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cancer patients
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Background: At present, there is increasing evidence that both competitive

endogenous RNAs (ceRNAs) and immune status in the tumor

microenvironment (TME) can affect the progression of gastric cancer (GC),

and are closely related to the prognosis of patients. However, few studies have

linked the two to jointly determine the prognosis of patients with GC. This study

aimed to develop a combined prognostic model based on ceRNAs and

immune biomarkers.

Methods: First, the gene expression profiles and clinical information were

downloaded from TCGA and GEO databases. Then two ceRNA networks

were constructed on the basis of circRNA. Afterwards, the key genes were

screened by univariate Cox regression analysis and Lasso regression analysis,

and the ceRNA-related prognostic model was constructed by multivariate Cox

regression analysis. Next, CIBERSORT and ESTIMATE algorithms were utilized

to obtain the immune cell infiltration abundance and stromal/immune score in

TME. Furthermore, the correlation between ceRNAs and immunity was found

out through co-expression analysis, and another immune-related prognosis

model was established. Finally, combining these two models, a comprehensive

prognostic model was built and visualized with a nomogram.

Results: The (circRNA, lncRNA)-miRNA-mRNA regulatory network of GC was

constructed. The predictive power of ceRNA-related and immune-related

prognosis models was moderate. Co-expression analysis showed that the

ceRNA network was correlated with immunity. The integrated model of

combined ceRNAs and immunity in the TCGA training set, the AUC values of

1, 3, and 5-year survival rates were 0.78, 0.76, and 0.78, respectively; in the

independent external validation set GSE62254, they were 0.81, 0.79, and 0.78

respectively; in GSE15459, they were 0.84, 0.88 and 0.89 respectively. Besides,
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the prognostic score of the comprehensive model can predict

chemotherapeutic drug resistance. Moreover, we found that plasma variant

translocation 1 (PVT1) and infiltrating immune cells (mast cells) are worthy of

further investigation as independent prognostic factors.

Conclusions: Two ceRNA regulatory networks were constructed based on

circRNA. At the same time, a comprehensive prognosis model was established,

which has a high clinical significance for prognosis prediction and

chemotherapy drug selection of GC patients.
KEYWORDS

gastric cancer, CircRNA, immunocyte infiltration, competing endogenous RNA
network, prognostic model, plasma variant translocation 1, mast cell
Introduction

More than 1 million patients worldwide are diagnosed with

GC every year, of which more than 700,000 patients die (1).

Currently, GC is the fourth most common cancer and the second

leading cause of cancer death in the world, with more than 70%

of cases occurring in developing countries (2, 3). In Asia, GC is

the third most prevalent cancer (after breast cancer and lung

cancer) and the second most common cause of death (after lung

cancer) (4). Although the incidence and mortality rate of GC in

China have been gradually decreasing in recent years, it is still a

major public health problem (5). Since GC has no obvious

symptoms or only some nonspecific symptoms in the early

stage, the disease is easily ignored and misdiagnosed (6). Most

patients are already at an advanced stage when diagnosed, and

lose the best opportunity for surgical treatment. In addition, the

drug resistance of chemotherapeutic drugs is serious, resulting in

a poor prognosis for many patients (7, 8). Therefore, it is

particularly important to explore the molecular mechanism of

GC occurrence and development, find new prognostic markers,

and further construct a prognostic model with superior accuracy

and stable effect.

Circular RNAs (circRNAs) shape a covalently closed

continuous loop which have no 5’-3’ polarity and contain no

polyA tail (9, 10). Long noncoding RNAs (lncRNAs) are a class

of untranslated RNA molecules, which are typically greater than

200 nucleotides in length and do not code for proteins (11).

MicroRNAs (miRNAs) are non-coding single stranded RNA

molecules with about 22 nucleotides encoded by endogenous

genes, which can down-regulate the expression of related genes

(12). In recent years, a large number of studies have found that

many genes and non-coding RNAs (including circRNAs,

lncRNAs, miRNAs) play a paramount role in the GC (13–18).

At the same time, based on the hypothesis of competitive

endogenous RNA (ceRNA) regulatory network, circRNAs and
02
lncRNAs mainly regulate gene expression by adsorbing miRNAs

or acting as miRNA response elements (MRE) (19, 20). It is

restricted to understand the molecular mechanism of GC by a

single gene or a single non-coding RNA. However, it may get a

better choice to further explore the molecular mechanism of GC

by combining a large number of genes and related non-coding

RNAs through the ceRNA network. At the same time, based on

the genes and non-coding RNAs in ceRNA, we can construct the

prognosis model of GC and find out the independent prognostic

markers to further supplement the prognosis prediction system

of GC (15, 21). Therefore, the construction of ceRNA network

and prognosis model is of great significance to the molecular

mechanism and prognosis prediction of GC.

As a solid tumor, GC contains not only tumor cells but also

infiltrating immune cells, stromal cells, epithelial cells, vascular

cells, etc. (22). In the TME of GC, infiltrating immune cells

(mainly including tumor infiltrating lymphocytes, tumor

associated macrophages, dendritic cells, and bone marrow

derived inhibitory cells) and stromal cells are two very

important non-tumor cells. Numerous studies have shown that

they are valuable for the occurrence and development, prognosis

evaluation, and drug resistance evaluation of GC (23–26).

However, it is quite difficult to directly measure the proportion

of various cells in the tumor microenvironment to determine the

purity and the abundance of infiltrating immune cells (27). We

can solve the above problems through two algorithms: “cell type

identification by estimating relative subsets of RNA transcripts”

(CIBERSORT) and “Estimation of Stromal and Immune cells in

MAlignant Tumour tissues using Expression data”

(ESTIMATE). The CIBERSORT algorithm contains 547 genes,

and uses the principle of linear support vector regression to

deconvolute the expression matrix of immune cell subtypes to

estimate the abundance of 22 immune cells (28). According

to the specific gene expression characteristics of stroma and

immune cells, the ESTIMATE algorithm can obtain the stromal/
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immune score through the tumor tissue transcription map to

predict the tumor purity (29).

