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Interleukin (IL)-18 is a pleiotropic, pro-inflammatory cytokine involved in the

regulation of innate and adaptive immune responses. IL-18 has attracted

increasing attention as a key mediator in autoinflammatory diseases

associated with the development of macrophage activation syndrome (MAS)

including systemic juvenile idiopathic arthritis and adult-onset Still’s disease. In

these diseases, dysregulation of inflammasome activity and overproduction of

IL-18 might be associated with the development of MAS by inducing natural

killer cell dysfunction. Serum IL-18 levels are high in patients with these

diseases and therefore are useful for the diagnosis and monitoring of disease

activity. In contrast, a recent study revealed the overproduction of IL-18 was

present in cases of autoinflammation without susceptibility to MAS such as

pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome.

The pathogenic and causative roles of IL-18 remain unclear in these

autoinflammatory diseases. Further investigations are necessary to clarify the

role of IL-18 and its importance as a therapeutic target in the pathogenesis of

autoinflammatory diseases.

KEYWORDS

IL-18, systemic juvenile idiopathic arthritis, adult Still's disease, inflammasomes,

NLRC4, pyogenic sterile arthritis, pyoderma gangrenosum, acne
Introduction

Interleukin (IL)-18 is a pleiotropic, pro-inflammatory cytokine involved in the

regulation of innate and adaptive immune responses (1). IL-18, originally identified as

an interferon (IFN)-g inducing factor, was isolated from the serum of mice pretreated

with Proprionibacterium acnes, which stimulated Kupffer cells after stimulation with

intraperitoneal lipopolysaccharide (2, 3). IL-18 is expressed in a wide range of cells
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including intestinal epithelial cells, keratinocytes, astrocytes, and

endothelial cells, although the main cellular sources of IL-18 are

macrophages, Kupffer cells, and dendric cells (2–7). Pro IL-18,

an inactive precursor of IL-18, is cleaved by caspase-1, which is

activated by the inflammasome, an intracellular multimolecular

complex that plays an important role in innate immune

responses as a sensor for pathogen-associated and danger-

associated molecular patterns. It is then secreted as active,

mature IL-18. The processing of IL-18 is mediated by the

NLRP3 and the NLRC4 inflammasomes in immune cells (8, 9)

and the NLRP6 and Nlrp9b inflammasomes in intestinal

epithelial cells (10, 11). Secreted IL-18 binds to the IL-18

receptor, and initiates cell signaling via MyD88, IRAK, and

TRAF6, which subsequently leads to the activation of the

transcription factor NF-kB. The biological activity of IL-18 is

regulated by IL-18 binding protein (IL-18BP) (12), which has a

high affinity for IL-18 and is abundantly present in serum, with a

greater than 20-fold molar excess compared with IL-18. IL-18BP

binds to active IL-18 to form an inactive IL-18-IL-18BP

complex. IL-18BP prevents active IL-18 from binding to IL-18

receptor and IL-18 function including IFN-g production (12,

13). IL-18BP binds to IL-37 and forms an IL-18BP-IL-37-IL-18

receptor b subunit complex, inhibiting the formation of a

functional receptor with an IL-18R a chain (14).

Immunological diseases can be divided into two major

categories, autoimmune diseases and autoinflammatory

diseases (15). Autoimmune diseases are characterized by a

self-directed inflammation caused by aberrant adaptive

immune cells responses leading to breaking self-tolerance and

development of immune reactivity towards self-antigens. In
Frontiers in Immunology 02
contrast, autoinflammatory diseases are characterized by a self-

directed tissue inflammation independent of adaptive immune

cells abnormalities, where local factors at sites predisposed to

disease lead to activation of innate immune cells .

