics,

visualization, and statistical analysis are included in all types of

analyses (Figure 1, Table 1). Our tool for TCR-Seq data analysis

uses interactive computational notebooks for post analysis and

visualization of TCR-Seq data with a rich set of functionalities.

Notably, we have used Google Colaboratory (Google Colab) to

provide the cloud option, which is free to use and provides

different subscriptions based on users’ needs. No installation of

the software to the local computers is required if the users choose

to use the Google Colaboratory. However, large files can’t be run

on Google Colab if the users do not subscribe to Google Colab.

The use of computational notebooks enables users to execute

analysis and produce tabular output and customizable

visualization so that users can use the desired features in their

datasets to generate results.

The users can clone the GitHub repository to their local

computer and utilize the pyTCR notebooks locally via Jupyter

Notebook (16). Users who choose to use Google Colab (cloud

option of pyTCR) can upload the data files from local
frontiersin.org
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TABLE 1 TCR repertoire analysis functions in pyTCR.

Metric Description

Basic analysis

Read count Number of reads in a sample

Clonotype count Number of clonotypes in a sample

Mean frequency Mean of clonotype frequency in a sample

o
n

i=1

(pi) ÷ n

pi= frequency of clonotype i
n = number of unique clonotype in the sample

Geometric mean frequency Geometric mean of clonotype frequency in a sample

½
Yn
i

(pi)�1=n

pi = frequency of clonotype i
n = number of unique clonotype in the sample

Mean length of CDR3 nucleotide
sequence

Mean length of CDR3 nucleotide sequence, weighted by clonotype frequency, in a sample

o
n

i=1

(len(nt)� pi)

pi = frequency of clonotype i
n = number of unique clonotype in the sample
len(nt) = length of CDR3 nucleotide sequence

Convergence Mean of unique CDR3 nucleotide sequences that code for the same CDR3 amino acid sequence

Spectratype Frequency of clonotypes based on CDR3 nucleotide lengths

Clonality analysis

The most or the least frequent
clonotype

The most or the least frequent clonotype

1-Pielou index The evenness of the distribution of the clonotypes 1 +o
n

i=1

½(pi� In(pi))�=In(n)

pi= frequency of clonotype i
n = number of unique clonotype in the sample

Clonal proportion The number of distinct clonotypes that accounts for greater than or equal to percentage
(customizable) of the total of sequencing reads

Relative abundance (in all repertoire,
top clonotypes, rare clonotypes)

The proportion of repertoire account for clonal groups with specific abundances in a sample

Diversity analysis

Shannon-Wiener index

e
o
n

i=1

− (pi� In(pi)

pi= frequency of clonotype i
n = number of unique clonotype in the sample

Normalized Shannon-Wiener index shannon-wiener index ÷In(n) = number of unique clonotype in the sample

Inverse Simpson index Simpson index D =o
n

i=1

pi2

Inverse Simpson index: 1/D

Gini Simpson index Gini Simpson index: 1-D

D50 index The percentage of distinct clonotypes that accounts for greater than or equal to 50% of the total of
sequencing reads

Chao1 estimate
Chao1 estimate = Chaol estimate = S +

f 1(f 1 − 1)
2(f 2 + 1)

Variation of Chao1 estimate = Variation of Chaol estimate = f 2½0:5*(
f 1
f 2

)2 + (
f 1
f 2

)3 +

0:25*(
f 1
f 2

)4�
f1 = number of clonotypes with read of 1
f2 = number of clonotypes with read of 2
S = number of clonotypes

Gini coefficient The ratio of the area that lies between the line of equality and the Lorenz curve over the total area
under the line of equality

Gene usage analysis

(Continued)
Frontiers in Immunology
 03
 frontiersin.org

https://doi.org/10.3389/fimmu.2022.954078
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.954078
TABLE 1 Continued

Metric Description

V,D,J gene weighted usage Mean of gene frequency weighted by clonotype frequency

V,D,J gene unweighted usage Mean of gene frequency by the number of the reads

Overlap analysis

Morisita-Horn index

Ch =

(2*o
S

i=1

xiyi)