However, there are currently few studies linking ceRNA to the

immune status in the tumor microenvironment, and further

developing a comprehensive prognosis model for the prognosis

evaluation and prediction of chemotherapy drug resistance in

patients with GC. In this study, we constructed two ceRNA

regulatory networks, circRNA-miRNA-mRNA and (circRNA,

lncRNA)-miRNA based on circRNA, to further explore the

molecular mechanism of GC. The abundance of infiltrating

immune cells and stromal/immune score of GC microenvironment

was obtained by ESTIMATE and CIBERSORT algorithm. At the

same time, we constructed ceRNA-related and immune-related

prognosis models respectively, and further combined them to

construct a comprehensive prognosis model, which proposed a

new method for prognosis assessment of GC patients. In addition,

our comprehensive model can also predict the drug resistance of

chemotherapeutic drugs, which provides a new idea for the selection

of chemotherapy regimen for GC.
Materials and methods

Data collection

The RNAs expression data were derived from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/gds). GSE83521 analyzed circRNA through microarray,

including six gastric cancer tissues and six matched adjacent

tissues. The gastric cancer tissues were from patients with stage

III gastric cancer. GSE78092 used non coding RNA microarray

to analyze the differential expression of circRNAs in three pairs

of gastric cancer and adjacent tissues, and the results were

consistent with those verified by qPCR. GSE23739 analyzed

the expression of miRNAs in 40 pairs of gastric cancer and

normal gastric mucosa tissues from Singapore through Agilent

Human miRNA Microarrays (V2). GSE29998 detected the RNA

expression in 50 gastric cancer tissues and 49 normal gastric

mucosa tissues through aflymetrix SNP arrays and Illumina

mRNA expression arrays. The samples are from Russia and

Vietnam. At the same time, we download the expression data

and clinical data of GC from the Cancer Genome Atlas (TCGA)

database (https://cancergenome.nih.gov). The expression data of

mRNA and lncRNA included 407 samples (375 GC tissues, 32

normal tissues); miRNA expression data samples included 477

samples (436 GC tissues, 41 normal gastric tissues); and 443

samples Clinical data of GC (survival time, survival status, age,

gender, T stage, N stage, M stage, clinical stage, pathological

stage). In addition, the GC expression data and survival data in

data sets GSE62254 and GSE15459 were collected from the GEO

database as independent external validation sets. GSE62254

obtained the expression level of mRNAs in 300 gastric cancer

patients in Asian Cancer Research Group (ACRG) through
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microarray analysis, and also collected the survival time,

survival status, age, TNM stage and other clinical data of

patients. GSE15459 obtained the mRNA expression level of

192 patients with primary gastric cancer (original 200 cases,

excluding 8 cases in the original text) through microarray

analysis. At the same time, the survival time, survival status,

age, sex, TNM stage and other clinical information of patients

were collected.
Differential expression analysis of
circRNAs, lncRNAs, miRNAs, and mRNAs

The limma package of R4.0.5 software was used to perform

differential expression analysis on the RNA expression profiles

downloaded from the GEO database and the TCGA database.

The threshold was P < 0.05 and |log2FC| > 1. The differentially

expressed RNAs shared by the two databases were used for the

next analysis.
Construction of circRNA-miRNA-mRNA
and (circRNA, lncRNA)-miRNA ceRNA
regulatory network

The intersection of differentially expressed circRNAs in

GSE83521 and GSE78092 was taken for the following analysis.

The miRNA targeted by circRNA was predicted by circbank

database (http://www.circbank.cn/index.html). LncBasev.2

database (http://carolina.imis.athena-innovation.gr) was used to

predict miRNA targeting lncRNA. Target Scan Human 7.2

Database (http://www.targetscan.org/vert_72), miRWalk database

(http://mirwalk.umm.uni-heidelberg.de), and miRDB database

(http://mirdb.org), and the three databases intersection was used

to forecast the target mRNA ofmiRNA. Cytoscape 3.7.2 was used to

construct circRNA-miRNA-mRNA and (circRNA, lncRNA)-

miRNA regulatory networks. Then combine the above two

ceRNA regulatory networks to construct a (circRNA, lncRNA)-

miRNA-mRNA regulatory network.
Gene enrichment analysis and protein
interaction analysis in ceRNA network

Gene ontology (GO) annotation enrichment and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

analysis were carried out through the DAVID6.8 database

(https://david.ncifcrf.gov), the threshold was P < 0.05. Protein-

protein interaction (PPI) analysis was performed using

STRING11.0 (https://string-db.org), requiring a composite

score of > 0.4. The data was further imported into Cytoscape

3.7.2 according to the Degree algorithm to obtain the key genes

with the highest correlation in the PPI network.
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Establishment of a prognostic model
based on the ceRNA network

The expression data of mRNAs and lncRNAs were matched

with clinical data, and the samples with missing data were

deleted. Univariate Cox regression analysis was performed on

mRNAs, lncRNAs, and clinical features by the survival package

of R4.0.5 (threshold value P < 0.05). Furthermore, the glmnet

package and survival package were used for Lasso regression

analysis and multivariate Cox regression analysis to establish the

prognosis model. Risk score= b*expRNA1 + b*expRNA2 +…+

b*age + b*gender +…+b*stage (Among them, b is the regression

coefficient of the corresponding factor obtained by multivariate

Cox regression analysis. ExpRNA is the expression of the

corresponding RNA, and the clinicopathological features are

converted into the corresponding numbers). Finally, the patients

were divided into high-risk group and low-risk group according

to the median risk scores. Then, Kaplan Meier (K-M) survival

analysis was carried out in the high-risk group and low-risk

group using the survival package (threshold P < 0.05). At the

same time, the ROC curves of 3-year and 5-year overall survival

rates were plotted by the survival and timeROC packages, and

the area under the curve (AUC) of both were calculated. Finally,

K-M survival analysis was performed on the genes in the model

to find out the independent prognostic markers of GC.
Obtaining the tumor microenvironment
immunity through CIBERSORT and
ESTIMATE algorithms

The gene expression profiles of GC downloaded from TCGA

database and external validation sets GSE62254 and GSE15459

were input into the CIBERSORT algorithm to predict the

abundance of 22 infiltrating immune cells in the tumor

microenvironment, with a threshold of P < 0.05. At the same

time, the ESTIMATE algorithm was used to obtain the stromal/

immune scores of the above three data sets.
Correlation analysis between ceRNA
related prognostic models and
immune status

First, GSEA was used to analyze the high and low-risk

groups divided by ceRNA- related prognosis model, and the

factors affecting the prognosis were obtained. The background

file was c2.cp.kegg.v7.4.symbols.gmt, and the thresholds for all

enrichment results were Nominal p-value < 0.05 and FDR q-

value < 0.25. Then, ggplot2, ggpubr, ggExtra, and corrplot

software packages were used to analyze the correlation of 22

infiltrating immune cells and stromal/immune scores with

ceRNAs, with a threshold P < 0.05.
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Meanwhile, the genes related to RCAN2 expression were found

(correlation coefficient>0.5, P<0.05). The KEGG and GO

enrichment analysis of the above genes was carried out to find

out the potential mechanism of RCAN2 in gastric cancer. The next

step is to further verify the signal pathway regulated by RCAN2

through correlation analysis. In addition, immunohistochemistry in

HPA database was used to verify the expression level of related

proteins at the protein level.

Then, similar methods were used to analyze the correlation

between the risk score of the ceRNA-related prognosis model and

immunity. Finally, using cBioPortal (http://www.Cbioportal.