Proinflammatory cytokines derived from innate immune cells

including macrophages and neutrophils play a pivotal role in the

pathogenesis of autoinflammatory diseases. Among innate

proinflammatory cytokines, IL-18 has attracted increasing

attention as a key mediator in autoinflammatory diseases

associated with the development of macrophage activation

syndrome (MAS) including systemic juvenile idiopathic

arthritis (16–25), adult-onset Still’s disease (26–30), XIAP

deficiency (31, 32), NLRC4 gain of function (8, 33), neonatal

onset of cytopenia, autoinflammation, rash, and episodes of

hemophagocytic lymphohistiocytosis (NOCARH syndrome)

(34) and purine nucleoside phosphorylase (PNP)-deficiency

(35). Furthermore, a recent study reported the overproduction

of IL-18 in cases of autoinflammation without susceptibility to

MAS such as pyogenic sterile arthritis, pyoderma gangrenosum,

and acne (PAPA) syndrome (36).

The aims of this review were to summarize the current

ev idence for IL-18 as a pathogen ic med ia tor o f

autoinflammatory diseases and its potential utility as a

biomarker for disease activity, severity, and prognosis.
IL-18 biology

IL-18 has pleiotropic biological effects (Figure 1). In the

presence of IL-12 and/or IL-15, IL-18 induces IFN-g production
FIGURE 1

Biological functions of IL-18. In the presence of IL-12 and/or IL-15, IL-18 induces IFN-g production in macrophages, NK cells, T cells, and B
cells. In the absence of IL-12 or IL-15, IL-18 promotes the differentiation of naïve T cells to Th2 cells, which produce IL-4 and IL-13.
Furthermore, IL-18 promotes Th17 cells in combination with IL-23. IL-18 BP and IL-37 regulates IL-18 function. IL, Interleukin; CD, cluster of
differentiation; NK, natural killer; IFN, interferon; Th, T helper; BP, binding protein; PAMPs, pathogen associated molecular patterns; DAMPs,
damage associated molecular patterns.
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in macrophages, natural killer (NK) cells, dendritic cells, T cells,

and B cells (37–40). In contrast, in the absence of IL-12 or IL-15,

IL-18 promotes the differentiation of naïve T cells to Th2 cells,

which produce IL-4 and IL-13 (41, 42). IL-18 also induces IL-4

and IL-13 production in basophils and mast cells (43).

Furthermore, IL-18 induces IL-17 production by gd T-cells

(44) and promotes Th17 cells in combination with IL-23 (1).

IL-18 also plays a role in T regulatory cell (Treg) differentiation

duringHelicobacter pylori chronic infection (45). Independent of

other cytokines, IL-18 induces the expression of cell adhesion

molecules, nitric oxide synthesis, and chemokine production

(46–48). IL-18 activates NK cells by upregulating perforin-and

FasL-dependent cytotoxicity in an IFN-g independent

manner (49).
Role of IL-18 in the pathogenesis of
autoinflammatory diseases

High levels of serum IL-18 levels were reported in patients

with systemic juvenile idiopathic arthritis (s-JIA) (16–25) and its

adult homolog adult Still’s disease (AOSD) (26–30), as well as

various other inflammatory diseases including systemic lupus

erythematosus (50) and Crohn’s disease (51). s-JIA and AOSD

are clinically characterized by systemic features including

spiking fever, skin rash, hepato/splenomegaly, generalized

lymphadenopathy, serositis, and chronic arthritis, whereas

arthritis can be absent in AOSD. Laboratory findings show

neutrophilia, thrombocytosis, hyperferritinemia, and increased

levels of inflammation markers such as C reactive protein and

serum amyloid A. Recent studies revealed proinflammatory

cytokines of the innate immune system, especially, IL-1, IL-6,

and IL-18 play an important role in the pathogenesis of s-JIA

and AOSD (52).

IL-1 upregulates endothelial adhesion molecules and

facilitates the transmigration of neutrophils and other

leukocytes. IL-1 activates these cells and amplifies the

inflammatory response by the activation of local fibroblasts,

chondrocytes, and macrophages. IL-1 also promotes osteoclast

d i ff e r en t i a t i on . Fu r th e rmore , IL -1 c an promot e

proinflammatory T cell differentiation in the direction of Th17

by the action of IL-6 and other cytokines, which might play an

important role in the chronic arthritis of s-JIA and AOSD (44,

53, 54). IL-1a and IL-1b bind the same receptor, namely IL-1R1,

and induce the same pro-inflammatory effects including the

synthesis of cytokines, interferons and chemokines; increased

expression of adhesion molecules on endothelial cells and

migration of immune cells into inflamed tissues, activation of

adaptive immunity such as maturation and expansion of T and B

cells. However, there are distinct differences in the biology of IL-

1a and IL-1b. IL-1a is constitutively expressed in various cells,

and its expression can be induced by inflammatory stimuli in
Frontiers in Immunology 03
both hematopoietic and nonhematopoietic cells (55). Not only

