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The diabetic population has been increasing in the past decades and diabetic

cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac

remodeling and dysfunction without conventional cardiac risk factors such as

hypertension and coronary heart diseases, would eventually lead to fatal heart

failure in the absence of effective treatment. Impaired insulin signaling,

commonly known as insulin resistance, plays an important role in the

development of DCM. A family of integral membrane proteins named

caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a

protein hormone adiponectin (APN) have all been shown to be important for

maintaining normal insulin signaling. Abnormalities in caveolins and APN have

respectively been demonstrated to cause DCM. This review aims to summarize

recent research findings of the roles and mechanisms of caveolins and APN in

the development of DCM, and also explore the possible interplay between

caveolins and APN.

KEYWORDS

insulin signal pathway, caveolin 1, caveolin 3, diabetic cardiomyopathy, adiponectin,

oxidative stress
1 Introduction

Diabetes is a well-recognized risk factor for cardiovascular disease, which is largely

responsible for the significantly shorter life expectancy of people with diabetes as

compared to those without diabetes (1, 2). As the prevalence of diabetes continues to

rise, both clinical and experimental studies have demonstrated that the existence of

diabetic cardiomyopathy (DCM) can cause significant changes in clinical presentation as
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well as in heart structure and function (3, 4). Persistent

hyperglycemia adds an extra burden on the heart, and the

severity of DCM progresses over time beginning early after

diabetes onset, followed by ventricular dysfunction and

ultimately life-threatening heart failure (5, 6). Although DCM

develops during a long-term preclinical phase, diabetic patients

with heart failure have substantially worse outcomes than non-

diabetic patients, making the treatment of DCM a clinically

pressing problem.

Integral membrane proteins caveolins 1 and 3 have long

been demonstrated in preclinical studies to play critical roles in

both diabetes and cardiovascular disease (7, 8). Caveolin-3 (Cav-

3), the muscle-specific isoform of caveolin, has been proposed as

a potential target for the prevention or treatment of DCM (9).

Likewise, the reduction or impairment in the function of

adiponectin (APN) has also been shown to be attributable to

the development of DCM. However, the exact roles of the

caveolins in the development of DCM are largely unclear, and

the potential interactions between caveolins and APN in the

progression of DCM has yet to be explored. Here, we summarize

recent literature about the role of caveolins and APN in DCM,

the relevant signaling pathways involved, and the potential

interactions between caveolins and APN in the development

and progression of DCM.
2 Overview of diabetic
cardiomyopathy

2.1 Definition of diabetic cardiomyopathy

DCM, first proposed by Rubler et al. in 1972 (4), is currently

defined as an abnormality of myocardial structure and function

that occurs independently of cardiac risk factors such as

hypertension or myocardial ischemia in diabetic patients.

Despite the different etiologies underlying type 1 diabetes

mellitus (T1DM) and type 2 diabetes mellitus (T2DM), the

disorders of glucose metabolism and subsequent persistent

hyperglycemia in both types of diabetes are closely related to

the onset and development of DCM. T2DM, which is

characterized by insulin resistance and consequent loss of

normal glucose homeostasis, accounts for more than 90% of

all diabetes patients, with a majority of them being adults and

elders (10). Of every hundred elderly diabetics, approximately 12

develop heart failure and 6 are at risk of death (11), which is

indicative of a strong association between T2DM and heart

failure (12, 13). A recent population study results suggest that

diabetes mellitus is an independent risk factor for the

development of heart failure (HF) even for those without

underlying diastolic dysfunction (14). This rationale is

supported by the structural, functional and metabolic changes

in diabetic cardiomyocytes in animal models (15–17).
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While the understanding of diabetes-related cardiovascular

complications has accumulated significantly over the past decades

(18), definitive identification of DCM remains controversial. Most

patients with T2DM suffer from other comorbidities, including

obesity, hypertension and coronary heart disease, while persistent

obesity itself is also a major risk factor for the development of

other metabolic disorders and cardiovascular diseases (19, 20).

Furthermore, symptoms of patients with chronic heart failure are

nearly identical, regardless of the presence or absence of diabetes.

Given such situations, it is challenging to identify whether DCM

in diabetic patients is caused by insulin resistance or other

existing comorbidities.
2.2 Clinical progression of diabetic
cardiomyopathy

Hearts of diabetic subjects present time-dependent

structural, functional, and metabolic abnormalities, such as

ventricular dysfunction, myocardial hypertrophy and fibrosis,

cardiometabolic alterations, increased fat consumption and

oxidative stress (21). However, the progression from DCM

onset to end-stage heart failure is variable (Figure 1).

In the early stages of DCM, decreased left ventricular

diastolic function usually presents as the first manifestation of

myocardial involvement while the majority of diabetic patients

remain asymptomatic (22, 23). Indeed, metabolic disorders that

are associated with hyperglycemia precede the structural

changes in DCM and are considered as contributors to the

cardiogenic changes observed in diabetic patients. Under the

condition of insulin resistance and hyperinsulinemia, the

diabetic heart exhibits lower glucose uptake and decreased

expression of glucose transporters-4 (GLUT-4) (24, 25), while

the circulating free fatty acids (FFA) are increased as the main

energy substrates (26, 27). On the macroscopic level, increased

myocardial stiffness and atrial filling time are often observed

with the presence of prolonged metabolic abnormalities (28).

This hidden subclinical impairment in diastolic function could

be detected in up to 75% of diabetic patients using tissue Doppler

echocardiography (29, 30).

After the onset of DCM, the imbalance between substrate

uptake and consumption results in myocardial hypertrophy

followed by the excess accumulation of toxic intermediates

(31) and dynamic changes at the cellular level (32). The

increased formation of advanced glycation end products

(AGEs), mitochondrial dysfunction, lipid accumulation,

functional decline in calcium handling proteins and activated

renin-angiotensin-aldosterone system (RAAS) have been known

to accelerate the progression of DCM causing damage to the

heart including increased fibrosis accompanied by decreased left

ventricular compliance, impaired microvascular function and

reduced ejection fraction during systole (33–35).
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As DCM progresses, alterations in cardiac structures may

become more pronounced and characterized by diffuse

hypokinesis due to stretched and weakened heart muscles (36).