ORG) online database to analyze the mutation frequency and

mutation type of all RNAs in the ceRNA-related model. And

further found out the differences of the mutation types and

frequencies of RNAs in different types of GC.
Establishment of an immune related
prognosis model

Similar to the above method of establishing the prognosis

model, the prognosis model of GC was constructed based on the

abundance of 22 infiltrating immune cells and the immune/

stromal scores of the tumor microenvironment.
Construction of a comprehensive
prognostic model combining ceRNAs
and immunity and verifying it with an
external data set

Similar to the above, all the factors with P value less than 0.05

after multivariate Cox analysis in the above two models are

integrated into the comprehensive model. Furthermore, the

same integrated model was used for verification in the external

validation sets GSE62254 and GSE15459. Finally, the final

nomogram was drawn on the basis of the comprehensive model.

In addition, we conducted subgroup analysis on TCGA gastric

cancer patients and divided them intoMicrosatellite Facility (MSI)

group and Microsatellite Stability (MSS) group. MSI group can

also be divided into MSI-H and MSI-L groups. Further study the

correlation between risk grouping and microsatellite. Finally, we

also analyzed the correlation between the risk groups derived from

the comprehensive prognosis model and the clinical related

information of patients, and drew a heat map.
Prediction of chemotherapeutic drug
resistance using a comprehensive
prognostic model

First, based on the online database CellMiner (https://

discover.nci.nih.gov/cellminer), we analyzed the interrelation
frontiersin.org
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between the expression of ceRNAs and drug sensitivity (30). At

the same time, the correlation between the risk score of the

comprehensive prognosis model and the half maximal inhibitor

concentration (IC50) of antitumor drugs was analyzed by using

pRRophetic software package.
Differential expression analysis, survival
analysis and biological function
enrichment analysis of lncRNA PVT1

The ggpubr software package was used to analyze the

differential expression of lncRNA plasmacytoma variant

translocation 1 (PVT1), and further found out the correlation

between lncRNA PVT1 and the clinical features of patients with

GC. Then, the K-M survival curve of PVT1 was drawn by

survival package and survivminer package. Finally, Gene Set

Enrichment Analysis (GSEA), GO and KEGG enrichment

analysis were used to explore the biological function of PVT1.

The thresholds of the former were Nominal p-value < 0.05 and

FDR Q-value < 0.25, and the thresholds of the latter two were

P < 0.05.
Validation of VCAN and RCAN2
expression and cellular localization in an
integrated prognostic model

We utilized the HPA database (https://www.proteinatlas.

org/). The expression levels of VCAN and RCAN2 in gastric

cancer versus normal tissues were validated, and the cellular

localization of both was further determined.
Statistical analysis

All statistical analysis used R software 4.0.5 (Institute for

Statistics and Mathematics, Vienna, Austria; www.r-project.org).

All GC expression data downloaded from TCGA were in

kilobase of exon per million reads mapped (FPKM) format.

All data downloaded by GEO has been homogenized. The

following R software packages were used for further data

analysis: limma, glmnet, survival, timeROC, rms, ggpubr,

survminer, pRRophetic. P < 0.05, the difference was

statistically significant. When constructing the prognosis

model, this study used a large sample size dataset, including

more than 400 samples in the TCGA dataset and 300 and 192

samples in the two validation sets. The sample size fully met the

requirements of subsequent studies. When there is an adjust P-

value in all analyses, the threshold should not only be P < 0.05,

but also adjust P-value < 0.05.
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Results

Differential expression results

The circRNA expression profiles of GSE78092 and GSE83521

were used for differential expression analysis. As a result, 199 (146

up-regulated, 53 down-regulated) and 150 (70 up-regulated, 80

down-regulated) differentially expressed circRNAs were obtained

(Figures 1A–D). The intersection of the above two differentially

expressed circRNAs was taken to obtain 6 final circRNAs (up-

regulated 5, down-regulated 1) (Figures 1E, F; Table 1). The

results of differential expression analysis between TCGA and the

corresponding GEO database were intersected to obtain miRNAs

and mRNAs for further analysis.
Construction of a ceRNA
regulatory network

Circbank, Target Scan Human 7.2, miRWalk, miRDB, and

LNCBaseV.2 databases were used to predict the corresponding

ceRNAs. The predicted results were crossed with differentially

expressed RNAs to construct the ceRNA regulatory network. We

respectively constructed circRNA-miRNA-mRNA and

(circRNA, lncRNA)-miRNA regulatory networks (Figures 2A,

B; Supplementary Tables 1, 2). Finally, the two ceRNA networks

were integrated to construct the (circRNA, lncRNA)-miRNA

-mRNA regulatory network (Figure 2C).
Biological function annotation of the
ceRNA regulatory network

Go analysis showed that the biological processes of the ceRNA

regulatory network mainly focused on sister chromatid adhesion,

MAPK cascade signaling pathway, protein phosphorylation, and

negative transcriptional regulation of RNA polymerase II promoter.

In cells, it was mainly concentrated in chromosomes, centromeres,

and intermediates. The molecular functions were Ras-guanylate

exchange factor activity and transcription activity (Supplementary

Table 3, Supplementary Figure 1A). KEGG analysis showed that it

was mainly involved in purine metabolism and the ERBB signaling

pathway. According to the results of enrichment analysis, the ceRNA

regulatory network mainly activated the Ras-Raf-MAPK signaling

pathway through phosphorylation of the ERBB receptor to regulate

the replication, transcription, and translation of genetic material in

the nucleus, thereby regulating the proliferation, differentiation, and

metastasis of GC cells (Supplementary Table 3, Supplementary

Figure 1B). The PPI network had 54 nodes and 54 edges. The five

genes with the highest connectivity were obtained by the Degree

algorithm as key genes, including CDCA8 (Degree=6, BIRC5

(Degree=6), CENPF (Degree=5), NCAM1 (Degree=4), and AK4

(Degree= 4) (Supplementary Figure 1C).
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Construction and verification of ceRNA-
related prognostic models

The samples with missing RNA expression data and clinical

data were excluded, and 296 patients with GC were finally

included. The key prognostic biomarkers were obtained by

univariate Cox regression analysis (Supplementary Table 4) and

Lasso regression analysis (Figures 3A, B) and then the prognostic
Frontiers in Immunology 06
model was established by multivariate Cox regression analysis. The

prognosis model included 2mRNAs (VCAN, RCAN2), 3 lncRNAs

(LINC00461, TPTEP1, PVT1), and 2 clinical features (stage, age)

(Figure 3C). The HR of all factors except PVT1 was greater than 1,

indicating that PVT1 may be a protective factor for GC, and the

rest were risk factors (Supplementary Table 5). The samples were

divided into the low-risk group (148 cases) and high-risk group

(148 cases) based on the median of risk score. The results of K-M
TABLE 1 Details of circRNAs.