the cleaved form of IL-1a but also IL-1a precursor (pro-IL-1a)
are biologically equally active. Inflammasomes and caspase-1

have no direct effects in cleaving pro-IL-1a. ProIL-1a without

the processing of maturation is released by necrotic cells and acts

as an alarmin (56). In contrast, IL-1b is absent at steady state and
its expression is induced upon stimulation in innate

myelomonocytic cells. Pro-IL-1b is biologically inactive and

cannot work as an alarmin. The mature form of IL-1b cleaved

by caspase-1 is biologically active and has a function as a

soluble mediator.

IL-6 induces systemic inflammation by promoting nerve cell

differentiation, the dysregulated production of pain mediators in

neurons, acute phase protein production in hepatocytes,

dysregulation of effector and regulatory B lymphocytes and

antibody production in B cells, and dysregulation of the T cell

balance. IL-6 also plays an important role in local inflammation

in inflamed joints by promoting osteoclast differentiation and

activation, the dysregulated production of inflammatory

mediators, bone homeostasis, proliferation of fibroblasts and

other cells, and matrix and bone degradation. These effects of IL-

6 are closely associated with the clinical symptoms of s-JIA and

AOSD including joint destruction, bone loss and growth

impairment, pain, fatigue, anemia, and fever (57).

The importance of IL-1 and IL-6 in the pathogenesis of s-JIA

and AOSD was proven by the dramatic effects of IL-1 inhibitors

(anakinra, rilonacept, and canakinumab) and IL-6 inhibitors

(tocilizumab [TCZ], sarilumab) in patients with s-JIA and

AOSD (58–62). However, MAS, secondary hemophagocytic

lymphohistiocytosis followed by rheumatic diseases, occurs

even in patients with s-JIA and AOSD receiving IL-1 and IL-6

inhibitors (63–67).

MAS is a potentially life-threatening complication clinically

characterized by sustained high fever, hepato/splenomegaly, and

central nervous system dysfunction (68). Laboratory findings

showed cytopenia in all three blood cell lines, hepatic

dysfunction, coagulopathy, hyperferritinemia, NK cell

dysfunct ion, and the presence of hemophagocyt ic

macrophages in bone marrow (68). MAS is a complication in

7%–14% of children with s-JIA (69, 70) and 10%–15% of

patients with AOSD (71, 72). MAS may occur subclinically in

another 30%–40% of patients (73).

We reported that serum IL-18 levels were increased in

patients with s-JIA and AOSD, and these were further elevated

in patients with MAS (16, 17, 20, 22, 23, 26). The marked

elevation of serum IL-18 levels seems to be specific to MAS with

s-JIA and AOSD, and patients with secondary HLH caused by

other diseases had lower serum IL-18 levels compared with sJIA

related MAS (17, 22). Furthermore, we reported there were two

distinct groups of patients with s-JIA/AOSD having specific

clinical features based on serum IL-6 and IL-18 levels (20, 26).

s-JIA/AOSD patients with an IL-6–dominant pattern (s-JIA:IL-
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18/IL-6 <1000, AOSD IL-18/IL-6 <5000) had more severe joint

disease, whereas those with an IL-18–dominant pattern (s-JIA:

IL-18/IL-6 >1000) had a more severe systemic disease and

developed MAS (20, 26).

Recently, patients with gain-of-function mutations in the

NLRC4 gene have been identified (8, 33). Gain-of-function

mutations in NLRC4 caused sustained caspase-1 cleavage and

the production of active IL-18 (8, 33). Patients with gain-of-

function mutations in NLRC4 can be clinically characterized by

early-onset, recurrent MAS and inflammatory bowel disease,

and very high IL-18 levels similar to those in patients with MAS

associated with s-JIA and AOSD (8, 33). The discovery of this

new disease revealed a close association between IL-18 and the

development of MAS. On the other hand, some patients with

gain-of-function mutations in NLRC4 showed different clinical

symptoms like cryopyrin-associated periodic syndrome not

associated with MAS, despite high serum levels of IL-18 (74).