In addition to structural changes in the heart, endothelial

dysfunction is caused by biochemical effects such as reduced

nitric oxide (NO) bioavailability, increased oxidative stress and

inflammation in coronary vessels and capillaries (37). Due to

long-term exposure to hyperglycemia, vascular homeostasis is

broadly disrupted, leading to myocardial cell death and reduced

blood flow and consequent myocardial ischemia along with

myocardial fibrosis (38, 39). Some diabetic patients continue

to develop heart failure with reduced ejection fraction (HFrEF),

and the coexistence of these two conditions doubles the

likelihood of a worse clinical outcome (40).
2.3 Molecular mechanisms and
signaling pathways underlying
diabetic cardiomyopathy

The regulation of glucose homeostasis is highly complex and

integrates multiple signaling cascades and feedback loops.

Hyperglycemia and insulin resistance are usually present prior

to DCM onset and accompany DCM progression. It is well

known that persistent hyperglycemia triggers a series of
Frontiers in Immunology 03
maladaptive processes in diabetic patients, such as insulin

resistance, metabolic disturbances, oxidative stress and

inflammation, which work together to promote the

development of DCM (Figure 2). Diabetes presents a pro-

inflammatory state, and oxidative stress–related signaling

pathway impairment is proposed as a central event in the

progression of DCM (41, 42).

Typically, FFA serves as the predominant energy source for

the working heart, providing 50–70% of cardiac ATP demands via

b-oxidation in the mitochondria (43). Peroxisome proliferator-

activated receptor a (PPARa), an important transcriptional

regulator, is mainly expressed in organs with high fatty acid

(FA) oxidation rates and regulates the expression of genes

relevant to lipid homeostasis (44). In the diabetic heart, PPARa
is over activated by enhanced FA oxidation, which can

subsequently result in the production of more reactive oxygen

species (ROS) and mitochondrial uncoupling (45). Excessive ROS

may be an important driver of diabetic myocardial inflammation.

Elevated inflammatory cytokines (TNF-a, IL-6, IL-1b, TGF-b1),
increase the expression of cell adhesionmolecules like vascular cell

adhesion molecule-1(VCAM-1) via nuclear factor kB (NF-kB)
transcription factor activation associated with diastolic

dysfunction which contribute to ventricular dysfunction in

DCM (32). ROS generation also initiates the activation of other

molecular stress signaling pathways, including mitogen-activated
FIGURE 1

Overview of pathological mechanisms underlying diabetic cardiomyopathy and heart failure in diabetic mellitus Pathological stresses such as
hyperglycemia, hyperinsulinemia and increased insulin resistance induce endothelial dysfunction through suppression of eNOS and nitric oxide
(NO) production, causing impairments in insulin signaling which could further damage the integrity of endothelial tissues. And, reciprocal
relationships exist between insulin resistance and endothelial dysfunction. Moreover, these instigators also alter metabolism by reducing GLUT4
expression, increasing AGEs and FFA production. All of which lead to glucotoxicity and lipotoxicity. Meanwhile, ER stress and impaired Ca2+
handling also occur, along with mitochondrial dysfunction and oxidative stress. These, together, cause myocardial hypertrophy, fibrosis,
apoptosis and inflammation, contributing to the formation of diabetic cardiomyopathy (DCM) which may proceed to heart failure (HF). However,
it is also important to point out that diabetic patients may often have other comorbidities including but not limited to hypertension, obesity,
cardiomyopathy and coronary artery diseases that may result in HF. NO, nitrogen oxide; IR, ischemic reperfusion; AGEs, advanced end glycation
products; ER, endoplasmic reticulum; DCM, diabetic cardiomyopathy; HF, heart failure.
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protein kinases (MAPK), extracellular signal-regulated kinases 1

and 2 (ERK1/2) and Jun N-terminal kinases (JUNK) (46, 47).

Lipotoxicity arises when FA uptake exceeds mitochondrial

oxidative capacity, and the excess storage of toxic lipid

metabolites, such as diacylglycerols (DAGs) and ceramides

(CERs), further impairing insulin metabolic signaling (48, 49).

Protein kinase C (PKC), activated predominately by the

intermediate DAG, is associated with a range of vascular

abnormalities including endothelial dysfunction, changes of

vascular permeability and impaired angiogenesis (50), and the

b-isoform of PKC (PKCb) is most directly related to vascular

dysfunction and cardiac hypertrophy (51–53). Meanwhile,

hyperglycemia-induced endoplasmic reticulum (ER) stress

disrupts the structural integrity of ER and leads to cell death via

a pathway known as the unfolded protein response (UPR) (54).

Another consequence of ER stress is calcium imbalance within the

diabetic hearts due to abnormal calcium release from sarcoplasmic

reticulum and decreased activity of sarcoplasmic reticulum Ca2

+-ATPase (SERCA) (55, 56). Increase in ROS production, calcium

overload, and changes in mitochondrial permeability transition

pore (mPTP) collectively promote cardiomyocyte apoptosis.

Owing to the impaired antioxidant preservation of the diabetic

myocardium, endothelial nitric oxide synthase (eNOS) activity

and NO bioavailability are reduced, resulting in vascular
Frontiers in Immunology 04
endothelial dysfunction, which is mainly manifested by

decreased vascular reactivity and myocardial blood flow (57–

59). In addition to the direct damage to blood vessels, the

increase in AGEs secondary to hyperglycemia can also promote

the generation of oxidative stress by binding to the primary cell-

surface receptors (RAGE) (60). These processes may activate the

expression of NF-kB, leading to long-term exposure of

myocardium to chronic inflammation (61, 62).
2.4 The increased susceptibility to
ischemia/reperfusion injury in diabetes

Metabolic disturbances and aberrant expression of signaling

pathways in diabetics greatly impair normal cardiac function

and also makes the heart more vulnerable to myocardial

ischemia/reperfusion(I/R) injury. Clinically, vascular damage

caused by increased oxidative stress increases the risk of

cardiovascular complications in diabetic patients compared

with the general population, such as coronary heart disease

and myocardial infarction (63). During the progression of DCM,

myocardial ischemia at the microvascular and macrovascular

levels has direct adverse effects on cardiac function which

exacerbates the progression of DCM to heart failure.
FIGURE 2

Signaling pathways involved in the development of diabetic cardiomyopathy. Diabetes is characterized by hyperglycemia, insulin resistance, and
increased circulating free fatty acids, which lead to impaired diabetes signaling, increased inflammation, altered Ca2+ handling, and myocardial
ischemia, exacerbating the progress of diabetic cardiomyopathy. AGEs, advanced end glycation products; SERCA, sarcoplasmic reticulum
Ca2+-ATPase; NO, nitrogen oxide; IRS-1, insulin receptor substrate-1; PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase;
GSK-3b, glycogen synthase kinase-3b; PKC, protein kinase C; NF-kB, nuclear factor kB; PPARa, peroxisome proliferator-activated receptor
alpha; DAGs, diacylglycerols; CERs, ceramides.
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Microvascular dysfunction in patients with diabetes is a

multifactorial systemic phenomenon. Animal models of

diabetes displayed the accelerated formation of atherosclerosis

(64), reduced angiogenic response and myocardial endothelial

cell density, which were functionally manifested as impaired

collateral dependent perfusion and left ventricular function (65).