circRNA ID Position Strand Best transcript Gene symbol Regulation

hsa_circ_0074854 chr5: 162940560-162944680 + NM_182796 MAT2B up-regulation

hsa_circ_0013048 chr1: 82302569-82372915 + NM_012302 LPHN2 up-regulation

hsa_circ_0050102 chr19: 18459757-18466821 + NM_017712 PGPEP1 down-regulation

hsa_circ_0000673 chr16: 11940357-11940700 – NM_015659 RSL1D1 up-regulation

hsa_circ_0001658 chr6: 157357968-157406039 + NM_017519 ARID1B up-regulation

hsa_circ_0009172 chr10: 70218860-70229920 – NM_001080449 DNA2 up-regulation
A B

D

E F

C

FIGURE 1

Volcanic maps and heat maps of circRNAs expression. The differential expression heat maps of GSE78092 (A) and GSE83521 (B). The differential
expression volcanic maps of GSE78092 (C) and GSE83521 (D). Highly expressed circRNAs in the intersection of GSE78092 and GSE83521
(E). Low expression circRNAs in the intersection of GSE78092 and GSE83521 (F).
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survival analysis of the model showed that the overall survival time

of the high-risk group was significantly lower than that of the low-

risk group (P < 0.001) (Figure 3D). K-M survival analysis of all

factors in the prognosis model found four meaningful prognostic

markers (P < 0.05) (Supplementary Figure 11). The receiver

operating characteristic curve showed that the AUC values of 1-

year, 3-year, and 5-year survival rates were 0.726, 0.737, and 0.76

respectively, suggesting that the predictive power of this prognostic

model was moderate (Figure 3E). Figures 3F–H showed the

differences in the expression of survival status and prognostic

markers in patients with GC at different risk scores.
Correlation of the abundance of 22
infiltrating immune cells and immune/
stromal scores with ceRNA
prognostic models

The CIBERSORT algorithm was used to predict the

composition of 22 infiltrating immune cells in GC. The results
Frontiers in Immunology 07
of the histogram (Supplementary Figure 2A), and violin map

(Supplementary Figure 2B) showed that there are 12 infiltrating

immune cells with differential expression, including B cells

naïve, B cells memory, Plasma cells, T cells CD8, T cells CD4

naïve, T cells gamma delta, Monocytes, Macrophages M0,

Macrophages M1, Mast cells resting, Eosinophils, Neutrophils.

The ceRNA-related prognostic model was used to classify

patients in high- and low-risk groups, and GSEA analysis was

performed on the two groups. The results showed that the high-

risk group was mainly enriched in transendothelial migration of

leukocytes, TGF-b signaling pathway, chemokine signaling

pathway, cytokine-receptor interaction, ECM-receptor

interaction, etc. (Figure 5A). Therefore, we speculate that the

ceRNA-related prognosis model is related to the tumor

immune microenvironment.

Through GO enrichment analysis and KEGG enrichment

analysis, we preliminarily speculated that RCAN2 may regulate

the extracellular matrix through TGF-b pathway, thereby

affecting the tumor extracellular immune microenvironment

(Supplementary Figure 3). Then we showed that RCAN2 was
A B

C

FIGURE 2

Construction of ceRNA prognostic models. circRNA-miRNA-mRNA regulatory network (A). (circRNA, lncRNA)-mRNA regulatory network
(B). (circRNA, lncRNA)-miRNA-mRNA regulatory network (C). Red represents up regulation, blue represents down regulation.
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positively correlated with TGFB1, TGFB2, TGFB3, TGFBR1,

TGFBR2, TGFBR3, and TGFB1I1 in TGF-b pathway through

correlation analysis (Figure 4A). In addition, RCAN2 was

positively correlated with its downstream SMAD1, SMAD4,

SMAD7, and SMAD9 at the expression level (Figure 4B). Finally,

we verified that TGFB1I1, TGFBR1, SMAD9 and SMAD4 are low

expressed in gastric cancer by immunohistochemistry at the protein

level, and RCAN2 is also low expressed in gastric cancer

(Supplementary Figure 4). It is preliminarily proved that RCAN2

can regulate TGF-bpathway, thereby affecting tumor immune

microenvironment. At the same time, the immune/stromal score

was obtained by using the ESTIMATE algorithm. Correlation

analysis showed that there was a correlation between RNAs in

the model and immune cell abundance. B cells naive-RCAN2, Mast

cells resting-RCAN2, T cells regulatory-RCAN2, and Macrophages
Frontiers in Immunology 08
M1-PVT1 were all positively correlated. ESTIMATEScore-RCAN2,

StromalScore-RCAN2, ImmuneScore-VCAN, StromalScore-

VCAN, ESTIMATEScore-VCAN were all positively correlated

(Supplementary Figure 5A1–4, B1-5; Figures 5B, C). To sum up,

RCAN2 may regulate the tumor invasion abundance of T cells

regulation and mast cells through TGF-b signal pathway, and

further regulate the tumor immune microenvironment.

The box plot showed that the StromalScore, ImmuneScore,

and ESTIMATEScore of the high-risk group are higher

(Figures 6A1–3). T cells CD8 and T cells CD4 memory

activated have high infiltration abundance in the low-risk

group, and Macrophages M2 and Mast cells activated had high

infiltration abundance in the high-risk group (Figures 6B1–4).

The somatic mutation profiles of 5 RNAs showed that the

mutation frequencies of VCAN and PVT1 were high, 8% and
A

B
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C

FIGURE 3

Construction and validation of ceRNA related prognostic model. (A, B) Lasso regression analysis was used to simplify the prognostic model.
(C) Correlation between ceRNAs and prognosis. (D) K-M survival analysis of prognostic model. (E) ROC curve of prognostic model.
(F-H) Survival status of gastric cancer patients with different risk scores.
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12%, respectively (Figure 7A). The mutation patterns of VCAN

and RCAN2 are shown in Figures 7B, C. Therefore, we speculate

that the tumor mutation burden of RNAs in the ceRNA

prognosis model is high, and the high tumor mutation burden

can increase tumor heterogeneity and further lead to the change

of tumor immune microenvironment.
Construction of an immune-related
prognosis model