X-linked inhibitor of apoptosis (XIAP) deficiency with

XIAP/BIRC4 gene mutations is a primary immune deficiency

clinically characterized by HLH, inflammatory bowel disease,

and splenomegaly (75). XIAP belongs to the inhibitor of

apoptosis family of proteins and inhibits caspases 3, 7, and 9,

and has an antiapoptotic role (76–78). XIAP regulates multiple

immune pathways including NOD1 and NOD2 signaling,

Dectin1 signaling, TNF-receptor signaling, and the NLRP3

inflammasome. Therefore, the loss of XIAP induces the

dysregulation of inflammasome activity and overproduction of

inflammasome-activated cytokines (31). We previously reported

serum IL-18 levels were highly elevated in XIAP deficient

patients with HLH and that this elevation was sustained in the

inactive phase after recovery from HLH (31). These findings

indicate that NLRC4 and XIAP play an important role in

regulating IL-18, and that the dysregulation of inflammasome

activity and overproduction of IL-18 are closely associated with

the development of MAS.

NK cell dysfunction is a characteristic finding of HLH (79)

and was observed in patients with s-JIA (80–84). IL-18 increases

NK cell activity. However, exposure to high levels of IL-18 can

induce NK cell death (81–84). A previous report showed that NK

cell dysfunction in s-JIA was closely associated with a defect in

IL-18 receptor b phosphorylation (81). Furthermore, Ohya et al.

recently demonstrated the impaired phosphorylation of MAPK

p38 and NFkB p65 in NK cells following rIL-18 stimulation in

patients with active s-JIA (83). These findings indicate that IL-18

exposure might induce NK cell dysfunction and reduce the

number of NK cells. We previously reported infants born to

mothers with AOSD can develop MAS and show extremely

elevated levels of IL-18 (85). Furthermore, infants born to

mothers with AOSD showed increased serum IL-18 levels,

transmitted from the mother to the infant, as well as the

transient impairment of NK cell functions (86). Furthermore,
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we reported that NK cell activation by exogenous IL-18

stimulation was impaired in patients with active s-JIA and

high serum levels of IL-18 (82). Interestingly, NK cell

activation was restored by IL-18 stimulation in patients with s-

JIA after treatment began and serum IL-18 levels had decreased.

Furthermore, Ohya et al. reported that the impaired

phosphorylation of MAPK p38 and NF-kB p65 in NK cells

following rIL-18 stimulation was recovered to normal levels with

improvements in the patients’ clinical condition after treatment

began (83). These findings indicate NK cell exhaustion and

secondary transient NK cell dysfunction induced by exposure to

high serum IL-18 levels may be closely associated with MAS

development in s-JIA. However, NK cells were normal in

number and function in patients with gain-of-function

mutations in NLRC4 and XIAP deficiency. These findings

indicate IL-18 overproduction might be associated with MAS

development by inducing other mechanisms besides NK

cell dysfunctions.

Recently, a case of IL-18BP deficiency with fulminant

hepatitis caused by hepatitis A virus infection was reported

(87). Furthermore, IL-18BPKO mice receiving repeated TLR9

stimulation developed MAS with severe hepatic inflammatory

damage, which was reversed by the treatment of IL-18BP (88).

These findings indicate that IL-18 might be closely associated

with severe liver injury in s-JIA/AOSD and related MAS. In

patients with s-JIA and AOSD, IL-18 expression was increased

in reticuloendothelial cells in the liver, lymph nodes, and

inflamed tissues (89–91). A previous report showed IL-17-

expressing g/d T cells might play an important role in the

chronic arthritis of s-JIA (44). Furthermore, a recent report

showed a shift in Th17 responses from Tregs in acute disease to

effector T cells in chronic disease in patients with s-JIA (54). IL-

18 induced IL-17 production by gd T-cells (44) and promoted

Th17 in combination with IL-23 (1, 42). s-JIA patients with

chronic arthritis had sustained elevated serum IL-18 levels (23).