The increase in collagen deposition observed in diabetic mice

(66, 67) may contribute to the thickening of the basement

membrane of capillaries and reduction in diameter, leading to

impaired myocardial perfusion, which in turn exacerbates

myocardial remodeling and fibrosis. In addition, increased

oxidative stress induced by hyperglycemia can directly lead to

cardiomyocyte death (68, 69). It is well known that NO plays a

central role in maintaining cardiovascular homeostasis. Studies

have shown that enhancing NO levels can effectively attenuate

tissue ischemia by promoting vascular remodeling under the

condition of metabolic dysfunction induced by high glucose

(70). However, metabolic disorders inherent in diabetes,

including hyperglycemia, insulin resistance, and increased FFA

levels result in endothelial dysfunction and impaired angiogenic

response to ischemia, ultimately leading to acute coronary events

and heart failure (71). Collectively, the susceptibility of diabetic

hearts to I/R injury is closely related to the duration and severity

of hyperglycemia (72), and diabetes combined with ischemic

cardiomyopathy may together worsen global ventricular

mechanics and dysfunction.
3 Caveolin and its potential as a
treatment target for diabetic
cardiomyopathy

3.1 Caveolins in the heart

Caveolae, flask-shaped invaginations of the plasma

membrane first identified in 1953 by electron microscopy (73),

are specialized forms of lipid rafts. After decades of research, it is

known that caveolae act not only in cholesterol transport,

endocytosis and transcytosis, but also as cellular signaling hubs

regulated by proteins of the caveolin family (74). Caveolins

mainly exist in three forms that are derived from distinct

genes: caveolin-1 (Cav-1), caveolin-2 (Cav-2) and caveolin-3

(Cav-3), all of which are key structural proteins essential for

caveolae formation (75). Cav-1 and Cav-2 are generally

expressed together in cells other than striated muscle, such as

endothelial cells, adipocytes and fibroblasts (76), whereas Cav-3

is muscle-specific, predominantly in skeletal and cardiac muscles

and smooth muscle (77). Interestingly, Cav-2 must interact with

Cav-1 to be stable and acts as an accessory protein of Cav-1,

target to the plasma membrane where it binds to cholesterol

(78). Since Cav-2 will not exist independently in the absence of

Cav-1, we focus on Cav-1 and Cav-3 here. Of note, as stated in
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diabetes and cardiovascular diseases (79), empagliflozin, among

others, has been newly recommended as one of the first line

options for glucose lowing treatment, while its protective

mechanism involves Cav-1 signaling (80). This signifies the

importance of caveolins in the treatment of diabetic

complications including diabetic cardiomyopathy. While

both Cav-1 and Cav-3 are expressed in cardiac myocytes,

available evidence support that Cav-3 is most abundant in

cardiomyocytes and Cav-1 is more abundant in vascular

endothelial cells. The deficiency in either Cav-1 or Cav-3 can

lead to DCM, but their exact signaling pathway may vary at

different stages of diabetes, despite that complex interplay

among Cav-1, Cav-3, eNOS and APN exist physiologically or

pathologically in the case of DCM development.
3.2 Caveolin-regulated signaling in the
heart and its interplay with eNOS

In the heart, caveolins are highly expressed in myocytes,

fibroblasts, vascular endothelial cells and smooth muscle cells,

and the knockout (KO) of different types of caveolins results in

different cardiovascular phenotypes (Table 1). It is widely

accepted that Cav-3 is dominant in cardiomyocytes, and the

loss of Cav-3 induces cardiac hypertrophy and cardiomyopathy

via p42/44 MAPK pathways (85). Moreover, Cav-3 is involved in

the formation of T-tubules (98), which are essential for

regulating calcium homeostasis and excitation-contraction

(EC) coupling in ventricular cardiomyocytes (99). Hearts from

Cav-3 KO mice show decreased t-tubular Ca2+ current (I Ca)

density via L-type Ca2+ channels (LTCCs), causing cellular

hypertrophy and altered EC coupling (86–88). Cav-1 has also

been shown to be associated with the left ventricular

hypertrophy and pulmonary hypertension, which in turn leads

to right ventricular dilation (81). Due to the negative regulation

of p42/44 MAPK pathways by Cav-1 (100), the histological

changes within the heart of Cav-1 KO mice are associated with

the hyperactivation of the p42/44 MAPK cascade in cardiac

fibroblasts (82). NO production mediated by eNOS exerts an

important protective effect on endothelial cells, and the

expression and activity of eNOS are negatively regulated by

the direct protein-protein interaction with Cav-1 (101, 102).