22 kinds of immune cells, StromalScore, ImmuneScore, and

ESTIMATEScore were used to construct the immune prognosis

model. The immune prognosis model constructed by Lasso

regression analysis (Supplementary Figure 6A1-2) and

multivariate Cox regression analysis included 7 kinds of

immune cells (Supplementary Figure 6B, Supplementary

Table 6). The K-M survival analysis of the model showed that

patients with high-risk scores had a poorer prognosis

(Supplementary Figure 6C). The receiver characteristic curve

showed that the AUC values of 1-year, 3-year, and 5-year

survival rates are 0.7, 0.68, and 0.519 respectively, suggesting

that the predictive ability of this prognosis model is mediocre

and cannot be used for long-term prognosis prediction

(Supplementary Figure 6D). Supplementary Figure 6E1–3
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showed the differences in the expression of survival status and

prognostic markers of GC patients with different risk scores. In

addition, through K-M survival analysis, we found that Mast

cells activated are a protective factor for GC, Mast cells resting is

a risk factor for GC, and StromalScore is a protective factor for

GC (Supplementary Figure 11), which can be used for

independent prognosis prediction.
Construction and external validation of a
comprehensive prognostic model
combining ceRNAs and immunity

All independent prognostic factors of ceRNAs related prognosis

model and immune-related model (P-value of multivariate Cox

analysis is less than 0.05) were integrated to construct a

comprehensive prognosis model (Supplementary Figure 7). The

model included two clinical indicators (age and stage), three

lncRNAs (TPTEP1, LINC00461, PVT1), two mRNAs (VCAN,

RCAN2), and four infiltrating immune cells (T cells CD4

memory resting, T cells gamma delta, Dendritic cells activated,

Mast cells resting) (Figure 8A). Among them, the HR of PVT1,

Dendritic cells activated, and Mast cells resting were less than 1,

which was the protective factor of GC, and the other factors were

the risk factors (Table 2). The K-M survival analysis of the model
A

B

FIGURE 4

RCAN2 may adjust TGF- b signaling pathway. (A) RCAN2 was positively correlated with TGFB1-3 and TGFBR1-3 at the expression level.
(B) RCAN2 was positively correlated with SMAD1,4,5,7,9 at the expression level.
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showed that patients with high-risk score had a poorer prognosis

(P < 0.001) (Figure 8B2). The receiver characteristic curve showed

that the AUC values of 1-year, 3-year, and 5-year survival rates were

0.776, 0.755, and 0.782 respectively, indicating that the predictive

ability of the prognostic model was better (Figure 8B1). The

comprehensive prognosis model in the independent validation

sets GSE62254 and GSE15459 was stable, and the K-M curve

showed that the prognosis of patients with high-risk score was

poor (P < 0.001) (Figure 8C2, D2). In the validation set GSE62254,

the AUC values of 1-year, 3-year, and 5-year survival rates were

0.811, 0.79, and 0.78, respectively (Figure 8C1). In the validation set

GSE15459, the AUC values of 1-year, 3-year, and 5-year survival

rates were 0.842, 0.878, and 0.886, respectively (Figure 8D1). It

showed that the predictive ability of the comprehensive prognosis

model was good and stable. Supplementary Figure 8 showed the

differences in the expression of survival status and prognostic

markers of GC patients with different risk scores. The

construction of the nomogram visualized all factors in the

comprehensive model and the calibration curves of 1, 3, and 5
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years showed that the prediction of the model was more consistent

with the actual situation (Figures 9A, B1–3). Supplementary

Figures 9 and 10 showed the nomograms of the comprehensive

prognostic model in the external independent validation sets

GSE62254 and GSE15459, respectively.

Current research shows that MSI-H/MSI-L has different

responses to tumor immunotherapy, so we choose to further

group MSI for analysis. The results showed that among MSI

patients, the proportion of MSI-H patients in the high-risk

group was higher (Figure 10A). However, the risk group

cannot distinguish between MSI and MSS (Figure 10B). It can

be inferred that the prognosis of patients in high-risk groups is

poor, but immunotherapy may have a better effect.

The risk groups obtained from the comprehensive prognosis

model are related to many clinical data. In short, being in

the high-risk group means that the patient is more likely

to be in a state of death, a higher T stage, a higher clinical

stage, and an older age (Figure 10C). This is consistent with

clinical cognition.
A

B C

FIGURE 5

Correlation between ceRNAs and immune microenvironment of gastric cancer. (A) GSEA analysis of high-risk group divided by ceRNA related
prognostic model. (B) Correlation analysis between ceRNAs and infiltrating immune cells. (C) Correlation analysis between ceRNAs and
ImmuneScore/StromalScore.
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FIGURE 7

Somatic mutation map of 5 ceRNAs. (A) Mutation frequency and expression of 5 ceRNAs. (B, C) Mutation patterns of VCAN and RCAN2.
A1 A2 A3

B1 B2 B3 B4

FIGURE 6

Correlation between risk-score of ceRNA related prognosis model and immune microenvironment. (A1-3) Correlation analysis between risk
score and ImmuneScore/StromalScore of gastric cancer. (B1-4) Correlation analysis between risk-score and abundance of invasive immune
cells in gastric cancer.
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Prediction of chemosensitivity in
patients with GC by a comprehensive
prognostic model

Based on the online database CellMiner, the relationship

between the 5 RNAs in the comprehensive model and

chemotherapeutic drug sensitivity was obtained (P < 0.05).

The figure showed some of the results with high correlation

(Figure 11A, Supplementary Table 7). In addition, according to

the pRophetic algorithm, we predicted the IC50 of six commonly

used chemotherapy drugs (paclitaxel, etoposide, bleomycin,

parthenolide, mitomycin.C, and erlotinib) in patients with
Frontiers in Immunology 12
high-risk scores and low-risk scores (P < 0.05). It was found

that all 6 drugs had higher IC50 in patients with high-risk scores

(Figures 11B–G), suggesting that patients with high-risk scores

had poor sensitivity to the above drugs.
The expression, prognosis prediction
and biological function analysis of
LncRNA PVT1

PVT1 may be a protective factor for GC, which we further

analyzed (303 people remained after deleting the missing data).
A

B1 D1C1

B2 D2C2

FIGURE 8

Construction and validation of comprehensive prognostic model. (A) Multivariate Cox model was used to construct a comprehensive prognosis
model. (B1-2) ROC curve and K-M survival analysis of training set. (C1-2, D1-2) ROC curve and K-M survival analysis of GSE62254 and
GSE15459 external validation set.
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FIGURE 9

Nomogram and validation of comprehensive prognostic model. (A) Nomogram of the comprehensive prognostic model. (B1–3) The calibration
curves for the nomogram.
TABLE 2 Multivariate Cox regression analysis of comprehensive prognostic model.