Taken together, these findings indicate IL-18 might play a role in

the chronic arthritis of s-JIA through the persistent activation of

IL-17 responses.

Pathogenic mechanisms of IL-18 in the pathogenesis of s-

JIA and MAS were summarized in Figure 2. Overproduction of

IL-1, IL-6 and IL-18 is a hallmark of active phase of s-JIA. In vivo

exposure highly elevated IL-6 and IL-18 levels and induced NK

cell dysfunction and decreased the number of cells. Defective NK

cells are unable to contract immune responses, leading to

massive expansion and activation of CD8+ T cells and

overproduction of IFN-g. Furthermore, inadequate production

of IL-10, a regulatory cytokine to counter-regulate IFN-g, might

be related to the development of MAS. IFN-g plays a pivotal role
in the development of MAS. IFN-g binds to the receptors on

macrophages and activates them. Activated macrophages release

even more proinflammatory cytokines including TNF-a, IL-1
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and IL-6, leading to the cytokine storm. High serum IFN-g levels
are found in patients with primary HLH and secondary HLH

including MAS (92–96). Furthermore, clinical symptoms of

HLH have been shown to be inhibited by anti-IFN-g antibody
treatments in patents with HLH as well as animal models of

HLH (97–104).

Recently, a novel hematological and autoinflammatory

syndrome clinically characterized by neonatal-onset cytopenia

with dyshematopoiesis, autoinflammation, rash and HLH

(NOCARH syndrome) was identified (34). The pathogenic

variant, p.R186C at the C-terminus of cell division control

protein 42 (CDC42) was specifically associated with this

syndrome (34). Patients with this variant in CDC42 showed

sustained extreme elevation of serum IL-18 levels, likely

predisposing to development of MAS (34, 105). More recently,

additional 2 different pathogenic variants at the C-terminus of

CDC42, pC188Y and p*192Cext*24 were proposed to cause IL-1

blocking sensitive autoinflammation (105). Although CDC42

mutations had been associated with neurodevelopmental

diseases (106–110), variants at the CDC42 C-terminus can

affect the localization and function of CDC42 protein, and

cause autoinflammation. Arg186 and Arg 187 in C-terminal

diarginine motif of CDC42 is important for the binding of

CDC42 to phosphatidylinositol 4,5-bisphosphonate (PIP2),

whose interaction of CDC42 is critical in mediating the PIP2-

induced actin assembly (111). Aberrant actin depolymerlization

can activate the inflammasome and modulate innate immune

functions (112, 113). The functional effect of actin
Frontiers in Immunology 05
polymerization defects caused by variants at the CDC42 C-

terminus might lead to autoinflammation.

Purine nucleoside phosphorylase (PNP)-deficiency is a

primary immune deficiency with PNP gene mutation, clinically

characterized by a progressive combined immunodeficiency,

neurologic symptoms including developmental delay,

spasticity, ataxia, and pyramidal signs, and autoimmune

manifestations including hemolytic anemia (114–118). PNP is

one of the enzymes involved in purine salvage. Thus, PNP

defic iency leads to in trace l lu la r accumula t ion of

deoxyguanosine triphostate (dGTP) which induces toxic effects

for neurons and T lymphocytes (114–117). Recently, a patient

with PNP-deficiency whose clinical manifestation was highly

suggestive for sJIA complicated with MAS has been reported

(35). High serum IL-18 levels have been described in patients

with PNP-deficiency (35, 118). PNP-deficiency is associated with

overproduction of IL-18 and they are predisposed to develop

MAS, although it remains unclear how PNP-deficiency affects

overproduction of IL-18 and induces MAS development.