In addition, hyperactivity of eNOS in Cav-1 deficient mice

has been shown to induce the production of NO, leading to

continued vasodilation and decreased contractility (92–94), as

well as elevated vascular permeability (95, 96). However, the lack

of Cav-1 in endothelial cells was found to reduce susceptibility

to atherosclerosis in Cav-1 and atherosclerosis-prone

apolipoprotein E (ApoE) double KO mice (97). Recent studies

have shown that Cav-1 deficiency is associated with increased

pulmonary arterial pressure and arterial stiffness (90, 91).
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In the context of DCM, an early study by Esberg and Ren

demonstrated that abnormal eNOS signaling is a critical player

leading to the development of DCM (103). Ensuing studies by us

(104, 105) and others (106) further demonstrated that

impairment in Cav-3/eNOS complex formation represents a

key mechanism of DCM, and the impairment in cardiac Cav-

3/eNOS signaling (104) or reduction of cardiac adiponectin

expression (107) in diabetic rats could be restored by

antioxidant treatment with N-acetylcysteine (104). In addition,

APN KO or adiponectin receptor 1(AdipoR1) knock-down

impaired cardiac Cav-3 signaling in diabetic mice that could

be restored by APN supplementation in the early stage of

diabetes (108). Furthermore, the expression of Cav-1 and

eNOS are reduced significantly in endothelial cells that were

taken from human muscle biopsies in subjects with type 2

diabetes (109). This alters the interaction between Cav-1 and

eNOS, suggesting that a complex interplay of APN, eNOS, Cav-1

and 3 may collectively regulate the development and progression

of DCM.
3.3 Role of caveolae and caveolins in
insulin signaling

Insulin resistance is the major metabolic abnormality that

contributes to DCM, which is characterized by reduced tissue

response to insulin due to impaired insulin signaling pathways.

At the cellular level, the binding of insulin to the insulin receptor

(IR), a transmembrane receptor tyrosine kinase that exists as a

heterotetramer with two extracellular a-subunits that contain

the insulin-binding sites and two transmembrane b-subunits
with the kinase domain (110), activates downstream signaling.

Insulin receptor substrate-1 (IRS-1), a primary downstream

mediator of IR signaling, was found in the plasma membrane

of adipocytes and colocalized with the IR in caveolae (111). In
Frontiers in Immunology 06
the caveolin-enriched fraction, the levels of insulin-induced

tyrosine phosphorylation of IRS-1 were significantly higher

than other sites, indicating that IR in caveolae plays a crucial

role in initiating insulin signaling pathways (112). Cholesterol

depletion using methyl-b-cyclodextrin in adipocytes not only

destroyed caveolae structures but also concomitantly attenuated

insulin-stimulated glucose transport and insulin signal

transduction pathways (113–115).

Cav-1 contains a scaffolding domain (SD) which is the

principal structural component associated with the regulation

of IR-activated signal transduction that originates in caveolae

which are present at high levels in adipocytes. In fact, functional

insulin signaling is highly dependent on Cav-1. Experiments in

vitro showed that the scaffolding domain of Cav-1 can interact

with the kinase domain of b-subunits on IR and enhance the

IRS-1 phosphorylation that activates downstream signaling

pathways (116, 117). Cav-1 KO mice showed significant

insulin resistance and lower levels of IR, which may be

associated with accelerated degradation of IR (83, 84). Cav-3

gene mutations have also been found to lead to impaired insulin

stimulated glucose metabolism in myocytes (118, 119). It has

long been known that in response to insulin, translocation of

GLUT4 to the plasma membrane of adipocytes is a prerequisite

for glucose transport (120). Previous studies revealed the

morphological localization of GLUT4 in caveolae after insulin

stimulation (121), which coincided with the increased levels of

glucose uptake (122). All of the above studies have demonstrated

that the caveolae environment plays an important role in the

insulin signaling pathways.

It should be noted, however, with regards to the role of

caveolins in signal transduction, the concept of an interaction

between the caveolin scaffolding domain and a ‘caveolin binding

motif’ in associated signalling proteins has been questioned for

structural/biophysical reasons because the scaffolding region

interacts with cholesterol and is in close proximity to the
TABLE 1 Summary of pathological findings in Cav-1/Cav-3 KO mice.

Cav-1 KO mice Cav-3 KO mice

Cardiomyocytes Hypertrophy ↑ (81, 82)
Insulin receptor↓ (83, 84)

Hypertrophy ↑ (85)
MAPK pathway ↑ (85)
I Ca density ↓ (86–88)
Insulin resistance ↑ (89)

Fibroblasts MAPK pathway ↑ (82) –

Endothelial cells Pulmonary hypertension ↑ (90, 91)
eNOS activity ↑ (92–94)
NO production ↑ (92–94)
Vasodilatation ↑ (92–94)
Contractility ↓ (92–94)
vascular permeability ↑ (95, 96)
atherosclerosis susceptibility ↓ (97)

–

vascular smooth muscle Contractility ↓ (92–94) –
Cav, Caveolin; KO, knockout; MAPK - mitogen-activated protein kinases; I Ca, t-tubular Ca
2+ current; eNOS endothelial nitric oxide synthase.

The arrow “↑” indicates up-regulation or increase and “↓” represents down-regulation or decrease.
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membrane and thus it might even be buried in the outer leaflet of

the membrane as suspected by some researchers (123, 124).

Thus, the nature of the interaction between caveolins and

signalling proteins at the inner plasma membrane of caveolae

remain unclear, although most caveolar-associated proteins are

thought to localize there based on their lipophilicity.

However, a more recent study showed that there exists a strong

eNOS co-localization with the Eps15 homology domain containing

protein 2 (EHD2) signal in mouse aorta cryostat sections (125).

Meanwhile, Cav-1 and EHD2 showed a striking co-localization in

cryostat sections of small mesenteric arteries and also in human

umbilical vein endothelial cells (125). These findings suggest the

possibility that Cav-1 may bind or interact with eNOS via EHD2.

Furthermore, EHD2 has been shown to localize to the caveolar neck

region (126) and confine caveolae to the plasmamembrane through

association with actin (127). EHD2 may also undergo a series of

conformational changes to align its phospholipid binding sites with

the membrane and facilitate oligomerization of EHD2 into ring-like

structures (128–130). Presumably, EHD2 may have an impact on

the caveolin scaffolding domain conformationally and/or

functionally. Study has shown that cavin3 interacts with Cav-1

via cavin1 and increases surface dynamics of caveolae. Cavin3 and

EDH2, which promote release and constrain caveolae at the

membrane respectively, have also demonstrated a regulation role

in maintaining the equilibrium between surface-connected and

surface-dissociated caveolae (131). EHD2 has been shown to

regulate cellular fatty acid uptake via its impact on caveolar

dynamics and insulin signaling (132). In addition, cavin2, which

is also one of the caveolae-related proteins, has been shown to

enhance the stability of insulin receptor and regulate insulin

signaling through direct association at the plasma membrane in

adipocytes (133), and cavin2 KO in mice not only resulted in

increased insulin resistance but was also associated a decrease in the

density of caveolae in the epididymal white adipose tissue (133). On

the other hand, cavin4 KO in mice has been shown to protect

against myocardial ischemia reperfusion injury (134), but whether

or how caveolae is involved in cavin4 KO mediated

cardioprotection is unclear since cavin4 KO did not cause a

reduction or deformation of caveolae (135).
3.4 Caveolins as potential therapeutic
targets for diabetic cardiomyopathy