ID coef HR HR.95L HR.95H P value

Stage 0.375595 1.455857 1.068968 1.982773 0.017

age 0.020179 1.020384 0.994022 1.047445 0.131

TPTEP1 0.037176 1.037876 1.006875 1.069831 0.016

LINC00461 1.618377 5.044895 1.371381 18.55863 0.015

PVT1 -0.04893 0.952247 0.90658 1.000215 0.051

VCAN 0.008053 1.008085 1.002099 1.014107 0.008

RCAN2 0.005219 1.005233 1.001437 1.009042 0.007

T cells CD4 memory resting 3.128088 22.83028 0.767762 678.8844 0.071

T cells gamma delta 57.04703 5.96E+24 490.604 7.24E+46 0.028

Dendritic cells activated -12.6463 3.22E-06 1.15E-12 9.003185 0.095

Mast cells resting -11.4065 1.11E-05 1.40E-09 0.08806 0.013
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PVT1 was highly expressed in GC (P < 0.05) (Supplementary

Figure 12A, B). PVT1 was only associated with the T stage, and its

expression was the highest in the T1 stage (Supplementary

Figure 12C). Taking the optimal expression level as the threshold,

the patients with high expression of PVT1 (115 samples) and low

expression (188 samples) were divided, and K-M survival analysis

was performed. The results also showed that the patients with high

expression of PVT1 had a better prognosis (Supplementary

Figure 12D). The GSEA results showed that pathways such as base

excision repair, cell cycle, DNA replication, homologous

recombination, mismatch repair, nucleotide excision repair, and

P53 signaling pathway were all enriched in the PVT1 high

expression group, suggesting that high PVT1 expression was

related to DNA repair (Supplementary Figure 12E; Supplementary

Table 8). Pathways such as arrhythmogenic right ventricular

cardiomyopathy, calcium signaling pathway, dilated

cardiomyopathy, hypertrophic cardiomyopathy, and long-term

depression were all enriched in the PVT1 low expression group,

suggesting that low PVT1 expression was related to heart disease and

depression (Supplementary Figure 12F; Supplementary Table 9).

Correlation analysis showed that the expression of PVT1 was

related to CLEC3B, ATAD2, DCAF13, and other genes (only the

absolute value of correlation coefficient was greater than 0.4)

(Supplementary Figure 12G1–8). Further, GO and KEGG analysis
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showed that PVT1may be related toDNAhelicase, DNA replication,

DNA repair, and cell cycle pathways (Supplementary Figure 12H, I;

Supplementary Table 10). The correlation between PVT1 and the cell

cycle pathway is shown in Supplementary Figure 13.
Protein expression levels and cellular
spatial localization of VCAN and RCAN2

Immunohistochemistry confirmed the above-mentioned

high expression of VCAN in gastric cancer and low expression

of RCAN2 in gastric cancer (Figure 12A). Immunofluorescence

experiments (Figure 12B) showed that VCAN mainly existed in

vesicles in U-251MG cells, which indicated that VCANmight be

a secreted protein, which was most used outside the cell. While

RCAN2 was detected in mitochondria and nucleoplasm in U-2

OS cells, suggesting that RCAN2 may be an intracellular protein.
Discussion

Currently, there have been many studies focusing on

lncRNA-miRNA-mRNA regulatory networks in GC. For

example, researchers have found that lncRNA UBE2CP3
A B

C

FIGURE 10

(A, B) The MSI levels of patients in high-risk groups were different. (C) Risk grouping is related to clinical indicators of patients. * Indicates P <
0.05. ** Indicates P < 0.01. *** Indicates P < 0.001. Ns indicates not statistically significant.
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promotes the progression of GC by regulating the miR-138-5p/

ITGA2 axis (31), and LncRNA NKX2-1-AS1 activates VEGFR-2

signal pathway by regulating miR-145-5p/SERPINE1 axis, which

promotes angiogenesis and GC progression (32). In addition, a

growing number of studies have begun to note that circRNAs

and the circRNA-miRNA-mRNA ceRNA regulatory network
Frontiers in Immunology 15
also play an important role in GC. Researchers found that

circMAPK1 can inhibit the phosphation of MAPK1 via the

encoded protein MAPK1-109aa, so as to inhibit the procession

of GC (33). circRNA_ 100290 promotes the proliferation and

metastasis of GC cells by regulating the miR-29b-3p/ITGA11

axis (34). circCUL2 promotes the apoptosis of GC cells by
A
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C

FIGURE 11

Prediction of chemotherapeutic drug resistance in gastric cancer by comprehensive prognosis model. (A) Correlation between five RNAs and
chemotherapeutic drug resistance in gastric cancer. (B-G) The risk score obtained by the comprehensive model can predict the drug resistance
of six common chemotherapeutic drugs.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.951135
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2022.951135
regulating the miR-142-3p/ROCK2 axis, inhibits the procession

of GC, and improves the cisplatin resistance of GC cells (35). It

can be seen from above that both LncRNAs and circRNAs can

act as molecular sponges and further regulate the process of GC

by adsorbing miRNAs.

However, so far, few researchers have combined LncRNAs

and circRNAs to construct a ceRNA regulatory network to

further explore the molecular mechanism of GC. In this study,

we predicted the targeted regulation relationship of RNA-RNA

through multiple online databases, constructed two ceRNA

regulatory networks, circRNA-miRNA-mRNA and (circRNA,

lncRNA)-miRNA, and further combined these two networks to

construct the (circRNA, lncRNA)-miRNA-mRNA ceRNA

regulatory network. According to the results of enrichment

analysis, the ceRNA regulatory network mainly regulated the

replication, transcription, and translation of genetic material in

the nucleus by regulating ERBB receptor phosphorylation and

activating Ras-Raf-MAPK signaling pathway, to regulate the

proliferation, differentiation, and metastasis of GC cells. We

believed that the (circRNA, lncRNA)-miRNA-mRNA regulatory

network can better conform to the molecular mechanism of
Frontiers in Immunology 16
ceRNA in GC, which was conducive to further exploring new

therapeutic targets and prognostic markers. Furthermore, we

constructed a ceRNA-related prognostic model by Cox

regression analysis and Lasso regression analysis. The receiver

characteristic curve of the model showed that the AUC values of

1-year, 3-year, and 5-year survival rates were 0.726, 0.737, and

0.76 respectively, indicating that the predictive ability of the

prognostic model was medium. In addition, K-M survival

analysis suggested that age, Stage, PVT1, and VCAN could be

regarded as independent prognostic markers for GC patients.

Besides, we found that LncRNA PVT1 was highly expressed

in GC and correlated with the T stage. The K-M survival analysis

showed that high expression of PVT1 was a protective factor for

GC. The results of enrichment analysis showed that the high

expression of PVT1 was related to DNA repair (base precision

repair, cell cycle, DNA replication, homologous recombination,

mismatch repair, nucleoside precision repair, p53 signaling

pathway, etc.); Low expression of PVT1 was associated with

heart disease and depression (arrhythmogenic right ventricular

cardiology pathway, calcium signaling pathway, divided

cardiology pathway, hypertrophic cardiology pathway, long
A

B

FIGURE 12

Protein expression levels and cellular spatial localization of VCAN and RCAN2. (A) Immunohistochemical experiments of VCAN and RCAN2 in
gastric cancer and normal tissues. (B) The immunofluorescence experiments of HPA database showed that VCAN mainly exists in the vesicles of
U-251 MG cells, and RCAN2 mainly exists in the mitochondria and nucleoplasm of U-2 OS cells.
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term depression, etc.). The results of enrichment analysis also

supported that the high expression of PVT1 may be a protective

factor for GC. However, many current studies have found that

high expression of PVT1 can promote the proliferation,

invasion, and metastasis of GC cells (36), promote the

formation of neovascularization (37), and epithelial-

mesenchymal transition (38), and indicate a poor prognosis

(39). For the above inconsistent results, we believe that the

molecular mechanism of GC involved in PVT1 and its

relationship with the prognosis of GC patients still need

further in-depth research. We can start with the results of

enrichment analysis in this paper, such as further research on

the correlation between PVT1 and DNA repair.