(
o
s

i=1

xi2

X2 +
o
S

i=1

yi2

Y2 )XY

xi: the number of reads clonotype i is represented in the total number of reads X from one sample
yi: the number of reads clonotype i is represented in the total number of reads Y from another
sample
S: the index of overlapped clonotypes

Jaccard index A ∩ B
A ∪ B
A: sample A, B: sample B
Number of clonotypes that is in both samples divided by the number of clonotypes that is in either
sample

Overlap coefficient A ∩ B
A

A: sample A (the sample with a smaller clonotype count), B: sample B
Number of clonotypes that is in both samples divided by the number of clonotypes that is in the
sample with a smaller clonotype count

Tversky index BothAB
a*onlyA + b*onlyB + botyhAB

a=b=0.5 (Sørensen–Dice coefficient)
Both AB, number of clonotypes that is in both sample A and B, only A: number of clonotypes that
is only in sample A, only B: number of clonotypes that is only in sample B

Cosine similarity o
n

i=1

AiBiffiffiffiffiffiffiffiffiffiffi
o
n

i=1

A2
i

s ffiffiffiffiffiffiffiffiffiffi
o
n

i=1

B2
i

s

Ai: the frequency of clonotype i in sample A
Bi: the frequency of clonotype i in sample B
n: the index of overlapped clonotypes

Pearson correlation of clonotype
frequencies

Rij =
o
N

k=1

(fik − fi) − (fjk − fj)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

k=1

(fik − fi)2 −o
N

k=1

(fjk − fj)2
s

∅ik: the frequency of clonotype k in sample i
∅ik: the frequency of clonotype k in sample j
N: the index of overlapping clonotypes

Relative overlap diversity
Dij =

dij
di*dj

dij: the number of clonotypes that is in both samples
di: the number of clonotypes that is in sample i
dj: the number of clonotypes that is in sample j

Geometric mean of relative overlap
frequencies

Fij =
ffiffiffiffiffiffiffiffiffiffi
fij*fji

q
fij = o

N

k=1

∅ ik :the total frequency of clonotypes that overlap between samples i and j in sample i

fji = o
N

k=1

∅ jk :the total frequency of clonotypes that overlap between samples i and j in sample j

Сlonotype-wise sum of geometric mean
frequencies

F2ij = o
N

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∅ ik∅ jk

p
∅ik:the frequency of clonotype k in sample i
∅jk:the frequency of clonotype k in sample j
N: the index of overlapped clonotypes

(Continued)
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computers, web-based drives, or GitHub repositories. The

results can be downloaded and stored locally or into web-

based drives by the code provided. pyTCR is capable of

converting results from pre-processing software such as

MiXCR and ImmunoSEQ to the pyTCR analysis format. The

minimal clonotype information should include the counts of

reads, clonotype frequency, CDR3 nucleotide sequence, CDR3

amino acid sequence, and the inferred V, D, and J genes in the

input data files. pyTCR provides conversion to the

corresponding format which consists of the columns of counts

of reads (#count), frequency (freq), CDR3 sequence (cdr3nt),

CDR3 amino acids (cdr3aa), V gene (v), D gene (d), J gene (j),

features (if provided), sample name. These should be already

filtered for the non-coding CDR3 by the upstream tools. If the

metadata is not available, a notebook for combining individual

files to a metadata file should be executed prior to any TCR-Seq

analysis to reduce the burden of analyzing individual data files

separately. In order to achieve this, all the sample files should be

stored or uploaded in one folder prior to generating the

metadata file. The notebook that combines individual sample

data files to a metatable with all the files is provided.
pyTCR is able to perform basic analysis
to characterize the TCR repertoire