Further understanding of the central role of caveolins in

cardiac and insulin signaling under normal conditions will

facilitate discovery of new treatment approaches for DCM. In

insulin signaling cascades, phosphatidylinositol 3-kinase (PI3K)

activates the major downstream effector Akt kinase, also termed

protein kinase B (PKB), which modulates glucose uptake by

facilitating GLUT4 translocation (136). Short-term exposure of

mature adipocytes to glucose reduces Cav-1 expression and

insulin sensitivity, but during adipocyte differentiation, chronic
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adipocytes, manifested by increased protein expression of Cav-

1, IR, and Akt (137, 138). However, under the influence of

obesity-related risk factors, insulin sensitivity still decreases and

eventually insulin resistance develops (139). The latest study

results suggested that insulin treatment significantly upregulated

the PI3K/Akt signaling pathway and insulin sensitivity in

diabetic mice, while Cav-1 gene silencing eliminated this effect

(140). Consistently, increased expression of Cav-1 in skeletal

muscle can also improve insulin sensitivity (141), which may be

related to the positive regulation of IRa and IRS-1 levels by Cav-

1 (142). Since skeletal muscle is a major target organ for insulin‐

mediated glucose utilization, functional analyses of Cav-3 KO

mice indicated that lack of Cav-3 caused insulin resistance that

was associated with reduced IRS-1 and Akt levels (89).

Overexpression of Cav-3 increased the activity of IR and

promoted the phosphorylation of IRS-1 without affecting

expression of IR (117). Interestingly, another study showed

that Cav-3 activated the Akt signaling pathway and enhanced

GLUT4 translocation and glucose uptake, independent of

insulin stimulation (143). In cardiomyocytes, Cav-3 and IR

directly interacted to regulate glucose uptake (144). Insulin

resistance attenuated the translocation of Akt and Cav-3 to the

caveolae, and activation of Akt contributed to the uptake of

glucose by cardiomyocytes (145). These findings suggest that

caveolins have not only a structural role but also act as an

enhancer in insulin signaling transduction pathways.

eNOS is expressed mainly in vascular endothelial cells and

also in cardiomyocytes and other muscle cells, albeit at

significantly lower levels. Previous studies have shown that the

presence of Cav-1 is necessary for insulin-stimulated eNOS

phosphorylation (146). If Cav-1 is knocked out, the

endothelial-dependent vascular response mediated by eNOS

lacks physiological regulation (93). Intermittent hypoxia

decreased NO production in coronary endothelial cells but

upregulated Cav-1 expression, which in turn impaired insulin-

dependent Akt and eNOS activity (147). The loss of eNOS

activity is a common and early pathological change in diabetic

patients, and thus promoting Cav-1 expression in endothelial

cells could improve insulin signaling and glycemic control. And,

reciprocal relationships exist between insulin resistance and

endothelial dysfunction (148) (Figure 1). In addition to NO,

endothelium-derived hyperpolarizing factor (EDHF) also plays

an important role in regulating vascular tone in small resistance

vessels such as coronary microvessels (149, 150). NO-mediated

coronary vasodilation was impaired in diabetes, and

compensatory interaction of EDHF with Cav-1 maintained

vasodilation during diabetic myocardial ischemia (151).

The cardioprotective effect of caveolins against I/R injury has

also been observed in vitro and in vivo. Cav-1 KO mice exhibited

more severe left ventricular dysfunction and lower survival after

myocardial infarction compared with controls (152).

Overexpression of the muscle-specific Cav-3 enhances
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myocardial tolerance to ischemia by increasing the expression of

glycogen synthase kinase-3b (GSK-3b), natriuretic peptide and
Akt phosphorylation (153). Akt activation has been reported to

regulate GSK-3b-mediated mPTP opening to prevent

myocardial I/R injury (154). Impaired mitochondrial function

associated with mPTP opening during I/R injury has also been

implicated in the progression of DCM. Tocotrienol antioxidant

can differentially regulate the binding of Cav-1 and Cav-3 to p38

MAPK, increasing the levels of pro-survival signals like eNOS

and heme oxygenase (HO-1) to protect the heart from ischemic

injury (155). Moreover, Lei et al. (105) found that restoring Cav-

3 expression in diabetic myocardium can inhibit the

overactivation of PKCb and alleviate diastolic dysfunction by

rescuing Akt-eNOS-NO signaling. Subsequently, the authors

confirmed that enhancing the binding of Cav-3 to eNOS in

diabetic rats by antioxidants could attenuate myocardial

dysfunction and I/R injury (104). Sun et al. (106) revealed that

the interaction between NO and H2S reduced hyperglycemia-

induced ROS generation, cardiomyocyte apoptosis and

hypertrophy by activation of the Cav-3/eNOS complex,

providing a novel target to treat DCM. A more recent study

further showed that Cav-3 overexpression protects diabetic

hearts from acute myocardial infarction/reperfusion injury

through activating the adrenoceptor b2 (ADRB2) and cAMP/

PKA signaling pathways (156). Treatment that can reverse

hyperglycemia-induced impairment in Cav-1 expression

attenuates DCM (157), while pharmacological inhibition of the

guanosine triphosphate cyclohydrolase 1 (GCH1), the rate-

limiting enzyme in de novo synthesis of the eNOS cofactor

tetrahydrobiopterin (BH4), has been shown to enhance tyrosine

phosphorylation of Cav-1 and subsequently faciliates the

development of DCM (158). These findings collectively signify

the importance to target Cav-1 and Cav-3 in the treatment

of DCM.
3.5 Interplay between Caveolins and
adiponectin signaling

Myocardial ischemic injury is usually accompanied by tissue

hypoxia. Hypoxia in mature adipocytes resulted in a marked

reduction of important mediators in the insulin signaling

pathway, such as Akt and IR phosphorylation (159).