This study showed that the abundance of infiltrating immune

cells is related to the progression and prognosis of GC. In

addition, there is also evidence that immune/stromal score is an

important influencing factor of GC (40, 41). According to

CIBERSORT and ESTIMATE algorithms, we predicted the

abundance of infiltrating immune cells and immune/stromal

score in patients with GC. Based on this, an immune-related

prognosis model was constructed. The receiver characteristic

curve showed that the AUC values of 1-year, 3-year, and 5-year

survival rates were 0.7, 0.68, and 0.519 respectively, suggesting

that the predictive ability of the prognosis model was average. In

addition, we found a very interesting independent prognostic

factor: mast cells. A high proportion of activated mast cells

indicates a poor prognosis, while a high proportion of resting

mast cells indicates a good prognosis. These results suggest that

inhibition of mast cells activity in the tumor microenvironment

may be a new target for the GC treatment, which has also been

preliminarily confirmed by researchers.

T cells gamma delta (gd T cells) are unique subsets of T cells,

which are not restricted by MHC in recognizing tumor antigens.

So, they are defined as innate immune cells. gd T cells can be

divided into different groups according to the expression of g
chain or d chain (42). The most studied of which are the Vd1 T
cells distributed in tissues and the Vg9Vd2 T cells distributed in

peripheral blood. Peripheral Vd1 T cells and Vg9Vd2 T cells

could recognize tumor cells through TCRgd and NKR, and kill

them through perforin-granzyme B, Fas/FasL and TRAIL.

Activated Vg9Vd2 T cells could perform the function of APC,

and furthermore, they could activate NK cells and DC directly

(43). On the contrary, tumor-infiltrating Vd1 T cells promoted

tumor development by secreting IL-17 and inhibiting the

maturation of CD4/CD8 T cells and DC (44). gd T cells have

been used in clinical anti-tumor therapy and have achieved good

results. The most common approach is to directly activate the

antitumor activity of Vg9Vd2 T cells, either by in vitro

stimulation or in vivo, and then apply them in tumor patients

via different pathways (43). It is noteworthy to mention that

although Vd1 T cells account for the majority of tumor-

infiltrating gd T cells, the definition of gd T cell subsets still

rely on their profile in cytokine production. In the present study
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tumor infiltrating gd T cells are an independent prognostic factor

in gastric cancer, and their high infiltration level is closely

associated with poor prognosis. This is also in keeping with

the above studies.

In gastric cancer (45), thyroid cancer (46), pancreatic cancer

(47), mast cells often display a pro tumorigenic effect and high

infiltration levels of mast cells often predict poor patient

outcome. However, it was found in breast cancer that the

infiltration of mast cells can exert antitumor effects, and their

infiltration tends to be beneficial to the prognosis of patients

(48). While in melanoma, the contribution of mast cells to their

development is not well defined and its role depends on the

infiltration site of mast cells as well as on the subtype of the

tumor (49, 50). This seemingly contradictory result illustrates

that mast cells and their mediators have complex roles in

different types of tumors.

Studies have shown that ceRNA regulatory network is

related to the tumor immune microenvironment (51), and

various RNAs are also related to tumor immunity (52–54).

Through the correlation analysis of the two, we found similar

conclusions. B cells naive-RCAN2, Mast cells resting-RCAN2, T

cells regulatory-RCAN2, Macrophages M1-PVT1 are all

positively correlated. ESTIMATEScore-RCAN2, StromalScore-

RCAN2, ImmuneScore-VCAN, StromalScore-VCAN,

ESTIMATEScore-VCAN are all positively correlated. We used

KEGG enrichment analysis to predict that RCAN2 can regulate

TGF signal pathway, thereby changing the immune cell

infiltration in the tumor microenvironment (including B cells

naive, mast cells, T cells regulatory), thereby changing the tumor

immune situation. The somatic mutation map showed that the

mutation evaluation rates of ceRNAs are relatively high, and the

mutation frequencies of VCAN and PVT1 were 8% and 12%,

respectively. Therefore, we speculate that the high mutation

frequency of ceRNAs leads to greater tumor heterogeneity and

changes in the immune status in the tumor microenvironment.

However, it is very difficult to directly measure the abundance of

infiltrating immune cells in GC, which also costs more money

and time. Through this study, we have found a method to

indirectly determine the proportion of immune cell

infiltration, and predict the abundance of a certain infiltrating

immune cell by measuring the expression of a certain RNA. This

is a simple and quick idea, which provides a breakthrough for

the study of the immune microenvironment of GC.

In addition, we found that the risk score calculated by the

ceRNA-related prognosis model was related to the abundance of

infiltrating immune cells and immune/stromal scores of GC,

which implied that there may be a correlation between the

ceRNA-related prognosis model and immune-related

prognosis model. Therefore, we integrated the two models to

build a new comprehensive model. The receiver characteristic

curve showed that the AUC values of 1-year, 3-year, and 5-year

survival rates were 0.776, 0.755, and 0.782 respectively. In the

two external validation sets, the performance of the model was
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more brilliant, which indicated that the prediction ability of the

prognosis model was excellent and pretty stable. At the same

time, we assessed the correlation between the comprehensive

prognosis model and the chemotherapeutic drug resistance of

GC. The results showed that, on the one hand, the RNAs in the

model could predict the sensitivity of chemotherapeutic drugs

alone. On the other hand, the IC50 of six common

chemotherapeutic drugs (paclitaxel, etoposide, bleomycin,

parthenolide, mitomycin.C, and erlotinib) were higher in

patients with high-risk scores, suggesting that patients with

high-risk scores had poor sensitivity to the above drugs. We

believe that the construction of a comprehensive prognostic

model further improves the current situation of insufficient

prognostic evaluation ability of clinical indicators, and is a

powerful tool for prognostic evaluation of patients with GC.

At the same time, the prognosis model can also predict the drug

resistance of chemotherapy patients, which undoubtedly

provides a novel idea for the majority of GC patients to select

chemotherapy drugs.