The focus of the basic analysis is to group and provide the

most fundamental TCR repertoire metrics in one place. The

basic analysis performed by pyTCR estimates provides the

number of reads, clonotype counts, mean clonotype

frequency, the geometric mean of clonotype frequency, mean

length of CD3 nucleotide sequence, convergence, spectratype

as TCR repertoire metrics. The visualization is available for all

the metrics (except for spectratype) in the basic analysis at the

individual sample level and group level. The available plot

types are violin plot, strip plot, swarm plot, box plot, boxen

plot, point plot, and bar plot (Figure 1A, Supplementary
Frontiers in Immunology 05
Figure 1). We were able to detect that the mean reads count

in the hospitalization group was lower than that in the non-

hospitalization group (480844.1 and 554580.3, respectively; t-

test: p = 0.229), and the mean clonotype count in the

hospita l izat ion group was lower than in the non-

hospitalization group (271777.6 and 328980.1, respectively; t-

test: p = 0.136) in the COVID19-BWNW dataset.
pyTCR is able to perform clonality
analysis to assess the evenness of
distribution of TCR clonotypes

The clonality analysis offers the measurements of clonality,

which has been used to assess the evenness of distribution of the

clonotypes based on the relative abundance of clonotypes in the

sample. The metrics include the list of the most or the least

frequent clonotypes, 1-Pielou index for evenness measure (0

means no evenness, 1 means complete evenness), clonal

proportion, and the distribution of clonotype groups based on

relative abundance. Specifically, clonal proportion presents the

number of clonotypes that consist of a certain percentage of the

clonotypes in the repertoire. In the COVID19-BWNW dataset,

the number of clonotypes that counts for 10% of the clonotypes

in the repertoire was smaller in the hospitalization group than in

the non-hospitalization group (49.5 and 459, respectively;

Wilcoxon rank-sum test, p = 0.596), the corresponding plots

were presented in various types (Supplementary Figure 2).

Additionally, the distribution of clonotype groups based on

clonotype frequency or count in each sample can be presented

in bar plots across all the clonotypes, the top clonotypes, and the

rare clonotypes (Supplementary Figure 3). We presented the

distribution of five clonotype groups (hyperexpanded, large,

medium, small, and rare) across all clonotypes in Figure 1C,

this categorization is similarly done in other existing tools. The

users have full control of the thresholds of the clonotype groups

in our tool.
TABLE 1 Continued

Metric Description

Jensen-Shannon divergence
F2ij = o

N

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∅ ik∅ jk

p

KL(P :Q) =o
i

pi log2
pi
qi

pi: the sum of overlapped variable segment (V) frequencies in sample 1
qi:the sum of overlapped variable segment (V) frequencies in sample 2

Motif analysis

Amino acid spectratype Frequency of clonotypes based on CDR3 amino acid lengths

Amino acid motif analysChao1 estimateis Number of counts of the
amino acid motifs

Nucleotide sequence motif analysis Number of counts of the nucleotide sequence motifs
We documented the name of the metrics (indicated in the column “Metric”) and the description of the corresponding metrics (indicated in the column “Description”).
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B

C

D

A

FIGURE 1

Visualization of TCR repertoire metrics generated using pyTCR. (A) The clonotype counts of each sample grouped by hospitalization status were
presented as a box plot and strip plot. (B) The normalized Shannon-Wiener index of each sample grouped by hospitalization status was presented
as a violin plot. (C) The distribution of clonotype groups in each sample was presented as a stacked bar plot. The clonotypes were categorized into
five groups based on the clonotype frequencies. Hyperexpanded clonotypes were the clones with frequencies between 0.01 to 1, large clonotypes
were the clones with frequencies between 0.001 to 0.01, medium clonotypes were the clones with frequencies between 0.0001 to 0.001, small
clonotypes were the clones with frequencies between 0.00001 to 0.0001, rare clonotypes were the clones with frequencies between 0 to
0.00001. (D). The V-J combinations with V and J gene frequencies in sample 1445BW were presented as a Sankey plot.
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pyTCR is able to perform gene usage
analysis to detect over and
underrepresented TCR genes across
the samples

Gene usage analysis provides the weighted and unweighted V/

D/J gene usage calculations. For gene usage analysis, V gene usage,

D gene usage, and J gene usage, both weighted (which is based on

clonotype frequency) and unweighted (which is based on

clonotype count) are provided as TCR repertoire metrics.