Furthermore, the level of Cav-1 was also downregulated,

which could be explained by the possible destruction of the

caveolae structure during hypoxia (159). Elevated levels of

proinflammatory cytokine IL-6 and decreased levels of APN in

hypoxic adipose tissue are also one of the mechanisms

contributing to decreased insulin sensitivity (160, 161). These

results illustrated the regulatory roles of caveolin and APN in the

insulin signaling pathway. Indeed, Cav-1 KO has been shown to

moderately but significantly reduce plasma levels of adiponectin

in 3 month-old mice (162) and thus potentially impairs APN
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signalling. Furthermore, the fact that AdipoR1 and Cav-1

colocalized and coprecipitated in human umbilical vein

endothelial cells and that APN mediated inhibition of TNF-a
induced inflammation needed the participation of Cav-1 to

potentiate AdipoR1 activation (163) supports a tight

interaction in between Cav-1 and APN. These findings suggest

that it is possible that reconstitution of Cav-1 in Cav-1 global KO

mouse should restore APN signaling in cardiomyocytes,

although related studies have not been reported to our

knowledge. Additionally, either Cav-1 KO or Cav-3 KO

significantly enhanced traumatic brain injury induced

neuroinflammation (164), highlighting the importance of Cav-

1 and Cav-3 in organ protection in pathological conditions.

Likewise, a most recent study also reported a significant role of

APN/AdiopR1 signaling in protecting against traumatic brain

injury (165), nevertheless a potential of interplay between

caveolin and APN signaling in this pathology has yet to be

explored. The recent finding that APN secretion by exocytosis in

white adipocytes is Cav-1-dependent (166) suggests that

caveolin may affect APN signaling via diverse mechanisms.
4 Adiponectin and its potential as a
treatment target for diabetic
cardiomyopathy

4.1 Adiponectin and its receptors

In the past two decades, protective effects of APN against

pathological events were observed in various cells, including

suppressing cell death, inhibiting inflammation and enhancing

cell survival. Understanding the structures of both APN and its

receptors will likely provide critical insights toward a better

understanding of the molecular mechanisms.

APN was first identified in 1995 (167) and was known to be

specifically expressed in adipose tissue and fully differentiated

adipocytes (168). While adipokines like omentin and chemerin

are also cardioprotective, APN is the most abundant adipokines

in adipose tissue, and possesses insulin-sensitizing effects (169).

Through both size fractionation analysis and chemical

crosslinking assays, Wang and his colleagues (170) found that

APN may have multiple complexes and biochemical properties

of APN may vary depending on the combination of its subunits.

Similar results were shown again by Hu et al. (169) using mouse

APN in which the study provided evidence that APN exists as

multiple complexes with different molecular weights (171).

These studies also suggested that APN plays a role in

regulating whole body energy homeostasis.

Overall, three complexes - low molecular form (LMW),

middle molecular form (MMW) and high molecular form

(HMW) of APN were discovered. Along with the total level of

APN, different distributions of the complexes may contribute to
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distinct downstream biological effects (170). However, it is the

ratio of HMW to the total level of APN that plays a major role in

determining the insulin sensitivity in both rodent and human

studies. Apart from the molecule itself, APN signaling is also

worth attention. APN signaling is mediated via two main APN

receptors (AdipoRs): adiponectin receptor 1 (AdipoR1) and

adiponectin receptor 2 (AdipoR2) (172). Findings from

multiple in vitro studies involving glucose production assays

(173) and in vivo studies in various rodent diabetic models (171–

173) revealed that both AdipoR1 and AdipoR2 can mediate

actions that are exerted through adenosine monophosphate-

activated protein kinase (AMPK) signaling, a well-known

metabolic pathway in the body. Moreover, early cloning

studies in murine models identified that AdipoR1 is

ubiquitously expressed, but most abundant in skeletal muscle,

while AdipoR2 is mainly expressed in the liver. Expression of

AdipoR1 in ventricular cardiomyocytes is estimated to be

approximately 50% of the levels observed in skeletal muscle,

while AdipoR2 expression is similar between the liver and

cardiomyocytes (174).

Following the discovery of AdipoR1 and AdipoR2, Hu et al.

(169) identified T-cadherin, a third APN receptor that

specifically binds to MMW and HMW APN. A few years later,

Denzel (175) found that T-cadherin is expressed in cardiac

myocytes and mediates the antihypertrophic role of APN.

However, this molecule lacks an intracellular domain, and thus

cannot induce downstream signaling independently. While the

functional role of T-cadherin in APN signaling is controversial,

studies using T-cadherin KO mice and rats indicate that T-

cadherin has a vital role in assembling APN near AdipoR1 and

AdipoR2 to facilitate their signaling. In addition, deficiency of T-

cadherin has been shown to increase infarct size induced by

ischemia/reperfusion and reduce induction of AMPK (175).

Studies have also been carried out to assess the binding

affinities of various forms of APN to the AdipoRs, where it has

been demonstrated that AdipoR1 preferentially binds globular

APN, while AdipoR2 and T-cadherin binds HMW adiponectin

(169, 176).

Both human and murine cardiomyocyte-derived APN has

been demonstrated to be biologically active, protecting

cardiomyocytes from simulated ischemia/reperfusion injury

and directly impacting cardiac metabolism by activating APN

receptors via an autocrine/paracrine mechanism (177, 178). The

epicardial and pericardial adipose tissue were also found to

secret proinflammatory adipocytokines that may exert local

paracrine effects on the heart (168). A subsequent study from

Achari and Jain (179) found that HMW and globular

adiponectin (a proteolytic cleavage product of full length APN)

are the most biologically active forms of APN thought to be

primarily responsible for mediating its cardioprotective effects.

In fact, people with APN gene defects are susceptible to LV

hypertrophy and diastolic dysfunction (180).
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4.2 Adiponectin as potential treatment
targets for diabetic cardiomyopathy
and myocardial ischemia/reperfusion
injury in diabetes

It is well-understood that pathologies in DCM contribute to

left ventricular diastolic dysfunction, resulting in increased LV

end-diastolic pressure caused by impaired LV filling, reduced

elasticity, and increased relaxation time and ultimately leads to

myocardial ischemia and HF (181). Although various treatments

are available for HF, none of them are specific to treating

patients whose HF is caused by diabetes. Due to the ability of

metformin to reduce gluconeogenesis and glycogenolysis in the

liver, to increase glucose uptake in skeletal muscle and thus

reduce FFA induced AMPK signaling (182), metformin is often

used as the first-line pharmacotherapy for glycemic control

among all medications (183). However, metformin is

contraindicated in HF patients due to its side effect of lactic

acidosis. Furthermore, the issue with DCM is the extent to which

cellular damage and pathology that is confined to the heart. In

this case, traditional non-specific pharmacotherapies such as

metformin may not be effective since their secondary off-target

effects are not specific (168). To the extent glucose-lowering

agents are effective, they do not alleviate the underlying

pathologies of DCM. This highlights the need to identify novel

therapeutic targets and/or develop new treatments for

this condition.