At present, there are many prognostic models based on

gastric cancer, but some of them do not have good predictive

ability. Or it only performs well in the training set but performs

poorly in the verification set, that is, the model does not have

universal applicability. For example, the prognostic model of

Huo et al. (55) contains 11 genes, which perform well in the

training set, but perform poorly in multiple GEO database

validation sets. However, the four gene prognostic model of Jia

et al. (56) and Guo et al. (57) showed poor performance in

TCGA training set and multiple GEO validation sets. We believe

that our prognosis model has the following advantages: 1. Our

comprehensive prognosis model performs well in TCGA

training set and two GEO validation sets, which shows that

the accuracy and stability of our prognostic model are

satisfactory. 2. This model can not only predict the prognosis,

but also predict the drug resistance of gastric cancer patients,

which is conducive to clinical selection of more sensitive

individualized chemotherapy programs. This prognostic model

consists of clinical features, ceRNAs and a variety of immune

infiltrating cells. It is a bold innovation and has achieved

satisfactory success in the end to infer the prognosis of

patients from multiple perspectives during the development of

gastric cancer. However, this combined prognosis model is too

complex. It needs to determine the expression level of each

component in the model through transcriptome gene

sequencing, further determine the risk score of patients and

then infer their prognosis. However, the high price of gene chips

has made it impossible to be widely used in clinical applications.
Conclusion

In summary, we built two ceRNA regulatory networks,

circRNA-miRNA-mRNA and (circRNA, lncRNA)-miRNA
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based on circRNAs. Then we integrated them into a

(circRNA, lncRNA)-miRNA-mRNA regulatory network

which is conducive to further improving the molecular

mechanism of ceRNA in GC. At the same time, we

constructed two prognostic models based on ceRNAs and

immunity in tumor microenvironment, and further

integrated the two to develop a comprehensive prognostic

model. The model was a fully developed and reliable GC

prognostic model with outstanding performance in TCGA

training set and two GEO verification sets. In addition, we

found that the abundance of infiltrating immune cells in GC

was associated with ceRNAs, so we could predict the

abundance of infiltrating immune cells by the relevant RNAs

expression, which is a very simple method. Excitingly, we

found two interesting independent prognostic markers:

LncRNA PVT1 and mast cells. In this paper, LncRNA PVT1

is a protective factor for GC, but there is a contradiction with

related literature. It’s our next stage of work to consider

whether PVT1 can participate in the process of GC through

the gene repair pathway. The activation of mast cells is a risk

factor for GC. Therefore, the inhibition or therapeutic

depletion of mast cells in the tumor microenvironment is a

promising new treatment option for GC.
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SUPPLEMENTARY FIGURE 1

Enrichment analysis of mRNA and construction of PPI network. (A) The
GO analysis of mRNA. (B) The KEGG analysis of mRNA. (C) The protein-
protein interaction network of mRNA. Red represents up regulation, and

blue represents down regulation, and ellipses represent key genes.

SUPPLEMENTARY FIGURE 2

CIBERSORT algorithm was used to predict the composition of 22 invasive
immune cells in gastric cancer. (A) Abundance of 22 immune cells in

gastric cancer. Violin picture (B) of the proportion of 22 immune cells in
gastric cancer.

SUPPLEMENTARY FIGURE 3

RCAN2 (A) KEGG enrichment analysis. (B). GO enrichment analysis.

SUPPLEMENTARY FIGURE 4

The expression of TGF- b pathway related proteins related to RCAN2 in
tumor and normal tissues.
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SUPPLEMENTARY FIGURE 5

Correlation between ceRNAs (A1-4) and immune microenvironment (B1-
3) of gastric cancer.

SUPPLEMENTARY FIGURE 6

Construction and validation of immune related diagnostic model. (A1-2)
Lasso regression analysis was used to simplify the prognostic model. (B)
Correlation between infiltrating immune cells and diagnosis (C) K-M

survival analysis of prognostic model. (D) ROC curve of prognostic
model. (E1-3) Survival status of gastric cancer patients with different

risk scores.

SUPPLEMENTARY FIGURE 7

Lasso regression analysis. (A) Use the minimum criterion of 10 times cross
validation to select adjustment parameters in lasso regression. (B)
Characteristic curve of lasso coefficient.

SUPPLEMENTARY FIGURE 8

The differences in the expression of survival status and prognostic markers

of GC patients with different risk scores. (A1-3) Training set based on
TCGA database. (B1-3) Verification set based on GEO62254. (C1-3)
Verification set based on GEO15459.

SUPPLEMENTARY FIGURE 9

The nomogram of the comprehensive prognostic model in the external

independent validation set GSE62254.

SUPPLEMENTARY FIGURE 10

The nomogram of the comprehensive prognostic model in the external

independent validation set GSE15459.

SUPPLEMENTARY FIGURE 11

Independent prognostic biomarkers of gastric cancer. (A) age, (B) Stage,
(C) PVT1, (D) VCAN, (E) Mast cells activated, (F) Mast cells resting,
(G) StromalScore.

SUPPLEMENTARY FIGURE 12

Expression, prognosis and biological function analysis of LncRNA PVT1.

(A, B) PVT1 is highly expressed in gastric cancer. (C) PVT1 is associated

with T-stage of gastric cancer. (D) K-M curve showed that PVT1 was a
protective factor for gastric cancer. (E) GSEA analysis of patients with high

PVT1 expression. (F) GSEA analysis of patients with low PVT1 expression.
(G1-8) Correlation between PVT1 and genes. (H, I) Go and KEGG

enrichment analysis of PVT1.

SUPPLEMENTARY FIGURE 13

Correlation between PVT1 and cell cycle pathway.
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39. Martıńez-Barriocanal Á, Arango D, Dopeso H. PVT1 long non-coding
RNA in gastrointestinal cancer. Front Oncol (2020) 10:38. doi: 10.3389/fonc.2020.
00038

40. Jiang Q, Sun J, Chen H, Ding C, Tang Z, Ruan Y, et al. Establishment of an
immune cell infiltration score to help predict the prognosis and chemotherapy
responsiveness of gastric cancer patients. Front Oncol (2021) 11:650673. doi:
10.3389/fonc.2021.650673

41. Li S, Sun S, Sun H, Ma P, Zhang J, Cao Y, et al. A risk signature with
inflammatory and immune cells infiltration predicts survival and efficiency of
chemotherapy in gastric cancer. Int Immunopharmacol (2021) 96:107589. doi:
10.1016/j.intimp.2021.107589

42. Borst J, van Dongen JJ, Bolhuis RL, Peters PJ, Hafler DA, de Vries E, et al.
Distinct molecular forms of human T cell receptor gamma/delta detected on viable
T cells by a monoclonal antibody. J Exp Med (1988) 167:1625–44. doi: 10.1084/
jem.167.5.1625
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