Heatmap and hierarchically clustered heatmap are the available

visualizations (Supplementary Figure 4A, B). Sankey plot is also

available to visualize the V-J combinations (Figure 1D,

Supplementary Figure 4C), this is not provided by other existing

tools. We observed higher V gene weighted usage of TRBV05-

05*01 (0.0084 and 0.0066, respectively) and TRBV13-01*01

(0.0069 and 0.0042, respectively) in the non-hospitalization

group. In comparison, we observed higher V gene weighted

usage of TRBV20 (0.0638 and 0.0588, respectively) in the

hospitalization group in the COVID19-BWNW dataset. We also

observed higher V gene unweighted usage of TRBV18-01*01

(0.035 and 0.031) and TRBV30-01*01 (0.025 and 0.019)

in the hospitalization group. After the Bonferroni correction to

account for the multiple comparisons, according to the

adjusted p values, the differences mentioned above were not

statistically significant.
pyTCR is able to assess the diversity of
TCR repertoires

Diversity analysis offered by pyTCR includes all the widely

adopted indices to characterize the diversity of TCR repertoire,

which contains Shannon-Wiener index, normalized Shannon-

Wiener index, inverse Simpson index, Gini Simpson index, D50

index, Chao1 estimate, Gini coefficient (Table 1). High Shannon-

Wiener index, low normalized Shannon-Wiener index, high

inverse Simpson index, high Gini Simpson index, high Chao1

estimate, and high Gini coefficient represent high clonal diversity.

Additionally, the D50 index represents the percentage of unique

clonotypes that account for greater than 50% of the total number of

sequences. The visualization is available for all the diversity metrics

at the sample or group level as violin plot, strip plot, swarm plot,

box plot, boxen plot, point plot, and bar plot (Figure 1B,

Supplementary Figure 5). In the COVID19-BWNW dataset, the

median Shannon-Wiener index, the median inverse Simpson

index, and the median Gini Simpson index were all lower in the

hospitalization group than in the non-hospitalization group. Even

though none of the diversity indices was statistically significant,

most of the diversity indices showed the trend that patients in the

non-hospitalization group have more diverse TCR clonotypes than

patients in the hospitalization group. This finding was consistent
Frontiers in Immunology 07
with the results observed in the previously published studies, that

severe COVID-19 patients had reduced TCR diversity than

moderate COVID-19 patients (17, 18).
pyTCR is able to effectively compare
clonotypes and motifs across samples

The overlap analysis offers a comprehensive list of overlap

metrics for comparing the clonotype frequencies between two

samples. These metrics include the Jaccard index, overlap

coefficient, Morisita-Horn index, Tversky index, Cosine similarity,

Pearson correlation of clonotype frequencies, relative overlap

diversity, the geometric mean of relative overlap frequencies, the

clonotype-wise sum of geometric mean frequencies, and Jensen-

Shannon divergence. For overlap analysis, the visualization is shown

in the heatmaps (Supplementary Figure 6). Currently, existing tools

only accept one sample per file for overlap comparisons which can

be difficult to manage if the data already contains multiple samples

per file. pyTCR allows for an unlimited amount of samples per file

which enables more flexibility and less file management.

Motif analysis provides enriched nucleotide and amino acid

motif discovery with customized length. For motif analysis, the

amino acid motif counts and nucleotide motif counts in each

sample are provided. The users are able to customize the length of

the motif and visualize the distribution of the motifs in each

sample or each group. In the COVID19-BWNW dataset, we

observed amino acid motifs NTEAFF, YNEQFF, CASSLG,

TDTQYF, NQPQHF, TGELFF, SYEQYF were the most

abundant ones in both the hospitalization and non-

hospitalization groups (Supplementary Figure 7A). We also

observed nucleotide motifs such as TCTGTG, CTGTGC,

TGTGCC, GTGCCA, TGCCAG, GCCAGC, CCAGCA,

CAGCAG were the most abundant ones in both hospitalization

and non-hospitalization groups (Supplementary Figure 7B).
pyTCR offers several advantages
compared to the existing tools

pyTCR provides more comprehensive functionalities

compared with VDJtools, Immunarch, and VisTCR

(Supplementary Table 1). Notably, pyTCR includes several

innovations that have not been implemented in the VDJtools,

Immunarch, or VisTCR before.. First, statistical analyses for

TCR-Seq datasets are embedded in pyTCR computational

notebooks. No additional software or platform is needed for

statistical analysis. Second, pyTCR has the most comprehensive

list of overlap indices, which enable the thorough comparison

between clonotypes across samples. Third, pyTCR offers

enriched motif detection for both amino acid sequences as

well as nucleotide sequences. Furthermore, we have compared
frontiersin.org
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the results produced by pyTCR with VDJtools on the types of

analysis that are provided by VDJtools on the COVID19-

BWNW dataset. The results are consistent across our tool

and VDJtools.