Since its first discovery in 1995, both clinical and experimental

studies have pointed to the function of APN and its receptors in

preventing cardiovascular dysfunction and remodeling of the heart

(184–186). It was revealed that the heart has a local APN signaling

system, which is downregulated in the diabetic heart of animal

models and in patients. Moreover, expression levels of both the

APN and its receptor are reduced in patients with T2DM (187). In

cardiomyocytes, anti-inflammatory, anti-fibrotic and anti-apoptotic

mechanisms could all be induced by APN (188). Clinical studies

suggest that plasma APN levels are lower (6 fold) in diabetic

subjects with cardiac comorbidities than in non-diabetic subjects,

suggesting APN may be a predictor of cardiovascular risk in

diabetes (189). On the other hand, experimental studies provided

evidence that APN deficiency promotes cardiac hypertrophy,

fibrosis and remodeling, which are all key contributors to

diastolic dysfunction by promoting LV wall stiffening (190).

Furthermore, recombinant globular APN treatment (2.5 ug/ml)

ameliorates hypertrophy and fibrosis via activation of AdipoR1,

APPL1 and AMPK in angiotensin II-treated rat atrial myocytes and

fibroblasts (191). An increase in myocardial oxygen consumption

which reduces mitochondrial oxidative phosphorylation and

cardiac efficiency was observed in AdipoR1 KO mice (192).

Conversely, mice overexpressing AdipoR1 exhibit reduced cardiac

lipids, oxidative stress and metabolic dysfunction (193). Apart from

increasing AdipoR1 expression, reducing ERK activation and
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hypertrophy via AMPK (194, 195), cardioprotective effects of APN

are further demonstrated in cardiomyocytes through reduction of

cardiac fibrosis (196, 197).
4.3 Possible essential role of caveolins in
APN cardioprotection against diabetic
cardiomyopathy or myocardial ischemia/
reperfusion injury

4.3.1 Role of caveolins in APN cardioprotection
against myocardial ischemia/reperfusion injury

The role Cav-3 plays in APN transmembrane signaling and

APN-induced anti-ischemic/cardioprotective actions were first

demonstrated in the study of Ma and colleagues in 2012 (198).

Since it has been well-established that ischemic heart disease is

the main cause of death in patients with diabetes, we believe that

understanding and defining the molecular basis of Cav-3 and

APN signaling may help identifying novel therapeutic targets

given that changes in either Cav-3 or APN are tightly associated

with diabetes and ischemic heart disease. Restoration of Cav-3

and/or APN signaling may not only reduce the risk of

myocardial ischemia, but also decrease cardiovascular

mortality in diabetic patients. Within the categories of

ischemic heart diseases, MI is a major perioperative

complication in patients with diabetes (198). Although

reperfusion therapies could restore coronary blood flow, lethal

tissue injury known as “reperfusion injury” may also occur.

Ischemic postconditioning (IPo) is a phenomenon in which brief

repetitive episodes of ischemia and reperfusion immediately

following the onset of reperfusion can protect the hearts

against myocardial infarction reperfusion injury (MIRI) by

restoring the impaired AdipoR1/Caveolin-3 signaling under

diabetic condition (108). In addition, the cardioprotective

effect of APN against myocardial ischemia reperfusion injury

seen in wild-type mice has been shown to be significantly

compromised or completely lost in mice with Cav-3 knock

out, despite the expression level of key APN signaling

molecules was normal in Cav-3 KO mice (198). Furthermore,

APN receptor 1 (AdipoR1) has been shown to colocalize with

Cav-3 in the heart, forming AdipoR1/Cav-3 complex (198).

However, the potential interplay between Cav-3 and APN in

the context of diabetic cardiomyopathy has yet to be explored.

4.3.2 Role of caveolins in APN cardioprotection
against myocardial ischemia/reperfusion injury
in functionally impaired diabetic hearts

APN interacts with both Cav-3 and Cav-1 via different

pathways to protect against MIRI by reducing myocardial

oxidative/nitrate stress and activating endothelial nitric oxide

synthase (eNOS), thereby increasing NO bioavailability (199).

Although both Cav-1 KO and Cav-3 KO mice exhibited reduced

insulin response in Comb’s study (200), only Cav-3 KO mice
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exhibit typical type-2 diabetic changes, including increased

adiposity, decreased glucose uptake, reduced skeletal muscle

glucose metabolic flux, and increased plasma leptin levels.

Importantly, older Cav-3 null mice develop pathologic cardiac

phenotypes. However, Cav-3 KO mice at age 2 months do not

exhibit any myopathic changes (200), further demonstrating the

role of APN/Cav-3 signaling in the progression of diabetes. A

similar result was seen in Li’s study (108) with 4 week and 8 week

old diabetic mice whose cardiac functions were impaired. In

their study (108), it was found that the reason why diabetic

hearts lose responsiveness to IPo cardioprotection was mainly

due to reduction of APN in the early stage of diabetes, whereas

the progression of diabetes caused the impairment of AdipoR1/

Cav-3 signaling, and in the late case, APN supplementation in

combination with IPo could not restore diabetic heart

responsiveness (198). This being the case, further studies

should focus on the Cav-3 and AdipoR1 signaling pathway, in

particular their interplay, which could be a possible

therapeutic target.

NO, which is increased through AdipoR1/Cav-1 signaling in

cardiomyocytes, represents one of the most important defense

mechanisms against MIRI and is also one of the major mediators

of IPo cardioprotection (201). In the same study (108), IPo

conferred cardioprotective effects through APN that were

associated with reduced postischemic nitrotyrosine formation

and increased cardiac NO production in WT but not in Adipo

-/- mice. These data suggest that IPo confers cardioprotection by

reducing myocardial oxidative stress and increasing NO

bioavailability through APN (198). Thus, it is reasonable to

postulate that inhibition of NO may abrogate APN-mediated

IPo cardioprotection.