PAPA syndrome caused by PSTPIP1 gene mutations is

clinically characterized by pyogenic sterile arthritis, pyoderma

gangrenosum, and acne (36). Mutations of the PSTPIP1 gene

induce increased binding to pyrin and the activation of NLRP3

inflammasomes (119, 120). PSTPIP1 interacts with the actin

cytoskeleton by regulating the Wiskott-Aldrich Syndrome

protein (119, 120). Thus, mutations of the PSTPIP1 gene can

alter innate immune cell motility. Recently, Stones et al. reported

serum IL-18 levels were highly increased in patients with PAPA
FIGURE 2

Pathogenic mechanisms of IL-18 in the pathogenesis of s-JIA and MAS. Overproduction of IL-1, IL-6 and IL-18 is a hallmark of active phase of
s-JIA. In vivo exposure highly elevated IL-6 and IL-18 levels and induced NK cell dysfunction and decreased the number of cells. Defective NK
cells are unable to contract immune responses, leading to massive expansion and activation of CD8+ T cells and overproduction of IFN-g and
TNF-a. Furthermore, inadequate production of IL-10, a regulatory cytokine to counter-regulate IFN-g, might be related to the development of
MAS. IL, Interleukin; TNF, tumor necrosis factor; IFN, Interferon; CD, cluster of differentiation; NK, natural killer; s-JIA, systemic juvenile
idiopathic arthritis; MAS, macrophage activation syndrome.
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syndrome similar to those in patients with MAS associated with

s-JIA and AOSD (36). Serum IL-18 levels were significantly

elevated in some patients with familial Mediterranean fever

(FMF), although they were not significantly elevated in most

patients with FMF (36, 121). A recent report revealed FMF

patients carrying M694I and E148Q mutations in the MEFV

gene had significantly higher levels of serum IL-18 compared

with those carrying M694I, but not E148Q, and those carrying

E148Q, but not M694I (121). Although the specific mechanism

driving IL-18 through the pyrin inflammasome remains

unknown, the dysregulation of interactions between pyrin and

PSTPIP1 caused by MEFV and pstpip1 gene mutations might

induce the overproduction of IL-18.

MAS is not a complication in patients with PAPA syndrome.

Therefore, IL-18 may be elevated in PAPA syndrome without

increasing the risk of MAS development. The possible reasons

why IL-18 significantly elevated in PAPA syndrome without

increasing the risk of MAS are 1) high enough IL-18BP level in

serum, 2) differences in the inflammatory milieu of s-JIA and

PAPA syndrome, and 3) differences in the cellular source of IL-18.

Furthermore, elevated levels of IL-18 alone might not be able to

induce MAS development. IL-18 has been studied in murine

models of HLH/MAS and IL-18 blocking could not improve their

survivals (88). IL-10 counter-regulates IFN-g. In a mouse model of

MAS, IL-10 blocking exacerbated the disease activity of MAS

(122). A previous study revealed IL-10 production in B

lymphocytes was impaired, and plasma IL-10 levels plasma were

not relatively elevated compared with other proinflammatory

cytokines in patients with s-JIA (123). These findings indicate

that other pathogenic pathways including aberrant production of

IL-10 production might contribute to the pathogenesis of MAS in

addition to IL-18 overproduction induced autoinflammation.
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To summarize, autoinflammatory diseases characterized by

high levels of IL-18 were shown in Table 1.
Clinical application of serum IL-18
levels as a biomarker for
autoinflammatory diseases

Serum IL-18 levels are significantly and highly increased in

active s-JIA (16–26), which can be useful for the differentiation

of s-JIA from other inflammatory diseases (17, 23). We

compared serum IL-18 levels in s-JIA and other inflammatory

diseases (23) and found they were significantly elevated in

patients with s-JIA compared with Kawasaki disease (KD),

TRAPS, other subtypes of JIA, SLE, Juvenile dermatomyositis

(JDM), and leukemia. The cut-off values of serum IL-18 levels

for the differentiation of s-JIA from KD, FMF, TRAPS, other

subtypes of JIA, SLE, JDM, and leukemia were 4560, 4800, 1685,

1728, 2400, 2125, and 2240 pg/mL, respectively. The cut-off

value of serum IL-18 levels for the differentiation s-JIA from all

other diseases was 4800 pg/ml.