We also evaluated the scalability of pyTCR by varying the

number of samples in the TCR-Seq data input files. After

subsampling the COVID19-BWNW dataset into data files

containing 2 to 46 samples, we recorded the central processing

unit (CPU) time and memory usage required by pyTCR,

VDJtools, and Immunarch when running overlap analysis. We

observed that pyTCR required a significantly less amount of

CPU time across all the subsamples compared to VDJtools and

Immunarch (Figure 2A). For example, on average, pyTCR used

5 minutes and 25 seconds to process the overlap analysis for 46

samples, while Immunarch used 1 hour 49 minutes and 46

seconds to process the same number of samples. In terms of

memory usage, pyTCR had reduced memory usage for most of

the subsamples (Figure 2B). According to our benchmark

results, we observe that pyTCR has up to 22 times faster

performance than existing TCR-seq analysis tools, especially

for datasets with larger numbers of samples.
Discussion

We have presented pyTCR, a comprehensive and scalable

computational notebook-based solution for TCR-Seq analysis

and visualization with a rich set of functionalities. For the cloud-

based version, we use Google Colaboratory (Google Colab).

Google Colab, as a user-friendly, free with no installation

needed prior to use service for Google account holders, is

suitable for biomedical researchers with a l imited
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computational background. Using interactive computational

notebooks promotes high transparency for biomedical

researchers because the steps of analyzing and visualizing are

recorded and saved, which are easy to be shared with the

scientific community. The goal of pyTCR is to provide

straightforward scripts for useful analysis which can be easily

modified and complemented by users instead of stand-alone

software tools with well-structured code. The availability of the

code as part of the notebook allows the users to document all the

steps of the analysis and share them in a reproducible and

transparent way.

pyTCR offers several advantages compared to the existing

tools . F irs t , pyTCR includes more comprehensive

measurements than existing tools to analyze TCR-Seq data.

The enriched measurements can provide users with more

options to effectively characterize TCR repertoires and

compare across various phenotypes. Furthermore, pyTCR

provides code and analysis jointly together. Users can

understand the definition of measurements and interpret

results easily with pyTCR, as the explanation of the code and

the math equations are available in the notebooks.

Additionally, pyTCR allows users to adjust parameters easily

and directly in the notebooks. Unlike other traditional

bioinformatics tools, changing parameters that generate

separate files which leads to high error rates by analyzing

across different files, pyTCR provides all the analysis to be

performed in the cloud where the files are automatically saved

with the updated parameters and no generation of different

files is needed. Last, our tool is more scalable as it requires less

computational time for analysis.

We recognized that there are other tools available for TCR-

Seq analysis, however, these tools may not share the same
BA

FIGURE 2

Central Processing Unit (CPU) time (A) and Memory usage (B) for subsamples of the COVID19-BWNW dataset for overlap analysis. Each dot on
the line plot represented the average of 10 runs for different input sizes.
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purposes as pyTCR. For example, both VisTCR (13) and Vidjil

(14) are web-based tools for TCR-Seq analysis that uses fastq

files as input files. While pyTCR utilizes the tsv or csv files

generated by pre-processing tools such as MiXCR to conduct

post-analysis. The sample files that we used in the manuscript

were generated by Adaptive Biotechnologies, unfortunately, the

users do not have access to the raw sequencing data per user

policy. VDJviz is a web-based tool as well and it uses VDJtools as

a back-end.

However, there are limitations of pyTCR including the

possibility of accidentally modifying the code resulting in

generating errors, limited available types of analysis, and

storage and processing speed limits from the Google Colab

platform. For example, users with limited experience with

Python scripting may be prone to generate errors with the

availability of code and results in interactive notebooks.