Given the role NO plays in cardioprotection, the AdipoR1/

Cav-1 signaling pathway which directly increases the production

of NO should not be undermined. The knockdown of Cav-1 in

endothelial cells significantly blocks APN transmembrane

signaling (202). This means that although Cav-1 knockdown

may not affect transmembrane signaling in cardiomyocytes, lack

of Cav-1 may increase myocardial I/R injury indirectly by

impairing blood flow restoration after reperfusion. In the

study conducted by Du and colleagues (202), the vasodilatory

effect of Cav-1 was further demonstrated by the fact that

physiologic APN levels significantly enhanced acetylcholine

(Ach)-induced vasorelaxation, an endothelium-dependent and

NO mediated process. This effect is abolished when either

AdipoR1 or Cav-1 is knocked out. Their study thus supports

the notion that the AdipoR1/Cav-1 signaling pathway is

essential for APN-mediated NO production, which is essential

in the regulation of endothelial function, including vasodilation.

The study was done to elucidate the mechanism responsible for

physiologically relevant concentrations of APN that induces

vasorelaxation, and the potential pathophysiological

association with hypertension. However, such a mechanism

could contribute to the decrease in blood flow after
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reperfusion as this would indirectly exacerbate myocardial I/R

injury. Thus, therapies that restore the AdipoR1/Cav-1 signaling

axis may represent novel modalities for increasing

cardioprotection after myocardial I/R injury.

Given that systemic APN malfunction has been identified to

be a major risk factor for increased cardiovascular morbidity and

mortality in type 2 diabetics, detailed elucidation of the signaling

cascade mediated by the AdipoR1/Cav-3 and AdipoR1/Cav-1

interaction would be important. This will not only enhance our

understanding of the APN signaling pathway and its regulation,

but also provide valuable information on the design of new

pharmacological interventions for clinically important diseases

such as obesity and type 2 diabetes.

In summary, by virtue of their ability to affect various

cellular pathways, both Cav-1 and Cav-3 represent a

chal lenging but interest ing therapeut ic target for

cardioprotection in DCM and in myocardial I/R injury. On

the other hand, APN was found to interact with both Cav-1 and

Cav-3 in the heart. This suggests APN may serve an important

role in the regulation of vasodilation by affecting NO production

indirectly via its interaction with caveolins. Further, the

interaction between Cav-3 and AdipoR1 may be essential for

APN-initiated AMPK-dependent anti-oxidative signaling for

cardioprotection. Despite the fact that the caveolin scaffolding

domain has been proposed as one of the major functional units

of caveolins (203, 204), the mechanisms regarding how caveolin

scaffolding domain interacts with other signaling proteins such

as APN and eNOS as well as the role that the caveolin

transmembrane domain (also known as the intramembrane

domain) may play in these caveolin-protein interactions

remain largely unclear and merit further study. While a few

studies have been published on the role of either caveolin or

APN in DCM, few studies have examined the interaction

between these proteins in the context of DCM or myocardial

I/R injury in the functionally impaired diabetic hearts. Hence,

APN should be further studied as a pharmacological mediator in

the mechanism of action of caveolin-dependent alleviation of the

burden of DCM.
5 Conclusions

The pathophysiology of DCM is complex and involves

relatively unexplored signaling mechanisms, altered substrate

preference, and finally structural alterations. Current treatment
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strategies of DCM still focus on improving glycemic control and

enhancing insulin sensitivity, as well as other adjunctive

treatments targeting risk factors such as hypertension and

hyperlipidemia. Furthermore, treatment of patients with

chronic heart failure follows similar principles regardless of

whether they have diabetes. Effective treatment options for

DCM are lacking. Cav-1/3 and APN are involved in many

complex signaling pathways, which creates new opportunities

for drug discovery to treat DCM. However, further studies are

needed to elucidate the complexity of the caveolin-dependent

regulation of APN signaling and features that are

clinically applicable.
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Glossary

DCM Diabetic Cardiomyopathy

APN Adiponectin

Cav Caveolin

T1DM Type 1 Diabetes Mellitus

T2DM Type 2 Diabetes Mellitus

FFA Free Fatty Acid

AGEs Advanced Glycation End Products

RAAS Renin-angiotensin-aldosterone System

NO Nitric Oxide

HFrEF Heart Failure with Reduced Ejection Fraction

PPARa Peroxisome Proliferator-activated Receptor alpha

FA Fatty Acid

ROS Reactive Oxygen Species

p TNF-a Tissue Necrosis Factor a

IL Interleukins

TGF Transforming Growth Factor

VCAM Vascular Cell Adhesion Molecule

NF-kB Nuclear Factor kB

MAPK Mitogenactivated Protein Kinases

RK Extracellular signal-regulated Kinases

JUNK Jun N-terminal Kinases

DAGs Diacylglycerols

CERs ceramides

PKC Protein Kinase C;

ER Endoplasmic Reticulum

UPR Unfolded Protein Response’

SERCA Sarcoplasmic Reticulum Activity

mPTP mitochondrial Permeability Transition Pore

eNOS endothelial Nitric Oxide Synthase

O Nitric Oxide

RAGE Receptors of Advanced Glycation End Products

I/R schemia/Reperfusion;

KO –

knockout’EC
Excitation-Contraction

Ca t-tubular Ca2+ current

LTCCs L-type Ca2+ channels

poE atherosclerosisprone apolipoprotein E

IR Insulin Receptor

IRS Insulin Receptor Substrate

SD Scaffolding Domain

EHD2 Eps15 omology domain containing pr o t e i n 2

PI3K Phosphatidylinositol 3-Kinase

PKB Protein Kinase B

EDHF Endothelium-derived Hyperpolarizing Factor

GSK Glycogen Synthase Kinase

1 Heme Oxygenase

LMW Low Molecular Form

HMW High Molecular Form

(Continued)
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AdipoRs APN Receptors

AMPK Adenosine Monophosphate-activated Protein Kinase

LV Left ventricle

HF Heart Failure

APPL Adaptor protein, phosphotyrosine interacting with domain
and leucine zipper

MI Myocardial Ischemia

IPo Ischemic Postconditioning

MIRI Myocardial Infarction Reperfusion Injury

Ach Acetylcholine
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