Serum IL-18 levels are closely correlated with the disease

course of s-JIA and are useful as a diagnostic laboratory criterion

for remission in s-JIA. There are three types of disease course in

s-JIA: 1) monocyclic course; no disease flare occurs; 2) chronic

course; disease flare frequently occurs with steroid withdrawal;

and 3) polycyclic pattern; disease flare repeatedly occurs after

remission is achieved in each flare. We longitudinally measured

serum IL-18 levels in s-JIA patients from the active phase

through to the inactive phase or remission (23). In patients

with a monocyclic course, serum IL-18 levels smoothly
TABLE 1 Autoinflammatory diseases characterized by high levels of IL-18.

Diseases s-JIA AOSD NLRC4GOF XIAP
deficiency

NOCARH
syndrome

PNP
deficiency

PAPA
syndrome

FMF

Causal gene NA NA NLRC4 XIAP CDC42 (c-terminus) PNP PSPPIP1 MEFV

MAS
susceptivity

+ + + + + + – –

Clinical
manifestations

Fever Fever Fever Immunodeficiency Fever Immunodeficiency pyogenic sterile
arthritis

Fever

Rash Rash Rash Inflammatory
bowel disease

Cytopenia with
dyshematopoiesis

Neurologic
symptoms

pyoderma
gangrenosum

Rash

Lymphadenopathy Lymphadenopathy Arthralgia Splenomegaly Rash Autoimmune
manifestations

acne Serositis

Hepatomegaly Hepatomegaly Inflammatory
bowel disease

Splenomegaly Splenomegaly

Serositis Serositis

Pharyngeal pain
frontie
+ means MAS susceptibility is present, and - means MAS susceptibility is absent.
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decreased to <1000 pg/mL in the inactive phase and sustained

low levels in the remission phase. In contrast, in patients with a

chronic pattern, serum IL-18 levels were sustained at >1000 pg/

mL, even in the inactive phase. In patients with a polycyclic

pattern, serum IL-18 levels were elevated at >1000 pg/mL during

disease flares, although these levels were normalized in the

inactive phase. The cut-off value of serum IL-18 levels for the

diagnosis of remission in s-JIA was 595 pg/mL. These results

indicate that the monitoring of serum IL-18 levels is useful to

predict the disease course and assess remission in s-JIA.

Previous reports showed that TCZ could mask the clinical

features and laboratory findings of patients with s-JIA (64–67).

We compared serum IL-18 levels between s-JIA patients receiving

TCZ and not receiving TCZ (23, 64) and found no statistically

significant differences between the groups. Thus, the monitoring

of serum IL-18 levels is useful for the assessment of disease activity

in s-JIA, and in patients with s-JIA receiving TCZ.

Serum IL-18 levels are also elevated in patients with s-JIA–

associated MAS (16, 17, 20–26). We compared serum IL-18

levels in s-JIA patients with active disease who later developed

MAS and those who did not (20). Serum IL-18 levels in the

former group were significantly higher than in the latter group in

the active phase prior to the development of MAS as well as in

the MAS phase. In contrast, there was no significant difference in

serum IL-18 levels in the former group whether measured before

or during MAS. The cut-off value for serum IL-18 levels to

predict MAS development was 47,750 pg/ml. We compared the

accuracy of serum biomarkers including neopterin, IL-18,

CXCL9, and soluble tumor necrosis factor receptor type I

(sTNF-RI) and II for the diagnosis of MAS complicating s-JIA

(124). Serum neopterin levels might be the most useful marker to

diagnose the transition to MAS from active-phase s-JIA.

In addition to serum total IL-18 levels, recent reports

revealed IL-18BP-unbound, bioactive, and free IL-18 levels in

serum were significantly elevated in patients with s-JIA and

AOSD (24, 25, 29). Serum free IL-18 levels were significantly

correlated with the disease activity of s-JIA and AOSD (24, 25,

29). Furthermore, these levels increased further in MAS

associated s-JIA/AOSD (24, 25, 29). Most patients with s-JIA

showed chronically elevated total serum IL-18 levels (24, 25). In

contrast, elevation of free IL-18 in serum was largely restricted to

s-JIA patients with MAS (25). Furthermore, serum free IL-18

levels reflected the disease activity of MAS (25). From these

findings, serum free IL-18 levels might be useful as a biomarker

of disease activity of MAS compared to total IL-18 levels.