Additionally, pyTCR cannot be used directly on raw

sequencing files (such as fastq format).

In conclusion, our tool offers broader and more powerful

functions in TCR repertoire research. We expect the

computational notebook-based tool to be adopted by the

broad biomedical community as it carries benefits that are

superior or comparable to R packages.
Method

TCR-Seq data

We used the COVID19-BWNW dataset from the Adaptive

ImmuneRace study to demonstrate the functionality of pyTCR.

COVID19-BWNW dataset contains 46 convalescent COVID-19

patient samples collected at Bloodworks Northwest.

Demographic and clinical features including age, gender,

smoking status, ICU admit status, birth year, blood type, CMV

at donation, days from the last symptom to sample date,

ethnicity, race, height, weight, and hospitalization status are

reported. The extracted genomic DNA was sequenced based on

Multiplex PCR and only for the TCR beta chain by using the

MiSeq platform.
TCR-Seq data preprocessing

We downloaded 46 TCR-Seq data samples and the

file containing demographic and clinical features in the

tab-separated values (tsv) format. All the demographic and

clinical features were listed in the sample_tags column in the

file. The features were split into one in each column for

further analysis.
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Statistical analysis

The statistical analysis is available for comparing numerical

values across two groups. We first examine whether the datasets

are normally distributed. If the dataset is normally distributed,

we use the student’s t-test to evaluate the statistical significance.

Otherwise, we use Wilcoxon rank-sum test to evaluate the

statistical significance. Bonferroni correction is also included

to count for the multiple comparisons across different genes.
Jupyter notebooks

Jupyter notebooks (https://jupyter.org) is a web-based

interactive computing platform that contains code, markdown

text, and visualizations. These features enable users to conduct

reproducible and transparent data analysis. We develop pyTCR

based on Jupyter notebooks. In each Jupyter cell, we include

code for either calculation for analysis or visualization. Users can

easily change the parameters in the code to generate the results

of their interests. Markdown text is used for instructions

and explanations.
pyTCR data structure and software
implementation

The individual input data file can be text files, tab-separated

values (tsv) files, or comma-separated values (csv) files. pyTCR

uses a small suite of robust open-source python libraries to

facilitate complex data analysis and visualizations. Python

libraries including Pandas, Numpy, Matplotlib, Seaborn, and

Scipy are used to provide rich functionality with limited

amounts of code. Pandas is used to convert tabularly

formatted TCR-Seq data into python data frames for

notebooks to utilize. Numpy is used to perform complex

mathematical operations across python data frames.

Matplotlib and Seaborn are then used in tandem to generate

rich data visualizations from the resultant data.

One critical component of pyTCR functionality is the

overlap analysis between two samples. Such operations are

unavoidably expensive in terms of computing power. Yet,

pyTCR employs multiple different technical optimizations by

default to provide the most optimal performance for researchers.

In the case of any piecewise comparison between two samples,

we first index and group the data into a key-value pair hash table

for instantaneous look-up time. We then uniquely merge

samples for comparison and index them using a hash table in

the same manner. By utilizing this method, we are able to negate

a large amount of computing time that would otherwise be
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associated with searching for the correct samples in the data set.

This method allows us to instantly retrieve the required samples

for future look-ups which shifts most of the computing time

from slow searches, back onto the piecewise comparisons.
Comparison with other methods

We used the COVID19-BWNW dataset to compare pyTCR

to VDJtools and Immunarch for benchmarking purposes. We

subsampled the COVID19-BWNW dataset to files containing 2,

4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,

42, 44, 46 TCR-Seq samples. We then ran the overlap analysis of

each tool ten times and computed the average CPU time and

RAM usage for each. For the comparison, we utilized a high-

performance computing cluster (HPCC) to acquire the most

accurate benchmarking results. However, in the comparison of 2

TCR-Seq samples for VDJtools and Immunarch, the HPCC was

unable to record the results due to the short nature of the task.

That is, the benchmark ended too quickly for the HPCC to

accurately record the results. Thus, the results for 2 TCR-Seq

samples were not taken with the average of ten runs. Instead, we

recorded the results once by introducing an artificial stall in the

benchmark such that the HPCC had time to record, and then we

subtracted the artificial stall time from the final CPU time. The

RAM usage remains unchanged with this workaround.
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SUPPLEMENTARY FIGURE 1

The clonotype counts were shown in groups by hospitalization status. The
patients that were not hospitalized were shown in blue while the patients

that were hospitalized were shown in orange. Different types of plots were
shown as follows: (A) violin plot (B) strip plot (C) swarm plot (D) box plot

(E) boxen plot (F) point plot (G) bar plot.

SUPPLEMENTARY FIGURE 2

Clonal portion grouped by hospitalization status. The y-axis presented the

number of clonotypes that counted for 10% of all the clonotypes in the

repertoire. The patients that were not hospitalized were shown in blue
while the patients that were hospitalized were shown in orange. Different

types of plots were shown as follows: (A) violin plot (B) strip plot (C) swarm
plot (D) box plot (E) boxen plot (F) point plot (G) bar plot.

SUPPLEMENTARY FIGURE 3

The distribution of clonotype groups in each sample. (A) The distribution

of clonotype groups was based on the clonotype frequency across all the
clonotypes. Hyperexpanded clonotypes (blue) were the clones with

frequencies between 0.01 to 1, large clonotypes (orange) were the
clones with frequencies between 0.001 to 0.01, medium clonotypes

(green) were the clones with frequencies between 0.0001 to 0.001,
small clonotypes (red) were the clones with frequencies between

0.00001 to 0.0001, rare clonotypes (purple) were the clones with

frequencies between 0 to 0.00001. (B) The distribution of clonotype
groups based on the clonotype count across the top 100 clonotypes. The

clonotypes with clone counts between 1001-5000 were presented in
blue, the clonotypes with clone counts between 101-1000 were resented

in orange, and the clonotypes with clone counts between 11-100 were
presented in green. (C) The distribution of clonotype groups based on the

clonotype count across the rare 100 clonotypes. The clonotypes with

clone count of 1 were presented in blue.

SUPPLEMENTARY FIGURE 4

Heatmap of the weighted V gene usage in each sample and the Sankey

plot for V-J combinations. (A) The heatmap of V gene weighted usage (B)
The hierarchically-clustered heatmap of V gene weighted usage. x-axis
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represented each sample, y-axis represented different V genes. The shade
of the color corresponded to the V gene frequency. (C) The V-J

combinations with V and J gene frequencies in sample 3602BW were
presented as a Sankey plot.
SUPPLEMENTARY FIGURE 5

The diversity indices were shown in groups by hospitalization status. The

patients that were not hospitalized were shown in blue while the patients

that were hospitalized were shown in orange. (A) violin plot of the
Shannon Wiener index (B) strip plot of normalized Shannon Wiener

index (C) swarm plot of inverse Simpson index (D) box plot of Gini
Simpson index (E) boxen plot of D50 index (F) point plot of Chao1

estimate (G) bar plot of Gini coefficient.

SUPPLEMENTARY FIGURE 6

The overlap indices across samples. Heatmaps of each overlap index as
shown above. The x-axis and the y-axis presented each sample. (A)
Jaccard index (B) Overlap coefficient (C) Morisita-Horn index (D)
Tversky index (E) Cosine similarity (F) Pearson correlation based on

clonotype counts (G) Pearson correlation based on clonotype

frequency (H) Relative overlap diversity (I) Geometric mean of relative
overlap frequencies (J) Сlonotype-wise sum of geometric mean

frequencies (K) Jensen-Shannon divergence of variable gene
usage distributions.

SUPPLEMENTARY FIGURE 7

The number of highly presented motifs across samples grouped by

hospitalization status. The x-axis presented motifs and the y-axis
presented the count of the motifs. (A) amino acid motifs (k=6) that had

numbers of counts of no less than 9,999 andwere presented in more than
2 samples in hospitalization and non-hospitalization groups were shown

in the strip plot (B) nucleotide motifs (k=6) that had numbers of counts of

more than 150,000 and were presented in more than 2 samples in
hospitalization and non-hospitalization group were shown in the

strip plot.
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