Serum IL-18 levels are also useful for the prediction of

treatment outcomes in patients with s-JIA treated with

canakinumab (CAN) in combination with serum interferon

(IFN)-g levels and chemokine (C-X-C motif) ligand 9

(CXCL9) levels (21). Recently, Hinze et al. reported responders

to canakinumab had higher serum IL-18 and IFN-g levels and
lower CXCL9 levels at baseline; that is, higher IL-18:CXCL9 and

IFN-g:CXCL9 ratios at baseline were associated with a better
Frontiers in Immunology 07
clinical response to CAN treatment in s-JIA (21). These ratios

might have significant accuracy for the prediction of

treatment responses.

We compared serum cytokine profiles and kinetics in patients

with AOSD with those in patients with s-JIA (26). The cytokine

patterns associated with s-JIA and AOSD shared common

features including a predominant increase in IL-18.

Interestingly, as well as s-JIA, patients with AOSD were

classified into two subgroups based on serum IL-6 and IL-18

levels. The number of patients with arthritis was significantly

higher in the IL-6-dominant group. These findings support the

hypothesis that s-JIA and AOSD share a disease category. Serum

IL-18 levels are significantly and highly increased in AOSD (26–

30) and these levels clearly reflect the disease activity of AOSD.

The cut-off value of serum IL-18 levels for the differentiation of

AOSD from other febrile diseases was 5,000pg/mL (28). However,

it is still unclear whether serum IL-18 levels are closely correlated

with the disease course of AOSD, and whether they are also useful

as a diagnostic laboratory criterion for remission in AOSD.

Further larger studies may help to define the true diagnostic

value of IL-18 as a biomarker of AOSD.

Serum IL-18 levels are highly increased in patients with

PAPA syndrome (36). In contrast to s-JIA and AOSD, serum IL-

18 levels did not correlate with clinical symptoms and acute

phase reactants in patients with PAPA syndrome (36). However,

there were clear differences in serum IL-18 levels between

PSTPIP1 mutation–positive patients and PSTPIP1 mutation–

negative patients (36). These findings indicate that the elevation

of IL-18 correlates with PSTPIP1 mutations rather than clinical

features. From these results, serum IL-18 might be useful to

distinguish between patients carrying PSTPIP1 mutations from

patients with suspicious clinical findings regardless of its

pathogenic role.
IL-18 as a therapeutic target

Free IL-18 might be a therapeutic target in s-JIA and AOSD.

Tadekinig alfa, human recombinant IL-18BP, was effective in

patients with MAS associated s-JIA (125), XIAP deficiency (32),

and NLRC4 gain-of-function (33). Furthermore, a case report of

one patient with AOSD treated with tadekinig alfa showed

serum free IL-18 levels were undetectable 2 h after the

administration of IL-18BP, even though the levels were high

before the subcutaneous injection (126). Furthermore, serum

free IL-18 levels remained low during disease remission under

tadekinig alfa therapy, and then increased again after tadekinig

alfa was discontinued, in parallel to relapse phases. A phase II

clinical trial of tadekinig alfa in patients with refractory AOSD

(127) reported about half of the patients had a normal body

temperature with CRP levels decreased to 50% of their baseline

levels or <5 mg/L 3 weeks after starting tadekinig alfa. Further

larger studies including randomized control studies are required
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to confirm the clinical effect of tadekinig alfa on IL-18 driven

diseases such as s-JIA and AOSD.
Conclusions

IL-18 plays an important role in autoinflammatory diseases, in

particular diseases associated with MAS including s-JIA, AOSD,

XIAP deficiency, and NLRC4 gain-of-function. IL-18 inhibition is

likely to be effective for these diseases. In contrast, the

overproduction of IL-18 was observed in PAPA syndrome

without susceptibility to MAS. The pathogenic and causative roles

of IL-18 remain unclear in each disease. Further investigations are

necessary to clarify the role of IL-18 and its importance as a

therapeutic target in the pathogenesis of autoinflammatory diseases.
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